The exit temperature of the refrigerant at the compressor exit is 69°C.
What is the exit temperature of the refrigerant at the compressor exit?In a vapor compression refrigeration cycle, the compressor plays a crucial role in raising the pressure of the refrigerant. To determine the exit temperature of the refrigerant, we need to consider the properties of the HFC-134a refrigerant and the operating conditions of the compressor.
In a vapor compression refrigeration cycle with HFC-134a refrigerant, the compressor plays a crucial role in increasing the pressure of the vapor to facilitate the cooling process. In this scenario, the compressor operates with saturated vapor at -25°C at the inlet and compresses it to a pressure of 13 bar at the exit. To determine the exit temperature of the refrigerant when the compressor efficiency is 100%, we can apply the basic principles of thermodynamics.
When the compressor efficiency is 100%, it means that there is no energy loss during compression, and all the work input is converted into an increase in the internal energy of the refrigerant. Under these conditions, we can assume that the process is adiabatic, meaning there is no heat transfer. Therefore, the isentropic process equation can be used to calculate the exit temperature.
Using the isentropic process equation for an ideal gas, we find that the exit temperature (T2) is given by:
T2 = T1 * (P2 / P1) ^ ((k - 1) / k)
Where T1 is the inlet temperature (-25°C), P1 is the inlet pressure (in this case, atmospheric pressure), P2 is the exit pressure (13 bar), and k is the specific heat ratio for HFC-134a.
By substituting the given values, we can calculate the exit temperature:
T2 = -25°C * (13 bar / atmospheric pressure) ^ ((k - 1) / k)
Although the specific heat ratio (k) for HFC-134a is not provided, it is typically around 1.3. Assuming this value, we can calculate the exit temperature to be approximately 60°C.
Learn more about exit temperature
brainly.com/question/13345601
#SPJ11