Suppose that A and B are two events such that P(A) + P(B) > 1.
find the smallest and largest possible values for p (A ∪ B).

Answers

Answer 1

The smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, and the largest possible value is 1.

To understand why, let's consider the probability of the union of two events, A and B. The probability of the union is given by P(A ∪ B) = P(A) + P(B) - P(A ∩ B), where P(A ∩ B) represents the probability of both events A and B occurring simultaneously.

Since probabilities are bounded between 0 and 1, the sum of P(A) and P(B) cannot exceed 1. If P(A) + P(B) exceeds 1, it means that the events A and B overlap to some extent, and the probability of their intersection, P(A ∩ B), is non-zero.

Therefore, the smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, which occurs when P(A ∩ B) = 0. In this case, there is no overlap between A and B, and the union is simply the sum of their probabilities.

On the other hand, the largest possible value for P(A ∪ B) is 1, which occurs when the events A and B are mutually exclusive, meaning they have no elements in common.

If P(A) + P(B) > 1, the smallest possible value for P(A ∪ B) is P(A) + P(B) - 1, and the largest possible value is 1.

To know more about events click here:


Related Questions

what is the probability that the length of stay in the icu is one day or less (to 4 decimals)?

Answers

The probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

To calculate the probability that the length of stay in the ICU is one day or less, you need to find the cumulative probability up to one day.

Let's assume that the length of stay in the ICU follows a normal distribution with a mean of 4.5 days and a standard deviation of 2.3 days.

Using the formula for standardizing a normal distribution, we get:z = (x - μ) / σwhere x is the length of stay, μ is the mean (4.5), and σ is the standard deviation (2.3).

To find the cumulative probability up to one day, we need to standardize one day as follows:

z = (1 - 4.5) / 2.3 = -1.52

Using a standard normal distribution table or a calculator, we find that the cumulative probability up to z = -1.52 is 0.0630.

Therefore, the probability that the length of stay in the ICU is one day or less is approximately 0.0630 to 4 decimal places.

Know more about probability here:

https://brainly.com/question/25839839

#SPJ11

Find a vector function, r(t), that represents the curve of intersection of the two surfaces. The cone z = x² + y² and the plane z = 2 + y r(t) =

Answers

A vector function r(t) that represents the curve of intersection of the two surfaces, the cone z = x² + y² and the plane z = 2 + y, is r(t) = ⟨t, -t² + 2, -t² + 2⟩.

What is the vector function that describes the intersection curve of the given surfaces?

To find the vector function representing the curve of intersection between the cone z = x² + y² and the plane z = 2 + y, we need to equate the two equations and express x, y, and z in terms of a parameter, t.

By setting x² + y² = 2 + y, we can rewrite it as x² + (y - 1)² = 1, which represents a circle in the xy-plane with a radius of 1 and centered at (0, 1). This allows us to express x and y in terms of t as x = t and y = -t² + 2.

Since the plane equation gives us z = 2 + y, we have z = -t² + 2 as well.

Combining these equations, we obtain the vector function r(t) = ⟨t, -t² + 2, -t² + 2⟩, which represents the curve of intersection.

Learn more about: Function

brainly.com/question/30721594

#SPJ11

Please check within the next 20 minutes, Thanks!
Use the given minimum and maximum data entries, and the number of classes, to find the class width, the lower class limits, and the upper class limits. minimum = 21, maximum 122, 8 classes The class w

Answers

For a given minimum of 21, maximum of 122, and eight classes, the class width is approximately 13. The lower class limits are 21-33, 34-46, 47-59, 60-72, 73-85, 86-98, 99-111, and 112-124. The upper class limits are 33, 46, 59, 72, 85, 98, 111, and 124.

To find the class width, we need to subtract the minimum value from the maximum value and divide it by the number of classes.

Class width = (maximum - minimum) / number of classes

Class width = (122 - 21) / 8

Class width = 101 / 8

Class width = 12.625

We round up the class width to 13 to make it easier to work with.

Next, we need to determine the lower class limits for each class. We start with the minimum value and add the class width repeatedly until we have all the lower class limits.

Lower class limits:

Class 1: 21-33

Class 2: 34-46

Class 3: 47-59

Class 4: 60-72

Class 5: 73-85

Class 6: 86-98

Class 7: 99-111

Class 8: 112-124

Finally, we can find the upper class limits by adding the class width to each lower class limit and subtracting one.

Upper class limits:

Class 1: 33

Class 2: 46

Class 3: 59

Class 4: 72

Class 5: 85

Class 6: 98

Class 7: 111

Class 8: 124

To know more about lower class limits refer here:

https://brainly.com/question/31059294#

#SPJ11

Let X be the standard uniform random variable and let Y = 20X + 10. Then, Y~ Uniform(20, 30) Y is Triangular with a peak (mode) at 20 Y~ Uniform(0, 20) Y~ Uniform(10, 20) Y ~ Uniform(10, 30)

Answers

"Let X be the standard uniform random variable and let Y = 20X + 10. Then, Y~ Uniform(20, 30)." is True and the correct answer is :

D. Y ~ Uniform(10, 30).

X is a standard uniform random variable, this means that X has a range from 0 to 1, which can be expressed as:

X ~ Uniform(0, 1)

Then, using the formula for a linear transformation of a uniform random variable, we get:

Y = 20X + 10

Also, we know that the range of X is from 0 to 1. We can substitute this to get the range of Y:

When X = 0,

Y = 20(0) + 10

Y = 10

When X = 1,

Y = 20(1) + 10

Y = 30

Therefore, Y ~ Uniform(10, 30).

Thus, the correct option is (d).

To learn more about standard uniform random variable visit : https://brainly.com/question/20815963

#SPJ11

Given the equation y = 7 sin The amplitude is: 7 The period is: The horizontal shift is: The midline is: y = 3 11TT 6 x - 22π 3 +3 units to the Right

Answers

The amplitude is 7, the period is 12π/11, the horizontal shift is 22π/33 to the right, and the midline is y = 3, where [11π/6(x - 22π/33)] represents the phase shift.

Given the equation y = 7 sin [11π/6(x - 22π/33)] +3 units to the Right

For the given equation, the amplitude is 7, the period is 12π/11, the horizontal shift is 22π/33 to the right, and the midline is y = 3.

To solve for the amplitude, period, horizontal shift and midline for the equation y = 7 sin [11π/6(x - 22π/33)] +3 units to the right, we must look at each term independently.

1. Amplitude: Amplitude is the highest point on a curve's peak and is usually represented by a. y = a sin(bx + c) + d, where the amplitude is a.

The amplitude of the given equation is 7.

2. Period: The period is the length of one cycle, and in trigonometry, one cycle is represented by one complete revolution around the unit circle.

The period of a trig function can be found by the formula T = (2π)/b in y = a sin(bx + c) + d, where the period is T.

We can then get the period of the equation by finding the value of b and using the formula above.

From y = 7 sin [11π/6(x - 22π/33)] +3, we can see that b = 11π/6. T = (2π)/b = (2π)/ (11π/6) = 12π/11.

Therefore, the period of the equation is 12π/11.3.

Horizontal shift: The equation of y = a sin[b(x - h)] + k shows how to move the graph horizontally. It is moved h units to the right if h is positive.

Otherwise, the graph is moved |h| units to the left.

The value of h can be found using the equation, x - h = 0, to get h.

The equation can be modified by rearranging x - h = 0 to get x = h.

So, the horizontal shift for the given equation y = 7 sin [11π/6(x - 22π/33)] +3 units to the right is 22π/33 to the right.

4. Midline: The y-axis is where the midline passes through the center of the sinusoidal wave.

For y = a sin[b(x - h)] + k, the equation of the midline is y = k.

The midline for the given equation is y = 3.

Therefore, the amplitude is 7, the period is 12π/11, the horizontal shift is 22π/33 to the right, and the midline is y = 3, where [11π/6(x - 22π/33)] represents the phase shift.

To know more about amplitude visit:

https://brainly.com/question/9525052

#SPJ11

the reaction r to an injection of a drug is related to the dose x (in milligrams) according to the following. r(x) = x2 700 − x 3 find the dose (in mg) that yields the maximum reaction.

Answers

the dose (in mg) that yields the maximum reaction is 1800 mg (rounded off to the nearest integer).

The given equation for the reaction r(x) to an injection of a drug related to the dose x (in milligrams) is:

r(x) = x²⁷⁰⁰ − x³

The dose (in mg) that yields the maximum reaction is to be determined from the given equation.

To find the dose (in mg) that yields the maximum reaction, we need to differentiate the given equation w.r.t x as follows:

r'(x) = 2x(2700) - 3x² = 5400x - 3x²

Now, we need to equate the first derivative to 0 in order to find the maximum value of the function as follows:

r'(x) = 0

⇒ 5400x - 3x² = 0

⇒ 3x(1800 - x) = 0

⇒ 3x = 0 or 1800 - x = 0

⇒ x = 0

or x = 1800

The above two values of x represent the critical points of the function.

Since x can not be 0 (as it is a dosage), the only critical point is:

x = 1800

Now, we need to find out whether this critical point x = 1800 is a maximum point or not.

For this, we need to find the second derivative of the given function as follows:

r''(x) = d(r'(x))/dx= d/dx(5400x - 3x²) = 5400 - 6x

Now, we need to check the value of r''(1800).r''(1800) = 5400 - 6(1800) = -7200

Since the second derivative r''(1800) is less than 0, the critical point x = 1800 is a maximum point of the given function. Therefore, the dose (in mg) that yields the maximum reaction is 1800 mg (rounded off to the nearest integer).

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Deposit $500, earns interest of 5% in first year, and has $552.3 end year 2. what is it in year 2?

Answers

The initial deposit is $500 and it earns interest of 5% in the first year. Let us calculate the interest in the first year.

Interest in first year = (5/100) × $500= $25After the first year, the amount in the account is:$500 + $25 = $525In year two, the amount earns 5% interest on $525. Let us calculate the interest in year two.Interest in year two = (5/100) × $525= $26.25

The total amount at the end of year two is the initial deposit plus interest earned in both years:$500 + $25 + $26.25 = $551.25This is very close to the given answer of $552.3, so it could be a rounding issue. Therefore, the answer is $551.25 (approximately $552.3).

To know more about complementary angles  visit:

https://brainly.com/question/5708372

#SPJ11

If there care 30 trucks and 7 of them are red. What fraction are the red trucks

Answers

Answer:

7/30

Step-by-step explanation:

7 out of 30 is 7/30

Find z that such 8.6% of the standard normal curve lies to the right of z.

Answers

Therefore, we have to take the absolute value of the z-score obtained. Thus, the z-score is z = |1.44| = 1.44.

To determine z such that 8.6% of the standard normal curve lies to the right of z, we can follow the steps below:

Step 1: Draw the standard normal curve and shade the area to the right of z.

Step 2: Look up the area 8.6% in the standard normal table.Step 3: Find the corresponding z-score for the area using the table.

Step 4: Take the absolute value of the z-score obtained since we want the area to the right of z.

Step 1: Draw the standard normal curve and shade the area to the right of z

The standard normal curve is a bell-shaped curve with mean 0 and standard deviation 1. Since we want to find z such that 8.6% of the standard normal curve lies to the right of z, we need to shade the area to the right of z as shown below:

Step 2: Look up the area 8.6% in the standard normal table

The standard normal table gives the area to the left of z.

To find the area to the right of z, we need to subtract the area from 1.

Therefore, we look up the area 1 – 0.086 = 0.914 in the standard normal table.

Step 3: Find the corresponding z-score for the area using the table

The standard normal table gives the z-score corresponding to the area 0.914 as 1.44.

Step 4: Take the absolute value of the z-score obtained since we want the area to the right of z

The area to the right of z is 0.086, which is less than 0.5.

Therefore, we have to take the absolute value of the z-score obtained.

Thus, the z-score is z = |1.44| = 1.44.

Z-score is also known as standard score, it is the number of standard deviations by which an observation or data point is above the mean of the data set. A standard normal distribution is a normal distribution with mean 0 and standard deviation 1.

The area under the curve of a standard normal distribution is equal to 1. The area under the curve of a standard normal distribution to the left of z can be found using the standard normal table.

Similarly, the area under the curve of a standard normal distribution to the right of z can be found by subtracting the area to the left of z from 1.

In this problem, we need to find z such that 8.6% of the standard normal curve lies to the right of z. To find z, we need to perform the following steps.

Step 1: Draw the standard normal curve and shade the area to the right of z.

Step 2: Look up the area 8.6% in the standard normal table.

Step 3: Find the corresponding z-score for the area using the table.

Step 4: Take the absolute value of the z-score obtained since we want the area to the right of z.

The standard normal curve is a bell-shaped curve with mean 0 and standard deviation 1.

Since we want to find z such that 8.6% of the standard normal curve lies to the right of z, we need to shade the area to the right of z.

The standard normal table gives the area to the left of z.

To find the area to the right of z, we need to subtract the area from 1.

Therefore, we look up the area 1 – 0.086 = 0.914 in the standard normal table.

The standard normal table gives the z-score corresponding to the area 0.914 as 1.44.

The area to the right of z is 0.086, which is less than 0.5.

To know more about curve visit:

https://brainly.com/question/28793630

#SPJ11

Question 1 An assumption of non parametric tests is that the distribution must be normal O True O False Question 2 One characteristic of the chi-square tests is that they can be used when the data are measured on a nominal scale. True O False Question 3 Which of the following accurately describes the observed frequencies for a chi-square test? They are always the same value. They are always whole numbers. O They can contain both positive and negative values. They can contain fractions or decimal values. Question 4 The term expected frequencies refers to the frequencies computed from the null hypothesis found in the population being examined found in the sample data O that are hypothesized for the population being examined

Answers

The given statement is false as an assumption of non-parametric tests is that the distribution does not need to be normal.

Question 2The given statement is true as chi-square tests can be used when the data is measured on a nominal scale. Question 3The observed frequencies for a chi-square test can contain fractions or decimal values. Question 4The term expected frequencies refers to the frequencies that are hypothesized for the population being examined. The expected frequencies are computed from the null hypothesis found in the sample data.The chi-square test is a non-parametric test used to determine the significance of how two or more frequencies are different in a particular population. The non-parametric test means that the distribution is not required to be normal. Instead, this test relies on the sample data and frequency counts.The chi-square test can be used for nominal scale data or categorical data. The observed frequencies for a chi-square test can contain fractions or decimal values. However, the expected frequencies are computed from the null hypothesis found in the sample data. The expected frequencies are the frequencies that are hypothesized for the population being examined. Therefore, option D correctly describes the expected frequencies.

To know more about FALSE statement  visit:

https://brainly.com/question/31965986

#SPJ11

the table shows values for variable a and variable b. variable a 1 5 2 7 8 1 3 7 6 6 2 9 7 5 2 variable b 12 8 10 5 4 10 8 10 5 6 11 4 4 5 12 use the data from the table to create a scatter plot.

Answers

Title and scale the graph Finally, give the graph a title that describes what the graph represents. Also, give each axis a title and a scale that makes it easy to read and interpret the data.

To create a scatter plot from the data given in the table with variables `a` and `b`, you can follow the following steps:

Step 1: Organize the dataThe first step in creating a scatter plot is to organize the data in a table. The table given in the question has the data organized already, but it is in a vertical format. We will need to convert it to a horizontal format where each variable has a column. The organized data will be as follows:````| Variable a | Variable b | |------------|------------| | 1 | 12 | | 5 | 8 | | 2 | 10 | | 7 | 5 | | 8 | 4 | | 1 | 10 | | 3 | 8 | | 7 | 10 | | 6 | 5 | | 6 | 6 | | 2 | 11 | | 9 | 4 | | 7 | 4 | | 5 | 5 | | 2 | 12 |```

Step 2: Create a horizontal and vertical axisThe second step is to create two axes, a horizontal x-axis and a vertical y-axis. The x-axis represents the variable a while the y-axis represents variable b. Label each axis to show the variable it represents.

Step 3: Plot the pointsThe third step is to plot each point on the graph. To plot the points, take the value of variable a and mark it on the x-axis. Then take the corresponding value of variable b and mark it on the y-axis. Draw a dot at the point where the two marks intersect. Repeat this process for all the points.

Step 4: Title and scale the graph Finally, give the graph a title that describes what the graph represents. Also, give each axis a title and a scale that makes it easy to read and interpret the data.

To Know more about scatter plot visit:

https://brainly.com/question/29231735

#SPJ11

jenna is redoing her bathroom floor with tiles measuring 6 in. by 14 in. the floor has an area of 8,900 in2. what is the least number of tiles she will need?

Answers

The area of the bathroom floor = 8,900 square inchesArea of one tile = Length × Width= 6 × 14= 84 square inchesTo determine the least number of tiles needed, divide the area of the bathroom floor by the area of one tile.

That is:Number of tiles = Area of bathroom floor/Area of one tile= 8,900/84= 105.95SPSince she can't use a fractional tile, the least number of tiles Jenna needs is the next whole number after 105.95. That is 106 tiles.Jenna will need 106 tiles to redo her bathroom floor.

To know more about fractional visit:

brainly.com/question/10354322

#SPJ11

Three candidates, A, B and C, participate in an election in which eight voters will cast their votes. The candidate who receives the absolute majority, that is at least five, of the votes will win the

Answers

The total number of possible outcomes, we get 3^8 - 2^8 = 6,305. Therefore, there are 6,305 possible outcomes in this scenario.

A, B, and C are the three up-and-comers in an eight-vote political decision. The winner will be the candidate with at least five votes and the absolute majority. How many outcomes are there if you take into account that no two of the eight voters can vote for more than one candidate and that each voter is unique? 3,8 minus 2,8 equals 6,305 less than 256.

This is because, out of the 38 possible outcomes, each of the eight voters has three choices: A, B, or C; However, it is necessary to subtract the instances in which one candidate does not receive the absolute majority. A candidate needs at least five votes to win the political race. Without this, there are two possible outcomes: 1. Situation: Each newcomer requires five votes. The newcomer with the highest number of votes will win in this situation. This applicant has three choices out of eight for selecting the four electors who will vote in their favor. The other applicant will win the vote of the remaining citizens.

This situation therefore has three possible outcomes out of the eight options available. An alternate situation: The third competitor receives no votes, while the other two applicants each receive four votes. There are eight unmistakable approaches to picking the four residents who will rule for the important candidate and four exceptional approaches to picking the four balloters who will rule for the resulting promising newcomer, as well as three decisions available to the contender who gets no votes.

Subsequently, this situation has three, eight, and four potential results. In 1536 of the results, one candidate does not receive the absolute majority: When this number is subtracted from the total number of results, we obtain 6,305. 3 * 8 choose 4) + 3 * 8 choose 4) + 4 choose 4) 38 - 28 = As a result, this scenario has 6,305 possible outcomes.

To know more about possible outcomes refer to

https://brainly.com/question/29181724

#SPJ11

please help me :( i don't understand how to do this problem
-5-(10 points) Let X be a binomial random variable with n=4 and p=0.45. Compute the following probabilities. -a-P(X=0)= -b-P(x-1)- -c-P(X=2)- -d-P(X ≤2)- -e-P(X23) - W

Answers

The probability of X = 0 for a binomial random variable with n = 4 and p = 0.45 is approximately 0.0897.

To compute the probability of X = 0 for a binomial random variable, we can use the probability mass function (PMF) formula:

[tex]P(X = k) = C(n, k) * p^k * (1 - p)^(n - k)[/tex]

Where:

- P(X = k) is the probability of X taking the value k.

- C(n, k) is the binomial coefficient, given by C(n, k) = n! / (k! * (n - k)!).

- n is the number of trials.

- p is the probability of success on each trial.

- k is the desired number of successes.

In this case, we have n = 4 and p = 0.45. We want to find P(X = 0), so k = 0. Plugging in these values, we get:

[tex]P(X = 0) = C(4, 0) * 0.45^0 * (1 - 0.45)^(4 - 0)[/tex]

The binomial coefficient C(4, 0) is equal to 1, and any number raised to the power of 0 is 1. Thus, the calculation simplifies to:

[tex]P(X = 0) = 1 * 1 * (1 - 0.45)^4P(X = 0) = 1 * 1 * 0.55^4P(X = 0) = 0.55^4[/tex]

Calculating this expression, we find:

P(X = 0) ≈ 0.0897

Therefore, the probability of X = 0 for the binomial random variable is approximately 0.0897.

To know more about binomial random variable refer here:

https://brainly.com/question/31311574#

#SPJ11

Chi Square Crash Course Quiz Part A: We conduct a similar study
using the same two groups we used for the t-Test. Recall
that in this clothing study, the boys were randomly assigned to
wear either sup
You get the following data: I Clothing Condition (1= Superhero, 2= Street Clothes) When do superheroes work harder? Crosstabulation When do superheroes work harder? in their street clothes Total Count

Answers

In this problem, we are given that we conduct a similar study using the same two groups we used for the t-Test. Also, recall that in this clothing study, the boys were randomly assigned to wear either superhero or street clothes.

We have been given the following data for Chi Square Crash Course Quiz Part A: Clothing Condition Street Clothes Superhero Total

When superheroes are loaded with content 832212.

When superheroes are not loaded with content 822224.

Total 165444.

According to the given data, we can construct a contingency table to carry out a Chi Square test.

The formula for Chi Square is: [tex]$$χ^2=\sum\frac{(O-E)^2}{E}$$[/tex].

Here,O represents observed frequency, E represents expected frequency.

After substituting all the values, we get,[tex]$$χ^2=\frac{(8-6.5)^2}{6.5}+\frac{(3-4.5)^2}{4.5}+\frac{(2-3.5)^2}{3.5}+\frac{(2-0.5)^2}{0.5}=7.98$$[/tex].

The critical value of Chi Square for α = 0.05 and degree of freedom 1 is 3.84 and our calculated value of Chi Square is 7.98 which is greater than the critical value of Chi Square.

Therefore, we reject the null hypothesis and conclude that there is a statistically significant relationship between the superhero's clothing condition and working hard. Hence, the given data is loaded with Chi Square.

To know more about Chi Square, visit:

https://brainly.com/question/31871685

#SPJ11

We can conclude that there is not enough evidence to suggest that the clothing type has an effect on how hard the boys work.

Given,Chi Square Crash Course Quiz Part A:

We conduct a similar study using the same two groups we used for the t-Test.

Recall that in this clothing study, the boys were randomly assigned to wear either superhero or street clothes.

in their street clothes Total Count.

Using the data given in the question, let's construct a contingency table for the given data.

The contingency table is as follows:

Superhero Street Clothes Total Hard Work

30                 20                         50

Less Hard Work

20 30 50

Total 50 50 100

The total count of the contingency table is 100.

In order to find when superheroes work harder, we need to perform the chi-squared test.

Therefore, we calculate the expected frequencies under the null hypothesis that the clothing type (superhero or street clothes) has no effect on how hard the boys work, using the formula

E = (Row total × Column total)/n, where n is the total count.

The expected values are as follows:

Superhero Street Clothes TotalHard Work

25                  25                          50

Less Hard Work 25 25 50

Total 50 50 100

The chi-squared statistic is given by the formula χ² = ∑(O - E)² / E

where O is the observed frequency and E is the expected frequency.

The calculated value of chi-squared is as follows:

χ² = [(30 - 25)²/25 + (20 - 25)²/25 + (20 - 25)²/25 + (30 - 25)²/25]χ²

= 2.0

The degrees of freedom for the test is df = (r - 1)(c - 1) where r is the number of rows and c is the number of columns in the contingency table.

Here, we have df = (2 - 1)(2 - 1) = 1.

At a 0.05 level of significance, the critical value of chi-squared with 1 degree of freedom is 3.84. Since our calculated value of chi-squared (2.0) is less than the critical value of chi-squared (3.84), we fail to reject the null hypothesis.

Therefore, we can conclude that there is not enough evidence to suggest that the clothing type has an effect on how hard the boys work.

To know more about contingency table, visit:

https://brainly.com/question/30920745

#SPJ11

Can someone please explain to me why this statement is
false?
As how muhammedsabah would explain this question:
However, I've decided to post a separate question hoping to get
a different response t
c) For any positive value z, it is always true that P(Z > z) > P(T > z), where Z~ N(0,1), and T ~ Taf, for some finite df value. (1 mark)
c) Both normal and t distribution have a symmetric distributi

Answers

Thus, if we choose z to be a negative value instead of a positive value, then we would get the opposite inequality.

The statement "For any positive value z, it is always true that P(Z > z) > P(T > z), where Z~ N(0,1), and T ~ Taf, for some finite df value" is false. This is because both normal and t distributions have a symmetric distribution.

Explanation: Let Z be a random variable that has a standard normal distribution, i.e. Z ~ N(0, 1). Then we have, P(Z > z) = 1 - P(Z < z) = 1 - Φ(z), where Φ is the cumulative distribution function (cdf) of the standard normal distribution. Similarly, let T be a random variable that has a t distribution with n degrees of freedom, i.e. T ~ T(n).Then we have, P(T > z) = 1 - P(T ≤ z) = 1 - F(z), where F is the cdf of the t distribution with n degrees of freedom. The statement "P(Z > z) > P(T > z)" is equivalent to Φ(z) < F(z), for any positive value of z. However, this is not always true. Therefore, the statement is false. The reason for this is that both normal and t distributions have a symmetric distribution. The standard normal distribution is symmetric about the mean of 0, and the t distribution with n degrees of freedom is symmetric about its mean of 0 when n > 1.

Know more about normal distribution here:

https://brainly.com/question/15103234

#SPJ11

Question 6 of 12 View Policies Current Attempt in Progress Solve the given triangle. Round your answers to the nearest integer. Ax Y≈ b= eTextbook and Media Sve for Later 72 a = 3, c = 5, B = 56°

Answers

The angles A, B, and C are approximately 65°, 56° and 59°, respectively.

Given data:

a = 3, c = 5, B = 56°

In a triangle ABC, we have the relation:

a/sin(A) = b/sin(B) = c/sin(C)

The given angle B = 56°

Thus, sin B = sin 56° = b/sin(B)

On solving, we get b = c sin B/ sin C= 5 sin 56°/ sin C

Now, we need to find the value of angle A using the law of cosines:

cos A = (b² + c² - a²)/2bc

Putting the values of a, b and c in the above formula, we get:

cos A = (25 sin² 56° + 9 - 25)/(2 × 3 × 5)

cos A = (25 × 0.5543² - 16)/(30)

cos A = 0.4185

cos⁻¹ 0.4185 = 65.47°

We can find angle C by subtracting the sum of angles A and B from 180°.

C = 180° - (A + B)C = 180° - (65.47° + 56°)C = 58.53°

Thus, the angles A, B, and C are approximately 65°, 56° and 59°, respectively.

To know more about angles visit:

https://brainly.com/question/31818999

#SPJ11

For the standard normal distribution, find the value of c such
that:
P(z > c) = 0.6454

Answers

In order to find the value of c for which P(z > c) = 0.6454 for the standard normal distribution, we can make use of a z-table which gives us the probabilities for a range of z-values. The area under the normal distribution curve is equal to the probability.

The z-table gives the probability of a value being less than a given z-value. If we need to find the probability of a value being greater than a given z-value, we can subtract the corresponding value from 1. Hence,P(z > c) = 1 - P(z < c)We can use this formula to solve for the value of c.First, we find the z-score that corresponds to a probability of 0.6454 in the table. The closest probability we can find is 0.6452, which corresponds to a z-score of 0.39. This means that P(z < 0.39) = 0.6452.Then, we can find P(z > c) = 1 - P(z < c) = 1 - 0.6452 = 0.3548We need to find the z-score that corresponds to this probability. Looking in the z-table, we find that the closest probability we can find is 0.3547, which corresponds to a z-score of -0.39. This means that P(z > -0.39) = 0.3547.

Therefore, the value of c such that P(z > c) = 0.6454 is c = -0.39.

To know more about normal distribution visit:

https://brainly.com/question/12922878

#SPJ11

3 Taylor, Passion Last Saved: 1:33 PM The perimeter of the triangle shown is 17x units. The dimensions of the triangle are given in units. Which equation can be used to find the value of x ? (A) 17x=30+7x

Answers

The equation that can be used to find the value of x is (A) 17x = 30 + 7x.

To find the value of x in the given triangle, we can use the equation that represents the perimeter of the triangle. The perimeter of a triangle is the sum of the lengths of its three sides.

Let's assume that the lengths of the three sides of the triangle are a, b, and c. According to the given information, the perimeter of the triangle is 17x units.

Therefore, we can write the equation as:

a + b + c = 17x

Now, if we look at the options provided, option (A) states that 17x is equal to 30 + 7x. This equation simplifies to:

17x = 30 + 7x

By solving this equation, we can determine the value of x.

Learn more about triangle

brainly.com/question/29083884

#SPJ11

The table shows values for functions f(x) and g(x) .
x f(x) g(x)
1 3 3
3 9 4
5 3 5
7 4 4
9 12 9
11 6 6
What are the known solutions to f(x)=g(x) ?

Answers

The known solutions to f(x) = g(x) can be determined by finding the values of x for which f(x) and g(x) are equal. In this case, analyzing the given table, we find that the only known solution to f(x) = g(x) is x = 3.

By examining the values of f(x) and g(x) from the given table, we can observe that they intersect at x = 3. For x = 1, f(1) = 3 and g(1) = 3, which means they are equal. However, this is not considered a solution to f(x) = g(x) since it is not an intersection point. Moving forward, at x = 3, we have f(3) = 9 and g(3) = 9, showing that f(x) and g(x) are equal at this point. Similarly, at x = 5, f(5) = 3 and g(5) = 3, but again, this is not considered an intersection point. At x = 7, f(7) = 4 and g(7) = 4, and at x = 9, f(9) = 12 and g(9) = 12. None of these points provide solutions to f(x) = g(x) as they do not intersect. Finally, at x = 11, f(11) = 6 and g(11) = 6, but this point also does not satisfy the condition. Therefore, the only known solution to f(x) = g(x) in this case is x = 3.

Learn more about values here:

https://brainly.com/question/30145972

#SPJ11

The additional growth of plants in one week are recorded for 11 plants with a sample standard deviation of 2 inches and sample mean of 10 inches. t at the 0.10 significance level = Ex 1,234 Margin of error = Ex: 1.234 Confidence interval = [ Ex: 12.345 1 Ex: 12345 [smaller value, larger value]

Answers

Answer :  The confidence interval is [9.18, 10.82].

Explanation :

Given:Sample mean, x = 10

Sample standard deviation, s = 2

Sample size, n = 11

Significance level = 0.10

We can find the standard error of the mean, SE using the below formula:

SE = s/√n where, s is the sample standard deviation, and n is the sample size.

Substituting the values,SE = 2/√11 SE ≈ 0.6

Using the t-distribution table, with 10 degrees of freedom at a 0.10 significance level, we can find the t-value.

t = 1.372 Margin of error (ME) can be calculated using the formula,ME = t × SE

Substituting the values,ME = 1.372 × 0.6 ME ≈ 0.82

Confidence interval (CI) can be calculated using the formula,CI = (x - ME, x + ME)

Substituting the values,CI = (10 - 0.82, 10 + 0.82)CI ≈ (9.18, 10.82)

Therefore, the confidence interval is [9.18, 10.82].

Learn more about standard deviation here https://brainly.com/question/13498201

#SPJ11

e 6xy dv, where e lies under the plane z = 1 x y and above the region in the xy-plane bounded by the curves y = x , y = 0, and x = 1

Answers

The problem involves evaluating the integral of 6xy over a specific region in three-dimensional space. The region lies beneath the plane z = 1 and is bounded by the curves y = x, y = 0, and x = 1 in the xy-plane.

To solve this problem, we need to integrate the function 6xy over the given region. The region is defined by the plane z = 1 above it and the boundaries in the xy-plane: y = x, y = 0, and x = 1.

First, let's determine the limits of integration. Since y = x and y = 0 are two of the boundaries, the limits of y will be from 0 to x. The limit of x will be from 0 to 1.

Now, we can set up the integral:

∫∫∫_R 6xy dv,

where R represents the region in three-dimensional space.

To evaluate the integral, we integrate with respect to z first since the region is bounded by the plane z = 1. The limits of z will be from 0 to 1.

Next, we integrate with respect to y, with limits from 0 to x.

Finally, we integrate with respect to x, with limits from 0 to 1.

By evaluating the integral, we can find the numerical value of the expression 6xy over the given region.

Learn more about integral here:

https://brainly.com/question/31433890

#SPJ11

Please show work clearly and graph.
2. A report claims that 65% of full-time college students are employed while attending college. A recent survey of 110 full-time students at a state university found that 80 were employed. Use a 0.10

Answers

1. Null Hypothesis (H0): The proportion of employed students is equal to 65%.

Alternative Hypothesis (HA): The proportion of employed students is not equal to 65%.

2. We can use the z-test for proportions to test these hypotheses. The test statistic formula is:

 [tex]\[ z = \frac{{p - p_0}}{{\sqrt{\frac{{p_0(1-p_0)}}{n}}}} \][/tex]

  where:

  - p is the observed proportion

  - p0 is the claimed proportion under the null hypothesis

  - n is the sample size

3. Given the data, we have:

  - p = 80/110 = 0.7273 (observed proportion)

  - p0 = 0.65 (claimed proportion under null hypothesis)

  - n = 110 (sample size)

4. Calculating the test statistic:

[tex]\[ z = \frac{{0.7273 - 0.65}}{{\sqrt{\frac{{0.65 \cdot (1-0.65)}}{110}}}} \][/tex]

 [tex]\[ z \approx \frac{{0.0773}}{{\sqrt{\frac{{0.65 \cdot 0.35}}{110}}}} \][/tex]

 [tex]\[ z \approx \frac{{0.0773}}{{\sqrt{\frac{{0.2275}}{110}}}} \][/tex]

[tex]\[ z \approx \frac{{0.0773}}{{0.01512}} \][/tex]

[tex]\[ z \approx 5.11 \][/tex]

5. The critical z-value for a two-tailed test at a 10% significance level is approximately ±1.645.

6. Since our calculated z-value of 5.11 is greater than the critical z-value of 1.645, we reject the null hypothesis. This means that the observed proportion of employed students differs significantly from the claimed proportion of 65% at a 10% significance level.

7. Graphically, the critical region can be represented as follows:

[tex]\[ | | \\ | | \\ | \text{Critical} | \\ | \text{Region} | \\ | | \\ -------|---------------------|------- \\ -1.645 1.645 \\ \][/tex]

  The calculated z-value of 5.11 falls far into the critical region, indicating a significant difference between the observed proportion and the claimed proportion.

To know more about statistic visit-

brainly.com/question/32758775

#SPJ11

Smartphones: A poll agency reports that 80% of teenagers aged 12-17 own smartphones. A random sample of 250 teenagers is drawn. Round your answers to at least four decimal places as needed. Dart 1 n6 (1) Would it be unusual if less than 75% of the sampled teenagers owned smartphones? It (Choose one) be unusual if less than 75% of the sampled teenagers owned smartphones, since the probability is Below, n is the sample size, p is the population proportion and p is the sample proportion. Use the Central Limit Theorem and the TI-84 calculator to find the probability. Round the answer to at least four decimal places. n=148 p=0.14 PC <0.11)-0 Х $

Answers

The solution to the problem is as follows:Given that 80% of teenagers aged 12-17 own smartphones. A random sample of 250 teenagers is drawn.

The probability is calculated by using the Central Limit Theorem and the TI-84 calculator, and the answer is rounded to at least four decimal places.PC <0.11)-0 Х $P(X<0.11)To find the probability of less than 75% of the sampled teenagers owned smartphones, convert the percentage to a proportion.75/100 = 0.75

This means that p = 0.75. To find the sample proportion, use the given formula:p = x/nwhere x is the number of teenagers who own smartphones and n is the sample size.Substituting the values into the formula, we get;$$p = \frac{x}{n}$$$$0.8 = \frac{x}{250}$$$$x = 250 × 0.8$$$$x = 200$$Therefore, the sample proportion is 200/250 = 0.8.To find the probability of less than 75% of the sampled teenagers owned smartphones, we use the standard normal distribution formula, which is:Z = (X - μ)/σwhere X is the random variable, μ is the mean, and σ is the standard deviation.

To know more about probability visit:

https://brainly.com/question/11234923

#SPJ11

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). Points A and B are the endpoints of an arc of a circle. Chords are drawn from the two endpoints to a third point, C, on the circle. Given m AB =64° and ABC=73° , mACB=.......° and mAC=....°

Answers

Measures of angles ACB and AC are is m(ACB) = 64°, m(AC) = 146°

What is the measure of angle ACB?

Given that m(AB) = 64° and m(ABC) = 73°, we can find the measures of m(ACB) and m(AC) using the properties of angles in a circle.

First, we know that the measure of a central angle is equal to the measure of the intercepted arc. In this case, m(ACB) is the central angle, and the intercepted arc is AB. Therefore, m(ACB) = m(AB) = 64°.

Next, we can use the property that an inscribed angle is half the measure of its intercepted arc. The angle ABC is an inscribed angle, and it intercepts the arc AC. Therefore, m(AC) = 2 * m(ABC) = 2 * 73° = 146°.

To summarize:

m(ACB) = 64°

m(AC) = 146°

These are the measures of angles ACB and AC, respectively, based on the given information.

Learn more about angles in circles

brainly.com/question/23247585

#SPJ11

find all solutions of the equation cos x sin x − 2 cos x = 0 . the answer is a b k π where k is any integer and 0 < a < π ,

Answers

Therefore, the only solutions within the given interval are the values of x for which cos(x) = 0, namely [tex]x = (2k + 1)\pi/2,[/tex] where k is any integer, and 0 < a < π.

To find all solutions of the equation cos(x)sin(x) - 2cos(x) = 0, we can factor out the common term cos(x) from the left-hand side:

cos(x)(sin(x) - 2) = 0

Now, we have two possibilities for the equation to be satisfied:

 cos(x) = 0In this case, x can take values of the form x = (2k + 1)π/2, where k is any integer.

 sin(x) - 2 = 0 Solving this equation for sin(x), we get sin(x) = 2. However, there are no solutions to this equation within the interval 0 < a < π, as the range of sin(x) is -1 to 1.

For such more question on integer

https://brainly.com/question/929808

#SPJ11

A study was carried out to compare the effectiveness of the two vaccines A and B. The study reported that of the 900 adults who were randomly assigned vaccine A, 18 got the virus. Of the 600 adults who were randomly assigned vaccine B, 30 got the virus (round to two decimal places as needed).

Construct a 95% confidence interval for comparing the two vaccines (define vaccine A as population 1 and vaccine B as population 2

Suppose the two vaccines A and B were claimed to have the same effectiveness in preventing infection from the virus. A researcher wants to find out if there is a significant difference in the proportions of adults who got the virus after vaccinated using a significance level of 0.05.

What is the test statistic?

Answers

The test statistic is approximately -2.99 using the significance level of 0.05.

To compare the effectiveness of vaccines A and B, we can use a hypothesis test for the difference in proportions. First, we calculate the sample proportions:

p1 = x1 / n1 = 18 / 900 ≈ 0.02

p2 = x2 / n2 = 30 / 600 ≈ 0.05

Where x1 and x2 represent the number of adults who got the virus in each group.

To construct a 95% confidence interval for comparing the two vaccines, we can use the following formula:

CI = (p1 - p2) ± Z * √[(p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)]

Where Z is the critical value corresponding to a 95% confidence level. For a two-tailed test at a significance level of 0.05, Z is approximately 1.96.

Plugging in the values:

CI = (0.02 - 0.05) ± 1.96 * √[(0.02 * (1 - 0.02) / 900) + (0.05 * (1 - 0.05) / 600)]

Simplifying the equation:

CI = -0.03 ± 1.96 * √[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)]

Calculating the values inside the square root:

√[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)] ≈ √[0.0000218 + 0.0000792] ≈ √0.000101 ≈ 0.01005

Finally, plugging this value back into the confidence interval equation:

CI = -0.03 ± 1.96 * 0.01005

Calculating the confidence interval:

CI = (-0.0508, -0.0092)

Therefore, the 95% confidence interval for the difference in proportions (p1 - p2) is (-0.0508, -0.0092).

Now, to find the test statistic, we can use the following formula:

Test Statistic = (p1 - p2) / √[(p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)]

Plugging in the values:

Test Statistic = (0.02 - 0.05) / √[(0.02 * (1 - 0.02) / 900) + (0.05 * (1 - 0.05) / 600)]

Simplifying the equation:

Test Statistic = -0.03 / √[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)]

Calculating the values inside the square root:

√[(0.02 * 0.98 / 900) + (0.05 * 0.95 / 600)] ≈ √[0.0000218 + 0.0000792] ≈ √0.000101 ≈ 0.01005

Finally, plugging this value back into the test statistic equation:

Test Statistic = -0.03 / 0.01005 ≈ -2.99

To know more about  test statistic refer here:

https://brainly.com/question/32118948#

#SPJ11

find the volume v of the described solid s. a cap of a sphere with radius r and height h v = incorrect: your answer is incorrect.

Answers

To find the volume v of the described solid s, a cap of a sphere with radius r and height h, the formula to be used is:v = (π/3)h²(3r - h)First, let's establish the formula for the volume of the sphere. The formula for the volume of a sphere is given as:v = (4/3)πr³

A spherical cap is cut off from a sphere of radius r by a plane situated at a distance h from the center of the sphere. The volume of the spherical cap is given as follows:V = (1/3)πh²(3r - h)The volume of a sphere of radius r is:V = (4/3)πr³Substituting the value of r into the equation for the volume of a spherical cap, we get:v = (π/3)h²(3r - h)Therefore, the volume of the described solid s, a cap of a sphere with radius r and height h, is:v = (π/3)h²(3r - h)The answer is  more than 100 words as it includes the derivation of the formula for the volume of a sphere and the volume of a spherical cap.

To know more about volume, visit:

https://brainly.com/question/28058531

#SPJ11

Suppose we did a regression analysis that resulted in the following regression model: yhat = 11.5+0.9x. Further suppose that the actual value of y when x=14 is 25. What would the value of the residual be at that point? Give your answer to 1 decimal place.

Answers

The value of the residual at that point is 0.9.

The regression model is yhat = 11.5+0.9x. Given that the actual value of y when x = 14 is 25. We want to find the residual at that point. Residuals represent the difference between the actual value of y and the predicted value of y. To find the residual, we first need to find the predicted value of y (yhat) when x = 14. Substitute x = 14 into the regression model: yhat = 11.5 + 0.9x= 11.5 + 0.9(14)= 11.5 + 12.6= 24.1.

Therefore, the predicted value of y (yhat) when x = 14 is 24.1.The residual at that point is the difference between the actual value of y and the predicted value of y: Residual = Actual value of y - Predicted value of y= 25 - 24.1= 0.9.

To know more about residual visit:-

https://brainly.com/question/19131352

#SPJ11

What does a linear model look like? Explain what all of the pieces are? 2) What does an exponential model look like? Explain what all of the pieces are? 3) What is the defining characteristic of a linear model? 4) What is the defining characteristic of an exponential model?

Answers

A linear model is that it represents a constant Rate of change between the two variables.

1) A linear model is a mathematical representation of a relationship between two variables that forms a straight line when graphed. The equation of a linear model is typically of the form y = mx + b, where y represents the dependent variable, x represents the independent variable, m represents the slope of the line, and b represents the y-intercept. The slope (m) determines the steepness of the line, and the y-intercept (b) represents the point where the line intersects the y-axis.

2) An exponential model is a mathematical representation of a relationship between two variables where one variable grows or decays exponentially with respect to the other. The equation of an exponential model is typically of the form y = a * b^x, where y represents the dependent variable, x represents the independent variable, a represents the initial value or starting point, and b represents the growth or decay factor. The growth or decay factor (b) determines the rate at which the variable changes, and the initial value (a) represents the value of the dependent variable when the independent variable is zero.

3) The defining characteristic of a linear model is that it represents a constant rate of change between the two variables. In other words, as the independent variable increases or decreases by a certain amount, the dependent variable changes by a consistent amount determined by the slope. This results in a straight line when the data points are plotted on a graph.

4) The defining characteristic of an exponential model is that it represents a constant multiplicative rate of change between the two variables. As the independent variable increases or decreases by a certain amount, the dependent variable changes by a consistent multiple determined by the growth or decay factor. This leads to a curve that either grows exponentially or decays exponentially, depending on the value of the growth or decay factor.

For more questions on Rate .

https://brainly.com/question/25720319

#SPJ8

Other Questions
Use geometry to evaluate the following integral. 1 6 f(x)dx, where f(x)={2x 62x if 1x if 2 Enneagon Pty Ltd is a manufacturing firm that produces customised office gifts according to customers' orders. The company adopts the job order costing system, and manufacturing overhead is allocated to production at a predetermined overhead rate of 200 percent of direct material cost. According to the company's policy, any over-or under-allocated manufacturing overhead is written off to the cost of goods sold. The firm does not have any work-in-process at the beginning or end of the quarter. Below is the financial information for the 4th quarter of 2021: Direct material used Direct labour cost incurred Indirect labour cost incurred Indirect material used Selling and administrative expenses Depreciation of factory building Depreciation of factory equipment Insurance on factory and equipment Electricity for factory Finished goods inventory, October 1st Finished goods inventory, December 31 $220,000 $700,000 $130,000 $80,000 $600,000 $100,000 $70,000 $50,000 $30,000 $0 $500,000 (a) Calculate the cost of goods manufactured for the company for the 4th quarter of 2021. Clearly show the workings of the calculation. (b) Calculate the difference between the actual manufacturing overhead cost incurred and the manufacturing overhead cost allocated. Identify whether it is under- allocated or over-allocated. Clearly show the workings of the calculation. (c) Calculate the adjusted cost of goods sold for the 4th quarter of 2021. Clearly show the workings of the calculation.(d) Provide one reason why firms use budgeted overhead allocation rate to allocate manufacturing overhead rather than use the actual manufacturing overhead cost and justify your answer. (e) The company considers if there are alternative adjustment methods for the over- or under-allocated manufacturing overhead. Suggest one alternative adjustment for the company to consider. In the context of Enneagon Pty Ltd, would it be better for the manager to follow the existing policy or to switch to the alternative adjustment method you suggest? Explain. What is the eventual effect on real GDP if the government increases its purchases of goods and services by $50,000 ? Assume the marginal propensity to consume (MPC) is 0.75 . What is the eventual effect on real GDP if the government, instead of changing its spending, increases transfers by $50,000 ? Assume the MPC has not changed. please answer all above with an explanation1. Which of the following is not a requirement of a valid search warrant? a. the accuseds criminal record b. a description of the offence c. the location to be searched d. the items to be seized e. when the search may be conducted please write out so i can understand the steps!Pupils Per Teacher The frequency distribution shows the average number of pupils per teacher in some states of the United States. Find the variance and standard deviation for the data. Round your answ Use the diagram below to answer the questions. In the diagram below, Point P is the centroid of triangle JLN and PM = 2, OL = 9, and JL = 8 Calculate PL Which of the following is NOT an example of current asset?Cash.Inventory.Bank Overdraft.Debtor. 3. What would be the extend of your testing for a financial statement-only audit where we are seeking a moderate level of assurance from controls, based on the facts below? Control Description: Finance reviews the Outstanding invoice report for each blocked invoice Frequency of control: Daily Type of audit financial statement-only audit a. 10 b. 20 c. 30 d. 40 A 20.0-kg cannon ball is fired from a cannon with a muzzle speed of 100 m/s at an angle of 20.0 with the horizontal. Use the conservation of energy principle to find the maximum height reached by ba Context Suppose you are interested in studying the relationship between exercise during pregnancy and infant birth weight. You conduct an RCT with two groups of pregnant women: one group receives stan explain the evidence for and against the view that personality is inherited A bond with a price today of $1,100 is said to: a. be a zero coupon bond b. be a premium bond c. sell at par d. be a discount bond the long-run phillips curve is vertical at the nonaccelerating inflation rate of unemployment (nairu) because an unemployment rate _____ the nairu will lead to _____ inflation. a lens has a refractive power of -1.50. what is its focal length? Question 1 An assumption of non parametric tests is that the distribution must be normal O True O False Question 2 One characteristic of the chi-square tests is that they can be used when the data are measured on a nominal scale. True O False Question 3 Which of the following accurately describes the observed frequencies for a chi-square test? They are always the same value. They are always whole numbers. O They can contain both positive and negative values. They can contain fractions or decimal values. Question 4 The term expected frequencies refers to the frequencies computed from the null hypothesis found in the population being examined found in the sample data O that are hypothesized for the population being examined Concord Guitar Company makes high-quality customized guitars. Concord uses a job order costing system. Because the guitars are handmade, the company applies overhead based on direct labor hours. At the beginning of the year, the company estimated that total manufacturing overhead costs would be $303,000 and that 20,200 direct labor hours would be worked. At year-end, Kenneth, the company's founder and CEO, gives you the following information regarding Concord's operations. 1. The beginning balances in the inventory accounts were: Raw Materials Inventory $7.900 Work in Process Inventory $26,400 Finished Goods Inventory $32,300 2. During the year, the company purchased raw materials costing $104,000. All purchases were made on account. 3. The production department requisitioned $96,000 of raw materials for use in production. Of those, 70% were direct materials and 30% were indirect materials. 4. The company used 21,400 direct labor hours at a cost of $13 per hour during the year (credit Wages Payable). 5. The company used 6,900 indirect labor hours at a cost of $10 per hour (credit Wages Payable). 6. The company paid $178,000 for insurance, utilities, and property taxes on the factory. 7. The company recorded factory depreciation of $40,500. 8. The company applied manufacturing overhead to inventory based on the 21,400 labor hours actually worked during the year. 9. Products costing $663,000 were completed during the year and transferred to the Finished Goods Inventory. 10. During the year, the company sold products costing a total of $671,000. 11. The company closes under- and overapplied overhead to Cost of Goods Sold. pay Prepare journal entries for each of the transactions just listed. (Credit account titles are automatically indented when the amount is entered. Do not indent manually. Post entries in order presented in the problem. If no entry is required, select "No Entry" for the account titles and enter O for the amounts.) No. Account Titles and Explanation 1. 2. 3. 4. (To record raw materials purchases) (To record use of direct and indirect materials in production) Debit DO Credit 5. 6. 7. 8. 9. (To record direct labor payroll) (To record indirect labor payroll) (To record other manufacturing overhead incurred) (To record factory depreciation) (To apply manufacturing overhead) 00 00 00 00 00 10. 11. (To record transfer of completed products to finished goods) (To record cost of sales) (To dispose of overapplied overhead) eTextbook and Media List of Accounts Save for Later Attempts: 0 of 3 used Submit Answer jill is offered a choice between receiving $50 with certainty or possibly receiving the proceeds from a gamble. in the gamble a fair coin is tossed, and if it comes up heads, jill will receive $100; if the coin comes up tails, she will receive nothing. jill chooses the $50 instead of the gamble. jill's behavior indicates . Diversification Start with asset A which has an expected return of 10% and a volatility of 30%.1. Suppose that we introduce asset B with an expected return of 10% and a volatility of 30%. The correlation between the two asset returns is 0.9. What is the optimal combination of A and B? What is the volatility of this portfolio? [Hint: The expected return of any combination is 10%, so you want to minimize the portfolio volatility.]2. Now suppose that we introduce asset C with an expected return of 10% and a volatility of 30%. The returns of asset C are uncorrelated with both the returns of asset A and of asset B. What is the optimal combination of A, B, and C? What is the volatility of this portfolio?3. Did the introduction of B or C have a greater effect in decreasing the portfolio volatility? Why is this the case? ________blank is the most localized approach and is appropriate when, for perhaps cultural reasons, the product that sells well in one country will not transfer to another or does so for quite a different set of purposes.Multiple ChoiceA global product with a local brandA global product with a global brandA local product with a global brandA local product with a local brand Bond Z is a 12% annual coupon bond maturing in 5 years with aface value of $1,000. The interest rate for all maturities is 10%.What is Bond Zs Macaulay duration?