A cylinder rotating about its axis with a constant angular acceleration of 1.6 rad/s2 starts from rest at t = 0. At the instant when it has turned through 0.40 radian, what is the magnitude of the total linear acceleration of a point on the rim (radius = 13 cm)?


a. 0.31 m/s^2

b. 0.27 m/s^2

c. 0.35 m/s^2

d. 0.39 m/s^2

e. 0.45 m/s^2

Answers

Answer 1

Answer:

The magnitude of the total linear acceleration is 0.27 m/s²

b. 0.27 m/s²

Explanation:

The total linear acceleration is the vector sum of the tangential acceleration and radial acceleration.

The radial acceleration is given by;

[tex]a_t = ar[/tex]

where;

a is the angular acceleration and

r is the radius of the circular path

[tex]a_t = ar\\\\a_t = 1.6 *0.13\\\\a_t = 0.208 \ m/s^2[/tex]

Determine time of the rotation;

[tex]\theta = \frac{1}{2} at^2\\\\0.4 = \frac{1}{2} (1.6)t^2\\\\t^2 = 0.5\\\\t = \sqrt{0.5} \\\\t = 0.707 \ s\\\\[/tex]

Determine angular velocity

ω = at

ω = 1.6 x 0.707

ω = 1.131 rad/s

Now, determine the radial acceleration

[tex]a_r = \omega ^2r\\\\a_r = 1.131^2 (0.13)\\\\a_r = 0.166 \ m/s^2[/tex]

The magnitude of total linear acceleration is given by;

[tex]a = \sqrt{a_t^2 + a_r^2} \\\\a = \sqrt{0.208^2 + 0.166^2} \\\\a = 0.266 \ m/s^2\\\\a = 0.27 \ m/s^2[/tex]

Therefore, the magnitude of the total linear acceleration is 0.27 m/s²

b. 0.27 m/s²


Related Questions

What happens when two polarizers are placed in a straight line, one behind the other? A. They allow light to pass only if they are polarized in exactly the same direction. B. They block all light if they are polarized in exactly the same direction. C. They allow light to pass only if their directions of polarizations are exactly 90° apart. D. They block all light if their directions of polarizations are exactly 90° apart. E. They block all light if their directions of polarizations are either exactly the same or exactly 90° apart.

Answers

Answer:

C

They allow light to pass only if their directions of polarizations are exactly 90° apart.

what happened when aniline is treated with benzene diazonium chloride​

Answers

Answer:

p-aminoazobenzene is formed

Explanation:

The reaction of benzene diazonium chloride and aniline takes place in a basic medium and leads to the formation of an azo compound which is also a dye. The terminal diazonium nitrogen of the benzene diazonium ion is coupled to the aniline at the para-position. The product of the reaction, p-aminoazobenzene is a yellow dye.

Benzene diazonium chloride is prepared by diazotization of aniline in the presence of hydrochloric acid. The full reaction of aniline and benzene diazonium chloride​ is shown in the image attached to this answer.

"If a beam of monochromatic light is passed though a slit of width 15 μm and the second order dark fringe of the diffraction pattern is at an angle of 5.2o from the central axis, what is the wavelength of the light?"

Answers

Answer:

  λ= 5.4379 10⁻⁷ m = 543.79 nm

Explanation:

The phenomenon of diffraction is described by the expression for destructive diffraction is

           a sin θ = (m + 1/2) λ

           λ = a sin θ / (m + 1/2)

let's reduce the magnitudes to the SI system

           a = 15 um = 15 10⁻⁶ m

           m = 2

           θ = 5.2º

Let's calculate

          λ = 15 10⁻⁶ sin 5.2 / (2 +1/2)

         λ = 5.4379 10⁻⁷ m

Let's reduce to nm

          λ= 5.4379 10⁻⁷ m = 543.79 nm

which of the following best describes pseudoscience?

Answers

Answer:

The answer is A

Explanation:

Answer:

implausible or untestable scientific claims

A laser used for many applications of hard surface dental work emits 2780-nm wavelength pulses of variable energy (0-300 mJ) about 20 times per second.part a. Determine the number of photons in one 80-mJ pulse.part b. Determine the average power of photons in one 80-mJ pulse during 1 s.

Answers

Answer:

a

    [tex]n = 1.119 *10^{18} \ photons[/tex]

b

  [tex]P = 1.6 \ W[/tex]

Explanation:

From the question we are told that

    The wavelength is  [tex]\lambda = 2780 nm = 2780 *10^{-9} \ m[/tex]

     The  energy  is  [tex]E = 80 mJ = 80 *10^{-3} \ J[/tex]

This energy is mathematically represented as

     [tex]E = \frac{n * h * c }{\lambda }[/tex]

Where  c is the speed of light with a value  [tex]c = 3.0 *10^{8} \ m/s[/tex]

             h is the Planck's  constant with the value  [tex]h = 6.626 *10^{-34} \ J \cdot s[/tex]

             n is the number of pulses

So

      [tex]n = \frac{E * \lambda }{h * c }[/tex]

substituting values

       [tex]n = \frac{80 *10^{-3} * 2780 *10^{-9}}{6.626 *10^{-34} * 3.0 *10^{8} }[/tex]

       [tex]n = 1.119 *10^{18} \ photons[/tex]

Given that the pulses where emitted 20 times in one second then the period of the pulse is

       [tex]T = \frac{1}{20}[/tex]

      [tex]T = 0.05 \ s[/tex]

Hence the average power of photons in one 80-mJ pulse during 1 s is mathematically represented as

       [tex]P = \frac{E}{T}[/tex]

substituting values

       [tex]P = \frac{ 80 *10^{-3}}{0.05}[/tex]

        [tex]P = 1.6 \ W[/tex]

A skull believed to belong to an ancient human being has a carbon-14 decay rate of 5.4 disintegrations per minute per gram of carbon (5.4 dis/min*gC). If living organisms have a decay rate of 15.3 dis/min*gC, how old is this skull

Answers

Answer:

9.43*10^3 year

Explanation:

For this question, we ought to remember, or know that the half life of carbon 14 is 5730, and that would be vital in completing the calculation

To start with, we use the formula

t(half) = In 2/k,

if we make k the subject of formula, we have

k = in 2/t(half), now we substitute for the values

k = in 2 / 5730

k = 1.21*10^-4 yr^-1

In(A/A•) = -kt, on rearranging, we find out that

t = -1/k * In(A/A•)

The next step is to substitite the values for each into the equation, giving us

t = -1/1.21*10^-4 * In(5.4/15.3)

t = -1/1.21*10^-4 * -1.1041

t = 0.943*10^4 year

A single slit 1.5 mm wide is illuminated by 420- nm light. Part A What is the width of the central maximum (in cm ) in the diffraction pattern on a screen 4.5 m away

Answers

Answer:

The width is [tex]w_c = 0.00252 \ m[/tex]

Explanation:

From the question we are told that

  The  width of the single slit is  [tex]a = 1.5 \ mm = 1.5 *10^{-3} \ m[/tex]

   The  wavelength is  [tex]\lambda = 420 *10^{-9} \ m[/tex]

   The distance of the screen is  [tex]D = 4.5 \ m[/tex]

Generally the width of the central maximum is  

        [tex]w_c = 2 * y[/tex]

where y is the width of the first maxima which is mathematically represented as

       [tex]y = \frac{\lambda * D}{a}[/tex]

=>   [tex]y = \frac{ 420 *10^{-9} * 4.5}{ 1.5*10^{-3}}[/tex]

=>  [tex]y = 0.00126 \ m[/tex]

So

    [tex]w_c = 2 *0.00126[/tex]

    [tex]w_c = 0.00252 \ m[/tex]

a toy propeller fan with a moment of inertia of .034 kg x m^2 has a net torque of .11Nxm applied to it. what angular acceleration does it experience

Answers

Answer:

The  angular acceleration is  [tex]\alpha = 3.235 \ rad/s ^2[/tex]

Explanation:

From the question we are told that

    The moment of inertia is  [tex]I = 0.034\ kg \cdot m^2[/tex]

     The  net torque is  [tex]\tau = 0.11\ N \cdot m[/tex]

Generally the net torque is mathematically represented as

           [tex]\tau = I * \alpha[/tex]

Where [tex]\alpha[/tex] is the angular acceleration so  

        [tex]\alpha = \frac{\tau }{I}[/tex]

substituting values

         [tex]\alpha = \frac{0.1 1}{ 0.034}[/tex]

        [tex]\alpha = 3.235 \ rad/s ^2[/tex]

The Curiosity rover now on Mars analyzed rocks and found magnesium to have the following isotopic composition.
79.70% Mg-24 (23.9872 amu), 10.13% Mg-25 (24.9886 amu), and 10.17% Mg-26 (25.9846 amu).
A. How many neutrons are in Mg-25?
B. What is the average atomic mass of magnesium in these rocks?
C. Is the magnesium composition on Mars the same as that on Earth? Explain.

Answers

Answer:

A.   number of neutrons of Magnesium Mg = 13

B.   The average mass of Mg = 22.29 amu

C.   the magnesium composition on Mars is not the same as that on Earth.

Explanation:

Isotopes are atoms with the same atomic number but different mass number. This is due to the difference in mass of the neutrons.

The atomic number of Magnesium Mg = 12

The atomic number of an element is the number of protons present in the atomic nucleus of the element

i.e Atomic number = number of protons = 12

The mass number of an element is the sum of the protons and neutrons in the atomic nucleus of the element.

Mass number = number of protons + number of neutrons

Given that the mass number of Mg = 25

Then;

25 = 12 + number of neutrons

25 - 12 = number of neutrons

13 = number of neutrons

number of neutrons of Magnesium Mg = 13

B. What is the average atomic mass of magnesium in these rocks?

The average atomic mass of an element which exhibit isotopy is the average mass of its various isotopes as they occur naturally in any quantity of the element.

Therefore the average atomic mass of magnesium can be calculated as:

= [tex]\mathtt{\dfrac{(23.9872 \times 79.70) + ( 24.9886 \times 10.13) + (25.9846 \times 10.17) }{79.7 + 10.13 +10.17}}[/tex]

= [tex]\mathtt{\dfrac{(1911.77984) + ( 53.134518) + (264.263382) }{100}}[/tex]

= [tex]\mathtt{\dfrac{2229.17774 }{100}}[/tex]

The average mass of Mg = 22.29 amu

C. Is the magnesium composition on Mars the same as that on Earth? Explain.

The average atomic weight of magnesium on Earth is said to be 24.305 amu while that of Mars is 22.29 amu.

There difference in the average atomic weight result into difference in their composition. Therefore,the magnesium composition on Mars is not the same as that on Earth.

Warm blooded animals are homeothermic; that is, they maintain an approximately constant body temperature. (Forhumans it's about 37 oC.) When they are in an environment that is below their optimum temperature, they use energy derived from chemical reactions within their bodies to warm them up. One of the ways that animals lose energy to their environment is through radiation. Every object emits electromagnetic radiation that depends on its temperature. For very hot objects like the sun, that radiation is visible light. For cooler objects, like a house or a person, that radiation is in the infrared and is invisible. Nonetheless, it still carries energy. Other ways that energy is lost by a warm animal to a cool environment includes conduction (direct touching of a cooler object) and convection (cooler air moving and carrying thermal energy away). See Heat Transfer for a discussion of all three.

For this problem, we'll just consider how much energy an animal needs to burn (obtain from internal chemical reactions) in order to stay warm just from radiation losses. The rate at which an object loses energy through radiation is given by the Stefan-Boltzmann equation:

Rate of energy loss = AεσT4



where T is the absolute (Kelvin) temperature, A is the area of the object, ε is the emissivity (unitless and =1 for a perfect emitter, less for anything else), and σ is the Stefan-Boltzmann constant:

σ = 5.67 x 10-8 J/(s m2 K4)



Consider a patient trying to sleep naked in a cool room (55 oF = 13 oC). Assume that the person being considered is a perfect emitter and absorber of radiation (ε = 1), has a surface area of about 2.5 m2, and a mass of 80 kg.

a. A person emits thermal radiation at a rate corresponding to a temperature of 37 oC and absorbs radiation at a rate (from the air and walls) corresponding to a temperature of 13 oC. Calculate the individual's net rate of energy loss due to radiation (in Watts = Joules/second).
net rate of energy loss = Watts

b. Assume the patient produces no energy to keep warm. If they have a specific heat about equal to that of water (1 Cal/kg-oC) how much would their temperature fall in one hour? (1 Cal = 1kcal = 103 cal)
ΔT = oC

c. Given that the energy density of fat is about 9 Cal/g, how many grams of fat would the person have to utilize to maintain their body temperature in that environment for one hour?
amount of fat needed = g

Answers

Answer:

a) 360.7 J/s

b) 16.23 °C

c) 34.48 g

Explanation:

The mass of the person = 80 kg

The person is a perfect emitter, ε = 1

surface area of the person = 2.5 m^2

a) If he emits radiation at 37 °C, [tex]T_{out}[/tex] = 37 + 273 = 310 K

and receives radiation at 13 °C, [tex]T_{in}[/tex] = 13 + 273 = 286 K

Rate of energy loss E = Aεσ([tex]T^{4} _{out}[/tex] - [tex]T^{4} _{in}[/tex] )

where σ = 5.67 x 10^-8 J/(s m^2 K^4)

substituting values, we have

E = 2.5 x 1 x 5.67 x 10^-8 x ([tex]310^{4}[/tex] - [tex]286^{4}[/tex]) = 360.7 J/s

b) If they have specific heat about equal to that of water = 1 Cal/kg-°C

but 1 Cal = 1 kcal = 10^3 cal

specific heat of person is therefore = 10^3 cal/kg-°C

heat loss = 360.7 J/s = 360.7 x 3600 = 1298520 J/hr

heat lost in 1 hour = 1 x 1298520 = 1298520 J

This heat lost = mcΔT

where ΔT is the temperature fall

m is the mass

c is the specific heat equivalent to that of water

the specific heat is then = 10^3 cal/kg-°C

equating, we have

1298520 = 80 x 10^3 x ΔT

1298520 = 80000ΔT

ΔT = 1298520/80000 = 16.23 °C

c) 1298520 J = 1298520/4184 = 310.35 Cal

density of fat = 9 Cal/g

gram of fat = 310.35/9 = 34.48 g

A diffraction grating with 161 slits per centimeter is used to measure the wavelengths emitted by hydrogen gas. At what angles in the first-order spectrum would you expect to find the two violet lines of wavelength 434 nm and of wavelength 410 nm

Answers

Answer:

[tex]\theta_1 = 0.400^o[/tex]

[tex]\theta_2 =0.378^o[/tex]

Explanation:

From the question we are told that

    The  number of slits per cm is  k =  [tex]161\ slits\ per\ cm = 161 \ slits\ per\ 0.01 m[/tex]

    The order of the maxima is  n =  1

    The wavelength are  [tex]\lambda_1 = 434 nm = 434 *10^{-9} \ m \ \ \ , \lambda_2 = 410nm = 410 *10^{-9} \ m[/tex]

The  spacing between the slit is mathematically represented as

           [tex]d = \frac{ 0.01}{k}[/tex]

=>       [tex]d = \frac{ 0.01}{161}[/tex]

=>         [tex]d = 6.211 *10^{-5} \ m[/tex]

Generally the condition for constructive interference is  

        [tex]n\lambda = d \ sin \theta[/tex]

At  [tex]\lambda_1[/tex]

      [tex]\theta _1 = sin^{-1} [ \frac{1 * 434 *10^{-9}}{6.211 *10^{-5}} ][/tex]

      [tex]\theta_1 = 0.400^o[/tex]

At  [tex]\lambda_2[/tex]

       [tex]\theta _2 = sin^{-1} [ \frac{1 * 410 *10^{-9}}{6.211 *10^{-5}} ][/tex]

       [tex]\theta_2 =0.378^o[/tex]

A) A 2-N force is applied to a spring, and there is displacement of 0.4 m. How much would the spring be displaced if a 5-N force was applied? (1 point)
1 m
4 m
0.08 m
2 m

Answers

Answer:

Option (A) : 1m

Explanation:

According to Hooke's law:

F (spring elastic force) =

k( spring const.) * x(displacement)

Case-1

2 N = k * 0.4m

k = 5

Case- 2

5 N = 5 * x

x ( displacement) = 1 m

The displacement of the spring if a 5-N force was applied is equal to 1m. Therefore, option (1) is correct.

What is Hooke's law?

The strain and stress are proportional to each other, and this is called Hooke’s Law. Hooke’s law states that the strain is proportional to the stress applied within the elastic limit of the material.

When the materials are stretched, the atoms or molecules deform and when the stress is removed, they will return to their original state.

The mathematical equation for Hooke's law is as follows:

F = –kx

where F is the force, x is displacement, and k is the spring constant in N/m.

Given, F = 2N and x = 0.4m

F = -kx

2 N = - k (0.4m)

k = 5 N/m where the negative sign is omitted.

Now, the spring constant of the spring, k = 5 N/m and F = 5N

F = -kx

5 N = - (5 N/m)(x)

x = - 1m

Therefore, the displacement of the spring is 1 m.

Learn more about Hooke's law, here:

https://brainly.com/question/13348278

#SPJ2

A doctor counts 68 heartbeats in 1.0 minute. What are the corresponding period and frequency of the heart rhythm

Answers

Answer:

[tex]f=1.13s^{-1}=1.13Hz[/tex]

Explanation:

Hello,

In this case, a frequency stands for a rate in which some action is done per unit of time. In this case, for the heartbeat, since 68 actions (heartbeats) occur in 1.0, the frequency turns out:

[tex]f=\frac{68}{1.0min}=68min^{-1}[/tex]

Or as most commonly used in Hz ([tex]s^{-1}[/tex]):

[tex]f=68\frac{1}{min} *\frac{1min}{60s}=1.13s^{-1}=1.13Hz[/tex]

Best regards.

A bullet is fired from a rifle pointed 45 degrees above horizontal. The bullet leaves the muzzle traveling 1400 m/s. How many seconds does it take the bullet to reach the high point of its trajectory?

Answers

The bullet's vertical velocity at time [tex]t[/tex] is

[tex]v=1400\dfrac{\rm m}{\rm s}-gt[/tex]

where [tex]g=9.80\frac{\rm m}{\mathrm s^2}[/tex] is the acceleration due to gravity.

At its highest point, the bullet's vertical velocity is 0, which happens

[tex]0=1400\dfrac{\rm m}{\rm s}-gt\implies t=\dfrac{1400\frac{\rm m}{\rm s}}g\approx\boxed{142.857\,\mathrm s}[/tex]

(or about 140 s, if you're keeping track of significant figures) after being fired.

The earth has a vertical electric field at the surface,pointing down, that averages 102 N/C. This field is maintained by various atmosphericprocesses, including lightning.
What is the excess charge on the surface of the earth? inC

Answers

Answer:

[tex]q = -461532.5 \ C[/tex]

Explanation:

From the question we are told that

     The  electric filed is  [tex]E = 102 \ N/C[/tex]  

Generally according to Gauss law

=>   [tex]E A = \frac{q}{\epsilon_o }[/tex]

Given that  the electric field is pointing downward  , the equation become

    [tex]- E A = \frac{q}{\epsilon_o }[/tex]

Here   [tex]q[/tex] is the excess charge on the surface of the earth

          [tex]A[/tex] is the surface  area of the of the earth which is mathematically represented as

     [tex]A = 4\pi r^2[/tex]

Where r is the radius of the earth which has a value [tex]r = 6.3781*10^6 m[/tex]

 substituting values

    [tex]A = 4 * 3.142 * (6.3781*10^6 \ m)^2[/tex]

    [tex]A =5.1128 *10^{14} \ m^2[/tex]

So

   [tex]q = -E * A * \epsilon _o[/tex]

Here [tex]\epsilon_o[/tex] s the permitivity of free space with value

          [tex]\epsilon_o = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]

substituting values

     [tex]q = -102 * 5.1128 *10^{14} * 8.85 *10^{-12}[/tex]

     [tex]q = -461532.5 \ C[/tex]

Some radar systems detect the size and shape of objects such as aircraft and geological terrain. Approximately what is the smallest observable detail (in m) utilizing 495 MHz radar?

Answers

Answer:

0.61 m

Explanation:

The smallest observable length by the radar must be at least equal to or greater than the wavelength of the radar.

using the relationship

c = fλ

where

c is the speed of light in vacuum = 3 x 10^8 m/s

f is the frequency of the wave = 495 MHz = 4.95 x 10^8 Hz

λ is the wavelength = ?

λ = c/f = (3 x 10^8)/(4.95 x 10^8) = 0.61 m

answer to your question is 0.6m

One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a small patch of light on the far wall. Having recently studied optics in your physics class, you're not too surprised to see that the patch of light seems to be a circular diffraction pattern. It appears that the central maximum is about 1 cm across, and you estimate that the distance from the window shade to the wall is about 4 m.

Estimate:
a. The average wavelength of the sunlight (in nm)
b. The diameter of the pinhole (in mm).

Answers

Given that,

Central maximum = 1 cm

Distance from the window shade to the wall =4 m

We know that,

The visible range of the sun light is 400 nm to 700 nm.

(a). We need to calculate the average wavelength

Using formula of average wavelength

[tex]\lambda_{avg}=\dfrac{\lambda_{1}+\lambda_{2}}{2}[/tex]

Put the value into the formula

[tex]\lambda_{avg}=\dfrac{400+700}{2}[/tex]

[tex]\lambda_{avg}=550\ nm[/tex]

(b). We need to calculate the diameter of the pinhole

Using formula for diameter

[tex]w=\dfrac{2.44\lambda L}{D}[/tex]

[tex]D=\dfrac{2.44\lambda L}{w}[/tex]

Put the value into the formula

[tex]D=\dfrac{2.44\times550\times10^{-9}\times4}{1\times10^{-2}}[/tex]

[tex]D=0.537\ mm[/tex]

Hence, (a). The average wavelength 550 nm.

(b). The diameter of the pinhole is 0.537 mm.


A non-ideal battery has a 6.0-V emf and an internal resistance of 0.6 l. Determine the terminal voltage (in volts) when the current drawn from the battery is 1.0 A

Answers

V=I x R = i.0 A x 0.6 ohms = 0.6 volts term = battery V -- int V
=6,0 --0.6 =5.4 volts terminal volts 5.4 volts

An inductor is hooked up to an AC voltage source. The voltage source has EMF V0 and frequency f. The current amplitude in the inductor is I0.
Part A
What is the reactance XL of the inductor?
Express your answer in terms of V0 and I0.
Part B
What is the inductance L of the inductor?
Express your answer in terms of V0, f, and I0.

Answers

Answer:

a. The reactance of the inductor is XL = V₀/I₀

b. The inductance of the inductor is L = V₀/2πfI₀

Explanation:

PART A

Since the voltage across the inductor V₀ = I₀XL where V₀ = e.m.f of voltage source, I₀ = current amplitude and XL = reactance of the inductor,

XL = V₀/I₀

So, the reactance of the inductor is XL = V₀/I₀

PART B

The inductance of the inductor is gotten from XL = 2πfL where f = frequency of voltage source and L = inductance of inductor

Since XL = V₀/I₀ = 2πfL

V₀/I₀ = 2πfL

L = V₀/2πfI₀

So the inductance of the inductor is L = V₀/2πfI₀

A) The reactance XL of the inductor :  [tex]\frac{V_{0} }{I_{0} }[/tex]  

B) The Inductance L of the inductor : [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]  

A) Expressing the Reactance of the inductor

Voltage across the Inductor = V₀ = I₀XL   ---- ( 1 )

Where :  V₀ = emf voltage ,  I₀ = current

from equation ( 1 )

∴ XL ( reactance ) = [tex]\frac{V_{0} }{I_{0} }[/tex]  

B ) Expressing the Inductance of the Inductor

Inductance of an inductor is expressed as : XL = 2πfL

from part A

XL = [tex]\frac{V_{0} }{I_{0} }[/tex] = 2πfL

∴ The inductance L of the Inductor expressed in terms of V₀, F and I₀

L = [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]

Hence we can conclude that The reactance XL of the inductor :  [tex]\frac{V_{0} }{I_{0} }[/tex]  and The Inductance L of the inductor : [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]  .

Learn more : https://brainly.com/question/25208405

It's nighttime, and you've dropped your goggles into a 3.2-m-deep swimming pool. If you hold a laser pointer 1.2 m above the edge of the pool, you can illuminate the goggles if the laser beam enters the water 2.0 m from the edge.
How far are the goggles from the edge of the pool?

Answers

Answer:

Explanation:

Laser angle with water surface is given by: Tan α = 1/2.0= 0.5/

α = 26.56°

Laser angle with Normal = 90 - 26.56 = 63.44 °

Assuming a red laser, refractive index in water is 1.331.

Angle of refraction in water is given by:

Ref Ind = Sin i / Sin r

1.331 = Sin 63.44 / Sin r

Sin r = 0.8945 / 1.331 = 0.6721

Angle r = 42.22°

For the path in water:

Tan 42.22 = x / 3.2

x = 2.9m where x is the lateral displacement of the laser ince it hits the water

So the goggles are 2.0 + 2.9 = 4.9 m from edge of pool

how many stars are in our solar system?

Answers

Answer:

there are over 100 billion stars in our galaxy.

What do Earth scientists do?

Answers

Answer:

Study Earth as a whole

Explanation:

ex. oxygen around Earth, layers, formations, temperature, mountains and how they form etc.

Answer:

Geologists study rocks and help to locate useful minerals. Earth scientists often work in the field—perhaps climbing mountains, exploring the seabed, crawling through caves, or wading in swamps. They measure and collect samples (such as rocks or river water), then they record their findings on charts and maps.

Lamar has been running sprints to prepare for his next football game.He has found that he can maintain his maximum speed for 45 yards.He’s thinking of running in a 5km race in a few months,but doesn’t know if he can maintain his maximum speed for the entire 5 km.Can you help him determine how far he can?

Answers

Answer:

Kindly check explanation

Explanation:

Length of race = 5km

Maximum speed = 45 yards

Converting from yards to kilometer :

1km = 1093.613 yards

x = 45 yards

(1093.613 * x) = 45

x = 45 / 1093.613

x = 0.0411480 km

Where x = maximum length for which he can maintain his maximum speed expressed in kilometers.

Therefore, with the available information, it can be concluded that Lamar cannot maintain his maximum speed for the entire 5km race and will only be able maintain his maximum speed for 0.0411 kilometers.

Lamar cannot maintain his maximum speed for the entire 5km race and will only be able maintain his maximum speed for 0.0411 kilometers.

The calculation is as follows;

Length of race = 5km

Maximum speed = 45 yards

Converting from yards to kilometer :

1km = 1093.613 yards

x = 45 yards

[tex](1093.613 \times x) = 45[/tex]

[tex]x = 45 \div 1093.613[/tex]

x = 0.0411480 km

here x represent maximum length for which he can maintain his maximum speed expressed in kilometers.

Learn more: https://brainly.com/question/3617478?referrer=searchResults

The generator in a purely inductive AC circuit has an angular frequency of 363 rad/s. If the maximum voltage is 169 V and the inductance is 0.0937 H, what is the rms current in the circuit

Answers

Answer:

The rms current in the circuit is 3.513 A

Explanation:

Given;

angular frequency of the inductor, ω = 363 rad/s

maximum voltage of the inductive AC, V₀ = 169 V

Inductance of the inductor, L = 0.0937 H

Inductive reactance is given by;

[tex]X_L = 2\pi f L= \omega L[/tex]

[tex]X_L = 363 *0.0937\\\\X_L = 34.0131 \ ohms[/tex]

The rms voltage is given by;

[tex]V_{rms} = \frac{V_o}{\sqrt{2} } \\\\V_{rms} =\frac{169}{\sqrt{2} } \\\\V_{rms} = 119.5 \ V[/tex]

The rms current in the circuit is given by;

[tex]I_{rms} = \frac{V_{rms}}{X_L} \\\\I_{rms} = \frac{119.5}{34.0131} \\\\I_{rms} = 3.513 \ A[/tex]

Therefore, the rms current in the circuit is 3.513 A

(4) Use the preliminary observations to answer these questions; Compared to no polarizer or analyzer in the optical path, by what percent does the light intensity decrease when (a) The polarizer is introduced into the optical path? (b) The both polarizer and analyzer are introduced into the optical path?

Answers

Answer:

a)   I = I₀/2, b)  I = I₀/2 cos² θ

Explanation:

To answer these questions, let's analyze a little the way of working of a polarized

* When a non-polarized light hits a polarizer, the electric field that is not in the direction of the polarizer is absorbed, so the transmitted light is

          i = I₀ / 2

and is polarized in the direction of the polarizer

* when a polarized light reaches the analyzer it must comply with Malus's law

          I = I₁ cos² θ

where the angle is between the polarized light and the analyzer.

With this, let's answer the questions

a) When a polarizer is placed in the non-polarized light path, half of it is absorbed and only the light that has polarization in the direction of the polarizer is transmitted with an intensity of

                  I = I₀/2

b) when a polarizer and an analyzer are fitted, the intensity of the light transmitted by the analyzer is

                I = I₀/2 cos² θ

where the final value depends on the angle between the polarizer and the analyzer.

Let's look at two extreme cases

θ = 0          I = Io / 2

θ = 90º      I = 0

A particle moves along line segments from the origin to the points (1, 0, 0), (1, 5, 1), (0, 5, 1), and back to the origin under the influence of the force field. F(x, y, z)= z^2i + 4xyj + 5y^2kFind the work done.

Answers

Answer:

0 J

Explanation:

Since work done W = ∫F.dr and F(x, y, z)= z²i + 4xyj + 5y²k and dr = dxi + dyj + dzk

F.dr = (z²i + 4xyj + 5y²k).(dxi + dyj + dzk) = z²dx + 4xydy + 5y²dz

W = ∫F.dr = ∫z²dx + 4xydy + 5y²dz = z²x + 2xy² + 5y²z

We now evaluate the work done for the different regions

W₁ = work done from (0,0,0) to (1,0,0)

W₁ = {z²x + 2xy² + 5y²z}₀₀₀¹⁰⁰ = 0²(1) + 2(1)(0)² + 5(0)²(0) - [(0)²(0) + 2(0)(0)² + 5(0)²(0)] = 0 - 0 = 0 J

W₂ = work done from (1,0,0) to (1,5,1)

W₂ = {z²x + 2xy² + 5y²z}₁₀₀¹⁵¹ =   (1)²(1) + 2(1)(5)² + 5(5)²(1) - [0²(1) + 2(1)(0)² + 5(0)²(0)] =  1 + 50 + 125 - 0 = 176 J

W₃ = work done from (1,5,1) to (0,5,1)

W₃ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁵¹ =   1²(0) + 2(0)(5)² + 5(5)²(1) - [(1)²(1) + 2(1)(5)² + 5(5)²(1)]  = 125 - (1 + 50 + 125) = 125 - 176 = -51 J

W₄ = work done from (0,5,1) to (0,0,0)

W₄ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁰⁰ =   (0)²(0) + 2(0)(0)² + 5(0)²(0) - [1²(0) + 2(0)(5)² + 5(5)²(1)] = 0 - 125 = -125 J

The total work done W is thus

W = W₁ + W₂ + W₃ + W₄

W = 0 J + 176 J - 51 J - 125 J

W = 176 J - 176 J

W = 0 J

The total work done equals 0 J

A large reflecting telescope has an objective mirror with a 14.0 m radius of curvature. What angular magnification in multiples does it produce when a 3.25 m focal length eyepiece is used? ✕

Answers

Answer:

The magnification is  [tex]m = -2.15[/tex]

Explanation:

From the question we are told that

   The  radius is  [tex]r = 14.0 \ m[/tex]

    The  focal length eyepiece is  [tex]f_e = 3.25 \ m[/tex]

Generally the objective focal length is mathematically represented as

        [tex]f_o = \frac{r}{2}[/tex]

=>     [tex]f_o = \frac{14}{2}[/tex]

=>     [tex]f_o = 7 \ m[/tex]

The  magnification is mathematically represented as

      [tex]m = - \frac{f_o }{f_e }[/tex]

=>    [tex]m = - \frac{7 }{ 3.25 }[/tex]

=>   [tex]m = -2.15[/tex]

A fan rotating with an initial angular velocity of 1500 rev/min is switched off. In 2.5 seconds, the angular velocity decreases to 400 rev/min. Assuming the angular acceleration is constant, answer the following questions.
How many revolutions does the blade undergo during this time?
A) 10
B) 20
C) 100
D) 125
E) 1200

Answers

Answer:

The blade undergoes 40 revolutions, so neither of the given options is correct!

Explanation:

The revolutions can be found using the following equation:

[tex]\theta_{f} = \theta_{i} + \omega_{i}*t + \frac{1}{2}\alpha*t^{2}[/tex]

Where:

α is the angular acceleration

t is the time = 2.5 s

[tex]\omega_{i}[/tex] is the initial angular velocity = 1500 rev/min                

First, we need to find the angular acceleration:

[tex] \alpha = \frac{\omega_{f} - \omega_{i}}{t} = \frac{400 rev/min*2\pi rad*1 min/60 s - 1500 rev/min *2\pi rad*1 min/60 s}{2.5 s} = -46.08 rad/s^{2} [/tex]

Now, the revolutions that the blade undergo are:

[tex]\theta_{f} - \theta_{i} = \omega_{i}*t + \frac{1}{2}\alpha*t^{2}[/tex]

[tex]\Delta \theta = 1500 rev/min *2\pi rad*1 min/60 s*2.5 s - \frac{1}{2}*(46.08 rad/s^{2})*(2.5)^{2} = 248.7 rad = 39.9 rev[/tex]        

Therefore, the blade undergoes 40 revolutions, so neither of the given options is correct!

I hope it helps you!                              

what are the applications of pascal's principle​

Answers

Explanation:

The applications are, hydraulic lift- to transmit equal pressure throughout a fluid.Hydraulic jack- used in the braking system of cars.use of a straw- to suck fluids, which goes because of air pressure.The question simply asks, where pressure can be applied. There are many others, such as lift pump.

a radio antenna emits electromagnetic waves at a frequency of 100 mhz and intensity of what is the photon density

Answers

Answer:

photon density = 1.0 × [tex]10^{16}[/tex] photon/m³

Explanation:

given data

frequency f = 100 mhz = 100 × [tex]10^{6}[/tex] Hz

we consider here intensity I = 0.2 W/m²

solution

we take here plank constant is h i.e = 6.626 × [tex]10^{-34}[/tex] s

and take energy density is E

so here

E × C = I  

E = [tex]\frac{I}{C}[/tex]   ................1

here C = 3 × [tex]10^{8}[/tex] m/s

so photon density is

photon density = [tex]\frac{I}{C} \times \frac{1}{f \times h}[/tex]     ...............2

photon density = [tex]\frac{0.2}{3 \times 10^8} \times \frac{1}{100 \times 10^6 \times 6.626 \times 10^{-34} }[/tex]

photon density = 1.0 × [tex]10^{16}[/tex] photon/m³

Other Questions
Question 2 of 10Click to read "Forgetfulness" by Billy Collins. Then answer the question.What do the metaphors suggest about Collins's thoughts on aging?A. That he believes it is a frightening experienceB. That he believes it only happens to the weakC. That he believes it is bearable in a loving relationshipO D. That he believes it happens to everyone The Easton manufacturing Company is looking to replace its conveyor belt system. A new system will cost $345,000, and will result in cost savings of $220,000 in the first year, followed by savings of $100,000 per year over the following 3 years. If the firms cost of capital is 9%, what is the discounted payback period for this project? (Do not round intermediate computations. Round final answer to two decimal places.) Ashton needs to rent a car while on vacation. The rental company charges $19.95, plus 18 cents for each mile driven. If Ashton only has $50 to spend on the car rental, what is the maximum number of miles she can drive? Which function of a web page relies on responsive web design? Adding extra horizontal scroll Blocking mobile devices from viewing Eliminating extra links Resizing content to fit a screen You are a policy analyst in the Department of Energy. You were just offered a job with a renewable energy company. How long must you wait before you can lobby the Department of Energy on behalf of your new employer? Levi decides to examine the effect of fertilizer on the growth of tomato plants. He chooses four plants for his experiment and applies varying amounts of fertilizer to three of them. He does not apply fertilizer to one plant. Over a 15-day period, the plants receive fertilizer on Days 1, 4, 7, 10, and 13. Levi measures the height of all of his plants with a meter stick on days 3, 6, 9, 12, and 15. He also makes sure to hold all experimental factors constant except for the fertilizer. Where should the independent and dependent variables of Levi's experiment be placed when graphed?Select all that apply. the amount of fertilizer;y-axis plant height;x-axis the amount of fertilizer;x-axis plant height; y-axis Review material in this lesson as needed and when you are ready, translate any ten of the following sixteen sentences intoFrench1. Doesn't she cry a lot?2. Not in the tower.3. No, the princess isn't crying.4. The king and the queen knew.5. The princess used to sing.6. He sang and she cried.7. Were the king and queen crying?8. She plays worse than the cat sings.9. She plays well...more or less well10. Don't they sing well?11. Does he cry more than the dog?12 Did the queen cry?13. She knows and the dukes know.14. The kings were in the tower.15. Do the king and the princess sing?16. Did the prince and the king sing better? The weakening of the Catholic Churchs power in Europe in the 1500s and 1600s led to a decline in the power of kings and queens. a rise in the power of kings and queens. a decline in the use of standing armies. a rise in the power of legislatures across the continent. The table shows ordered pairs of the function. What is the value of y when? A 2-column table with 6 rows. The first column is labeled x with entries negative 3, negative 1, 1, 4, 8, 10. The second column is labeled y with entries 14, 10, 6, 0, question mark, negative 12. 20 8 8 48I need this quick;-; Determine the standard form of the equation of the line that passes through (-8, -6) and (-4, 9) PLS ANSWER!!! Chemicals are often used for photography. Select one: True False A baking scale measures mass to the tenth of a gram, up to 650 grams. Which of the following measurements is possible using this scale? a.3.8 grams b.120.01 grams c.800.0 grams d.54 milligrams How can I divide decimals and fin the correct quotient and remainder.? Using specific examples, discuss the roles of negative and positive feedback processes that maintain homeostasis. \large 6\cdot\frac{6+2^2}{6+2-6} Do phone surveys provide adequate coverage of households with respect to one particular parameter? The parameter is the proportion of households without children. If telephone surveys provide adequate coverage of households, then p , the proportion of households without children in the set of all future samples reached by phone, must be equal to the proportion of households without children in the population of all households. Suppose that Thomas, a market analyst, contacts a simple random sample of 300 households as part of a national telephone survey. Of the households contacted, 129 households, or 43 %, have no children and 57 % have at least one child. The most recent census indicates that 48 % of all households have no children and 52 % have at least one child. What is meant by crop rotation? A uniform meter stick is hung at its center from a thin wire. It is twisted and oscillates with a period of 5 s. The meter stick is then sawed off to a length of 0.76 m, rebalanced at its center, and set into oscillation. With what period does it now oscillate? Calcular la resistencia de una varilla de grafito de 170 cm de longitud y 60 mm2. Resistividad grafito 3,5 10-5 m Which of the following statements best describes the value of the expression 9x 3 when x = 7?A.The result is a fraction.B.The result is a prime number.C.The result is a composite number.D.The result is a whole number that is neither prime nor composite. pz help