A father and his son want to play on a seesaw. Where on the seesaw should each of them sit to balance the torque?

Answers

Answer 1

Answer:

A The father should sit closer to the pivot.

C The longer wrench makes the job easier because less force is needed when there is more distance from the pivot.

A As far from the head of the hammer as possible because this will maximize torque.

D at the opposite side of the seesaw towards the middle

:) gl

Explanation:

Answer 2

If a father and his son want to play on a seesaw then to balance the torque of the seesaw the father should sit near the pivot as he had more weight as compared to his son, while the son should sit a little farther from the pivot point as compared to his father.

What is the mechanical advantage?

Mechanical advantage is defined as a measure of the ratio of output force to input force in a system, It is used to analyze the forces in simple machines like levers and pulleys.

Mechanical advantage = output force(load) /input force (effort)

As given in the problem statement If a father and his son wish to play on a seesaw,

The father should sit close to the pivot because he weighs more than his son, and the son should sit a little farther away from the pivot point than his father. This will help balance the torque of the seesaw.

Thus, the father should sit near the pivot on the one side and the son should sit a little farther from the pivot of a seesaw on the other side.

Learn more about Mechanical advantages, here

brainly.com/question/16617083

#SPJ2


Related Questions

Suppose a 58-turn coil lies in the plane of the page in a uniform magnetic field that is directed into the page. The coil originally has an area of 0.150 m2. It is stretched to have no area in 0.100 s. What is the magnitude (in V) and direction (as seen from above) of the average induced emf if the uniform magnetic field has a strength of 1.10 T? magnitude V direction ---Select--- †\

Answers

Answer:

95.7v

Explanation

Using Faraday's law of electromagnetic induction we know that rate of change in magnetic flux will induce EMF in closed loop

So it is given as

E= Ndစ/dt

E= N BA-0/ deta t

Given that

N = 58turns

B = 1.10T

A = 0.150m^²

Deta t= 0.1s

now we have

E = 58(1.10x0.150)/0.1

= 95.7v

Magnetic flux is decreasing, so the direction of the current will be to aid the decreasing flux $decrease= CLOCKWISE

Explanation:

In a LRC circuit, a second capacitor is connected in parallel with the capacitor previously in the circuit. What is the effect of this change on the impedance of the circuit

Answers

Answer:

Impedance increases for frequencies below resonance and decreases for the frequencies above resonance

Explanation:

See attached file

Explanation:

g A projectile is fired from the ground at an angle of θ = π 4 toward a tower located 600 m away. If the projectile has an initial speed of 120 m/s, find the height at which it strikes the tower

Answers

Answer:

The projectile strikes the tower at a height of 354.824 meters.

Explanation:

The projectile experiments a parabolic motion, which consist of a horizontal motion at constant speed and a vertical uniformly accelerated motion due to gravity. The equations of motion are, respectively:

Horizontal motion

[tex]x = x_{o}+v_{o}\cdot t \cdot \cos \theta[/tex]

Vertical motion

[tex]y = y_{o} + v_{o}\cdot t \cdot \sin \theta +\frac{1}{2} \cdot g \cdot t^{2}[/tex]

Where:

[tex]x_{o}[/tex], [tex]x[/tex] - Initial and current horizontal position, measured in meters.

[tex]y_{o}[/tex], [tex]y[/tex] - Initial and current vertical position, measured in meters.

[tex]v_{o}[/tex] - Initial speed, measured in meters per second.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

[tex]t[/tex] - Time, measured in seconds.

The time spent for the projectile to strike the tower is obtained from first equation:

[tex]t = \frac{x-x_{o}}{v_{o}\cdot \cos \theta}[/tex]

If [tex]x = 600\,m[/tex], [tex]x_{o} = 0\,m[/tex], [tex]v_{o} = 120\,\frac{m}{s}[/tex] and [tex]\theta = \frac{\pi}{4}[/tex], then:

[tex]t = \frac{600\,m-0\,m}{\left(120\,\frac{m}{s} \right)\cdot \cos \frac{\pi}{4} }[/tex]

[tex]t \approx 7.071\,s[/tex]

Now, the height at which the projectile strikes the tower is: ([tex]y_{o} = 0\,m[/tex], [tex]t \approx 7.071\,s[/tex], [tex]v_{o} = 120\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex])

[tex]y = 0\,m + \left(120\,\frac{m}{s} \right)\cdot (7.071\,s)\cdot \sin \frac{\pi}{4}+\frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (7.071\,s)^{2}[/tex]

[tex]y \approx 354.824\,m[/tex]

The projectile strikes the tower at a height of 354.824 meters.

Consider two parallel wires where the magnitude of the left currentis 2 I0(io) and that of the right current is I0(io). Point A is midway between the wires,and B is an equal distance on the other side of the wires.
The ratio ofthe magnitude of the magnetic field at point A to that at point Bis________

Answers

Answer:

Explanation:

At the point midway between wires

magnetic field due to wire having current 2I₀

= 10⁻⁷ x 2 x2I₀ / r     where 2r is the distance between wires .

magnetic field due to wire having current I₀

= 10⁻⁷ x 4 I₀ / r

magnetic field due to wire having current I₀

= 10⁻⁷ x 2I₀ / r    

= 10⁻⁷ x 2 I₀ / r     where 2r is the distance between wires .

these fields are in opposite direction as direction of current is same in both .

net magnetic field = (4 - 2 )x 10⁻⁷ x I₀ / r

= 2 x 10⁻⁷ x  I₀ / r

At point A net magnetic field = 2 x 10⁻⁷ x  I₀ / r

At point B , we shall calculate magnetic field

magnetic field due to nearer wire having current  2 I₀ = 10⁻⁷ x 4 I₀ / r

magnetic field due to wire far away = 10⁻⁷ x 2 I₀ / 3r

These magnetic fields act in the same direction so they will add up

net magnetic field = [ (4 I₀ / r)  + (2 I₀ / 3r) ] x 10⁻⁷

= (14 I₀ / 3r ) x 10⁻⁷

Magnetic field at point B = (14 I₀ / 3r ) x 10⁻⁷

Ratio of field at A and B

= 3 / 7 . Ans

The ratio of the magnitude of the magnetic field at point A to point B is :

3 / 7

Given data :

Magnitude of the left current is  2I₀

Magnitude of the right current is  I₀

First step : Determine the magnetic field at point A  

The magnetic field due to the left current ( 2I₀ )

10⁻⁷ * 2 * 2I₀ / r       ( 2r = distance between wires )

The magnetic field due to the right current ( I₀ )

10⁻⁷ * 2 I₀ / r

From the expressions above the magnetic fields are in  opposite direction

∴ Net magnetic field = (4 - 2 )* 10⁻⁷ * I₀ / r =   2 * 10⁻⁷ *  I₀ / r

Hence The magnetic field at point A = 2 * 10⁻⁷ *  I₀ / r

Next step : determine the magnetic field at point B

Magnetic field due to the closest wire to point B ( i.e.2I₀ ) = 10⁻⁷ * 4 I₀ / r

Magnetic field due to the wire away from point A = 10⁻⁷ * 2 I₀ / 3r

Since the fields acts in the same directions

The net magnetic field =  (4 I₀ / r)  + (2 I₀ / 3r) ] * 10⁻⁷ = ( 14 I₀ / 3r ) * 10⁻⁷

Hence The magnetic field at point A = ( 14 I₀ / 3r ) * 10⁻⁷

Therefore the ratio of the magnitude of the magnetic field at point A to point B  =  3/ 7

Hence we can conclude that the ratio of the magnitude of the magnetic field at point A to point B  = 3 / 7

Learn more : https://brainly.com/question/22403676

An undiscovered planet, many light-years from Earth, has one moon, which has a nearly circular periodic orbit. If the distance from the center of the moon to the surface of the planet is 2.165×105 km and the planet has a radius of 4175 km and a mass of 6.70×1022 kg , how long (in days) does it take the moon to make one revolution around the planet? The gravitational constant is 6.67×10−11N·m2/kg2 .

Answers

Answer:

364days

Explanation:

Pls see attached file

Explanation:

The moon will take 112.7 days to make one revolution around the planet.

What is Kepler's third law?

The period of the satellite around any planet only depends upon the distance between the planet's center and satellite and also depends upon the planet's mass.

Given, the distance from the moon's center to the planet's surface,

h = 2.165 × 10⁵ km,

The radius of the planet, r = 4175 km  

The mass of the planet = 6.70 × 10²² kg

The total distance between the moon's center to the planet's center:

a = r +h = 2.165 × 10⁵ + 4175

a = 216500 + 4175

a = 220675

a = 2.26750 × 10⁸ m

The period of the planet can be calculated as:

[tex]T =2\pi \sqrt{\frac{a^3}{Gm} }[/tex]

[tex]T =2\3\times 3.14 \sqrt{\frac{(2.20675 \times 10^8)^3}{(6.67\times 10^{-11}).(6.70\times 10^{22})} }[/tex]

T = 9738253.26 s

T = 112.7 days

Learn more about Kepler's law, here:

https://brainly.com/question/1608361

#SPJ5

A microwave oven operates at 2.4 GHz with an intensity inside the oven of 2300 W/m2 . Part A What is the amplitude of the oscillating electric field

Answers

Answer:

The amplitude of the oscillating electric field is 1316.96 N/C

Explanation:

Given;

frequency of the wave, f = 2.4 Hz

intensity of the wave, I = 2300 W/m²

Amplitude of oscillating magnetic field is given by;

[tex]B_o = \sqrt{\frac{2\mu_o I}{c} }[/tex]

where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

I is intensity of wave

c is speed of light = 3 x 10⁸ m/s

[tex]B_o = \sqrt{\frac{2*4\pi *10^{-7}*2300}{3*10^8} } \\\\B_o = 4.3899 *10^{-6} \ T[/tex]

The amplitude of the oscillating electric field is given by;

E₀ = cB₀

E₀ = 3 x 10⁸ x 4.3899 x 10⁻⁶

E₀ = 1316.96 N/C

Therefore, the amplitude of the oscillating electric field is 1316.96 N/C

Kasek rides his bicycle down a 6.0° hill (incline is
6° with the horizontal) at a steady speed of 4.0
m/s. Assuming a total mass of 75 kg (bicycle and
Kasek), what must be Kasek's power output to
climb the same hill at the same speed? ​

Answers

Answer:

 P = 2923.89 W  

Explanation:

Power is

     P = F v

for which we must calculate the force, let's use Newton's second law, let's set a coordinate system with a flat parallel axis and the other axis (y) perpendicular to the plane

X Axis  

         F - Wₓ = 0

         F = Wₓ

Y Axis

         N -  [tex]W_{y}[/tex] = 0

let's use trigonometry for the components of the weight

         sin 6 = Wₓ / W

         cos 6 = W_{y} / W

         Wₓ = W sin 6

         W_{y} = W cos 6

          F = mg cos 6

          F = 75 9.8 cos 6

          F = 730.97 N

let's calculate the power

        P = F v

        P = 730.97 4.0

        P = 2923.89 W

Just wondering if I did this right

Answers

Yeah

All they are all correct

please help !!!!!!!!!!

Answers

Answer:

Lighthouse 1 during the day will be warmer, lighthouse 2 during the night will be warmer.

Explanation:

As the paragraph stated land absorbs heat and heats up faster than water. So during the day the lighthouse farthest away from the water will be hotter. But then the converse is true also land losses heat faster than water at night. So the water retains the heat from the day better making the lighthouse by the water warmer at night.

A beam of light from a laser illuminates a glass how long will a short pulse of light beam take to travel the length of the glass.

Answers

Answer:

The time of short pulse of light beam is [tex]2.37\times10^{-9}\ sec[/tex]

Explanation:

Given that,

A beam of light from a laser illuminates a glass.

Suppose, the length of piece is [tex]L=25.21\times10^{-2}\ m[/tex]

Index of refraction is 2.83.

We need to calculate the speed of light pulse in glass

Using formula of speed

[tex]v=\dfrac{c}{\mu}[/tex]

Put the value into the formula

[tex]v=\dfrac{3\times10^{8}}{2.83}[/tex]

[tex]v=1.06\times10^{8}\ m/s[/tex]

We need to calculate the time of short pulse of light beam

Using formula of velocity

[tex]v=\dfrac{d}{t}[/tex]

[tex]t=\dfrac{d}{v}[/tex]

Put the value into the formula

[tex]t=\dfrac{25.21\times10^{-2}}{1.06\times10^{8}}[/tex]

[tex]t=2.37\times10^{-9}\ sec[/tex]

Hence, The time of short pulse of light beam is [tex]2.37\times10^{-9}\ sec[/tex]

Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?
A. Increasing the number of lines per length.
B. Decreasing the number of lines per length.
C. Increasing the distance to the screen.
D. Increasing the wavelength of the laser.

Answers

Answer:

Answer:

A. Increasing the number of lines per length.

Which unbalanced force accounts for the direction of the net force of the rocket?
a. Air resistance
b. Friction
c. Gravity
d. Thrust of rocket engine

Answers

It depends on what stage of the mission you're talking about.

==>  While it's sitting on the pad before launch, the forces on the rocket are balanced, so there's no net force on it.

==>  When the engines ignite, their thrust (d) is greater than the force of gravity.  So the net force on the rocket is upward, and the spacecraft accelerates upward.

==>  After the engines shut down, the net force acting on the rocket is due to Gravity (c).

. . . If the rocket has enough vertical speed, it escapes the Earth completely, and just keeps going.  

. . . If it has enough horizontal speed, it enters Earth orbit.  

. . . If it doesn't have enough vertical or horizontal speed, it falls back to Earth.    

A rocket will preserve to speed up so long as there's a resultant pressure upwards resulting from the thrust of the rocket engine.

What unbalanced force bills for the course of the internet pressure of the rocket?

A rocket launches whilst the pressure of thrust pushing it upwards is greater than the burden force because of gravity downwards. This unbalanced pressure reasons a rocket to accelerate upwards. A rocket will maintain to hurry up so long as there's a resultant force upwards resulting from the thrust of the rocket engine.

What's the net pressure of unbalanced?

If the forces on an item are balanced, the net pressure is zero. If the forces are unbalanced forces, the results do not cancel each difference. Any time the forces acting on an object are unbalanced, the net pressure is not 0, and the movement of the item modifications.

Learn more about the thrust of the rocket engine. here:  https://brainly.com/question/10716695

#SPJ2

15.Restore the battery setting to 10 V. Now change the number of loops from 4 to 3. Explain what happens to the magnitude and direction of the magnetic field. Now change to 2 loops, then to 1 loop. What do you observe the relationship to be between the magnitude of the magnetic field and the number of loops for the same current

Answers

Answer:

we see it is a linear relationship.

Explanation:

The magnetic flux is u solenoid is

      B = μ₀ N/L   I

where N is the number of loops, L the length and I the current

By applying this expression to our case we have that the current is the same in all cases and we can assume the constant length. Consequently we see that the magnitude of the magnetic field decreases with the number of loops

      B = (μ₀ I / L)  N

the amount between paracentesis constant, in the case of 4 loop the field is worth

      B = cte 4

N       B

4       4 cte

3       3 cte

2       2 cte

1        1 cte

as we see it is a linear relationship.

In addition, this effect for such a small number of turns the direction of the field that is parallel to the normal of the lines will oscillate,

A pool ball moving 1.83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1.15 m/s at a 23.3 degrees angle. What is the y-component of the velocity of the second ball?

Answers

Answer:

 v_{1fy} = - 0.4549 m / s

Explanation:

This is an exercise of conservation of the momentum, for this we must define a system formed by the two balls, so that the forces during the collision have internal and the momentum is conserved

initial. Before the crash

      p₀ = m v₁₀

final. After the crash

      [tex]p_{f}[/tex] = m [tex]v_{1f}[/tex] + m v_{2f}

Recall that velocities are a vector so it has x and y components

       p₀ = p_{f}

we write this equation for each axis

X axis

       m v₁₀ = m v_{1fx} + m v_{2fx}

       

Y Axis  

       0 = -m v_{1fy} + m v_{2fy}

the exercise tells us the initial velocity v₁₀ = 1.83 m / s, the final velocity v_{2f} = 1.15, let's use trigonometry to find its components

      sin 23.3 = v_{2fy} / v_{2f}

      cos 23.3 = v_{2fx} / v_{2f}

      v_{2fy} = v_{2f} sin 23.3

      v_{2fx} = v_{2f} cos 23.3

we substitute in the momentum conservation equation

       m v₁₀ = m v_{1f} cos θ + m v_{2f} cos 23.3

       0 = - m v_{1f} sin θ + m v_{2f} sin 23.3

      1.83 = v_{1f} cos θ + 1.15 cos 23.3

       0 = - v_{1f} sin θ + 1.15 sin 23.3

      1.83 = v_{1f} cos θ + 1.0562

        0 = - v_{1f} sin θ + 0.4549

     v_{1f} sin θ = 0.4549

     v_{1f}  cos θ = -0.7738

we divide these two equations

      tan θ = - 0.5878

      θ = tan-1 (-0.5878)

       θ = -30.45º

we substitute in one of the two and find the final velocity of the incident ball

        v_{1f} cos (-30.45) = - 0.7738

        v_{1f} = -0.7738 / cos 30.45

        v_{1f} = -0.8976 m / s

the component and this speed is

       v_{1fy} = v1f sin θ

       v_{1fy} = 0.8976 sin (30.45)

       v_{1fy} = - 0.4549 m / s

Simple harmonic oscillations can be modeled by the projection of circular motion at constant angular velocity onto the diameter of a circle. When this is done, the analog along the diameter of the acceleration of the particle executing simple harmonic motion is

Answers

Answer:

the analog along the diameter of the acceleration of the particle executing simple harmonic motion is the projection along the diameter of the centripetal acceleration of the particle in the circle

When a monochromatic light of wavelength 433 nm incident on a double slit of slit separation 6 µm, there are 5 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.9 nm for the same double slit?

Answers

Answer:

The number of interference fringes is  [tex]n = 3[/tex]

Explanation:

From the question we are told that

     The wavelength is  [tex]\lambda = 433 \ nm = 433 *10^{-9} \ m[/tex]

      The distance of separation is  [tex]d = 6 \mu m = 6 *10^{-6} \ m[/tex]

       The  order of maxima is m =  5

       

The  condition for constructive interference is

       [tex]d sin \theta = n \lambda[/tex]

=>     [tex]\theta = sin^{-1} [\frac{5 * 433 *10^{-9}}{ 6 *10^{-6}} ][/tex]

=>    [tex]\theta = 21.16^o[/tex]

So at  

      [tex]\lambda_1 = 632.9 nm = 632.9*10^{-9} \ m[/tex]

   [tex]6 * 10^{-6} * sin (21.16) = n * 632.9 *10^{-9}[/tex]

=>    [tex]n = 3[/tex]

   

When the magnet falls toward the copper block, the changing flux in the copper creates eddy currents that oppose the change in flux. The resulting braking force between the magnet and the copper block always opposes the motion of the magnet, slowing it as it falls. The braking force on the magnet is nearly equal to its weight, so it falls very slowly. The rate of the fall produces a rate of flux change sufficient to produce a current that provides the braking force. If the magnet is pushed, forcefully, toward the block, the rate of change of flux is much higher than this. When the magnet is moving much more quickly than it will fall unaided, what is the direction of the net force on the magnet?

Answers

Answer:

The net force is directed downwards.

Explanation:

Since the magnet is falling much more faster than it would unaided, then there is a net force that is accelerating the magnet downwards. We know that acceleration is due to a force acting on a mass, and in this case, the magnet is the mass. Also, the acceleration is always in the direction of the force producing it, which means that the net force on the magnet is vertically downwards.

What did the results of photoelectric-effect experiments establish?

Answers

Answer:

Option A

Electrons are emitted if low intensity, high-frequency light hits a metal surface.

Explanation:

From the experiments conducted to study the photoelectric effect, conclusions were made that the key factor that contributes to the emission of electrons from the surface of the metal is the frequency of the beam of light. This frequency has to be beyond a minimum threshold, if not, there will be no emission of electrons from the metal surface no matter the intensity of the beam of light or the length of time it is incident upon the metal surface.

This makes option A correct because it highlights the contributions made by the threshold frequency to the photoelectric effect.

A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on 3 separate days?

Answers

Answer: 0.0617

Explanation:

Given: The probability of wet weather on any given day in a city of Punjab : p=15%=0.15

Let X be a binomial variable that represents the number of days having wet weather.

Binomial probability formula : [tex]P(X=x)=^nC_xp^x(1-p)^x[/tex], where n= total outcomes, p = probability of success in each outcomes.

Here, n= 7 ( 1 week = 7 days)

The probability that it will take a week for it three wet weather on 3 separate days:

[tex]P(X=3)^=\ ^7C_3(0.15)^3(1-0.15)^{7-3}\\\\=\dfrac{7!}{3!(7-3)!}(0.15)^3(0.85)^4\\\\=\dfrac{7\times6\times5}{3\times2}\times 0.003375\times0.52200625\approx0.0617[/tex]

Hence, the required probability =0.0617

A rigid container holds 4.00 mol of a monatomic ideal gas that has temperature 300 K. The initial pressure of the gas is 6.00 * 104 Pa. What is the pressure after 6000 J of heat energy is added to the gas?

Answers

Answer:

The final pressure of the monoatomic ideal gas is 8.406 × 10⁶ pascals.

Explanation:

When a container is rigid, the process is supposed to be isochoric, that is, at constant volume. Then, the equation of state for ideal gases can be simplified into the following expression:

[tex]\frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}}[/tex]

Where:

[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Initial and final pressures, measured in pascals.

[tex]T_{1}[/tex], [tex]T_{2}[/tex] - Initial and final temperatures, measured in Kelvins.

In addtion, the specific heat at constant volume for monoatomic ideal gases, measured in joules per mole-Kelvin is given by:

[tex]\bar c_{v} = \frac{3}{2}\cdot R_{u}[/tex]

Where:

[tex]R_{u}[/tex] - Ideal gas constant, measured by pascal-cubic meters per mole-Kelvin.

If [tex]R_{u} = 8.314\,\frac{Pa\cdot m^{3}}{mol\cdot K}[/tex], then:

[tex]\bar c_{v} = \frac{3}{2}\cdot \left(8.314\,\frac{Pa\cdot m^{2}}{mol\cdot K} \right)[/tex]

[tex]\bar c_{v} = 12.471\,\frac{J}{mol\cdot K}[/tex]

And change in heat energy ([tex]Q[/tex]), measured by joules, by:

[tex]Q = n\cdot \bar c_{v}\cdot (T_{2}-T_{1})[/tex]

Where:

[tex]n[/tex] - Molar quantity, measured in moles.

The final temperature of the monoatomic ideal gas is now cleared:

[tex]T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{v}}[/tex]

Given that [tex]T_{1} = 300\,K[/tex], [tex]Q = 6000\,J[/tex], [tex]n = 4\,mol[/tex] and [tex]\bar c_{v} = 12.471\,\frac{J}{mol\cdot K}[/tex], the final temperature is:

[tex]T_{2} = 300\,K + \frac{6000\,J}{(4\,mol)\cdot \left(12.471\,\frac{J}{mol\cdot K} \right)}[/tex]

[tex]T_{2} = 420.279\,K[/tex]

The final pressure of the system is calculated by the following relationship:

[tex]P_{2} = \left(\frac{T_{2}}{T_{1}}\right) \cdot P_{1}[/tex]

If [tex]T_{1} = 300\,K[/tex], [tex]T_{2} = 420.279\,K[/tex] and [tex]P_{1} = 6.00\times 10^{4}\,Pa[/tex], the final pressure is:

[tex]P_{2} = \left(\frac{420.279\,K}{300\,K} \right)\cdot (6.00\times 10^{4}\,Pa)[/tex]

[tex]P_{2} = 8.406\times 10^{4}\,Pa[/tex]

The final pressure of the monoatomic ideal gas is 8.406 × 10⁶ pascals.

Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits?

Answers

Answer:

The separation of the two slits is 0.456 mm.

Explanation:

Given the wavelength of light = 519 nm

The indifference pattern = 4.6 m

Adjacent bright fringes = 5.2 mm

In the interference, the equation required is Y = mLR/d

Here, d sin theta = mL

L = wavelgnth

For bright bands, m is the  order = 1,2,3,4  

For dark bands,  m = 1.5, 2.5, 3.5, 4.5

R = Distance from slit to screen (The indifference pattern)

Y = Distance from central spot to the nth  order fringe or fringe width

Thus,  here d = mLR/Y

d = 1× 519nm × 4.6 / 5.2mm

d = 0.459 mm

A plastic balloon that has been rubbed with wool will stick to a wall.
a. Can you conclude that the wall is charged? If not, why not? If so, where does the charge come from?
b. Draw a series of charge diagrams showing how the balloon is held to the wall.

Answers

Answer:

Explanation:

When plastic balloon is rubbed with wool , charges are created on both balloon and silk in equal amount . Rubber balloon will acquire negative charge and silk will acquire positive charge .

Now when balloon is brought near a wall , there is induction of charge on the wall due to charge on the balloon . On the near surface of wall positive charge is produced and on the surface deep inside the wall negative charge is produced . The charge deep inside goes inside the earth but the positive charge near the surface of wall can not escape . It remains trapped by negative charge on the balloon .

hence there is mutual attraction between balloon and surface of wall is just like attraction between opposite charges . But once the ballon due to mutual attraction comes in contact with the wall , the charge on balloon and on wall neutralises each other and hence after some time the balloon falls off from the wall on the ground . It does not remain attracted to wall for ever . It happens due to neutralisation of charges on balloon and wall .



48. A patient presents with a thrombosis in
the popliteal vein. This thrombosis most likely
causes reduction of blood flow in which of the
following veins?

Answers

Answer:

the interation blood veins

Explanation:

You have three resistors: R1 = 1.00 Ω, R2 = 2.00 Ω, and R3 = 4.00 Ω in parallel. Find the equivalent resistance for the combination

Answers

Answer:

4 / 7

Explanation:

1/total resistance = 1/1 + 1/2 + 1/4

= 1¾

total resistance = 1 ÷ 1¾

= 4/7

For a beam of light in air (n = 1) reflecting off glass (n = 1.5), what is Brewster's angle to the nearest degree?

Answers

Answer: 56°

Explanation:

Brewster's angle refers to the angle at the point where light of a certain polarization passes through a transparent dielectric surface and is transmitted perfectly such that no reflection is made.

The formula is;

[tex]= Tan^{-1} (\frac{n_{2} }{n_{1}} )[/tex]

[tex]= Tan^{-1} (\frac{1.5 }{1} )[/tex]

= 56.30993247

= 56°

Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consider points along the line connecting the two sources.Required:a. At what distance from source A is there constructive interference between points A and B?b. At what distances from source A is there destructive interference between points A and B?

Answers

Answer:

a

    [tex]z= 2.5 \ m[/tex]

b

   [tex]z = (1 \ m , 4 \ m )[/tex]

Explanation:

From the question we are told that

     Their distance apart is  [tex]d = 5.00 \ m[/tex]

      The  wavelength of each source wave [tex]\lambda = 6.0 \ m[/tex]

Let the distance from source A  where the construct interference occurred be z

Generally the path difference for constructive interference is

              [tex]z - (d-z) = m \lambda[/tex]

Now given that we are considering just the straight line (i.e  points along the line connecting the two sources ) then the order of the maxima m =  0

  so

        [tex]z - (5-z) = 0[/tex]

=>     [tex]2 z - 5 = 0[/tex]

=>     [tex]z= 2.5 \ m[/tex]

Generally the path difference for destructive  interference is

           [tex]|z-(d-z)| = (2m + 1)\frac{\lambda}{2}[/tex]

=>         [tex]|2z - d |= (0 + 1)\frac{\lambda}{2}[/tex]

=>        [tex]|2z - d| =\frac{\lambda}{2}[/tex]

substituting values

          [tex]|2z - 5| =\frac{6}{2}[/tex]

=>      [tex]z = \frac{5 \pm 3}{2}[/tex]

So  

      [tex]z = \frac{5 + 3}{2}[/tex]

      [tex]z = 4\ m[/tex]

and

      [tex]z = \frac{ 5 -3 }{2}[/tex]

=>   [tex]z = 1 \ m[/tex]

=>    [tex]z = (1 \ m , 4 \ m )[/tex]

Vector has a magnitude of 6.0 m and points 30° north of east. Vector has a magnitude of 4.0 m and points 30° east of north. The resultant vector + is given by

Answers

Answer:

The resultant vector is [tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex].

Explanation:

First, each vector is determined in terms of absolute coordinates:

6-meter vector with direction: 30º north of east.

[tex]\vec A = (6\,m)\cdot (\cos30^{\circ} \,i + \sin 30^{\circ}\,j)[/tex]

[tex]\vec A = 5.196\,i + 3\,j[/tex]

4-meter vector with direction: 30º east of north.

[tex]\vec B = (4\,m)\cdot (\cos 60^{\circ}\,i + \sin 60^{\circ}\,j)[/tex]

[tex]\vec B = 2\,i + 3.464\,j[/tex]

The resultant vector is obtaining by sum of components:

[tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex]

The resultant vector is [tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex].

You are walking around your neighborhood and you see a child on top of a roof of a building kick a soccer ball. The soccer ball is kicked at 31° from the edge of the building with an initial velocity of 15 m/s and lands 63 meters away from the wall. How tall, in meters, is the building that the child is standing on?

Answers

Answer:

69.58 m tall

Explanation:

Pls see attached file

How wide is the central diffraction peak on a screen 2.20 mm behind a 0.0328-mmmm-wide slit illuminated by 588-nmnm light?

Answers

Answer:

[tex]y = 0.0394 \ m[/tex]

Explanation:

From the question we are told that

        The  distance of the screen is  [tex]D = 2.20 \ m[/tex]

       The distance of separation of the slit is  [tex]d = 0.0328 \ mm = 0.0328*10^{-3} \ m[/tex]

        The  wavelength of light is  [tex]\lambda = 588 \ nm = 588 *10^{-9} \ m[/tex]

Generally the condition for constructive interference is

            [tex]dsin\theta = n * \lambda[/tex]

=>        [tex]\theta = sin^{-1} [ \frac{ n * \lambda }{d } ][/tex]

here n = 1 because we are considering the central diffraction peak

=>        [tex]\theta = sin^{-1} [ \frac{ 1 * 588*10^{-9} }{0.0328*10^{-3} } ][/tex]

=>       [tex]\theta = 1.0274 ^o[/tex]

Generally the width of central diffraction peak on a screen is mathematically evaluated as

           [tex]y = D tan (\theta )[/tex]

substituting values

        [tex]y = 2.20 * tan (1.0274)[/tex]

        [tex]y = 0.0394 \ m[/tex]

within which type of system is the total mass conserved but not the total energy

Answers

In a closed system the mass is conserved, but the energy is not conserved.

To find the answer, we have to study about different systems in thermodynamics.

What is thermodynamic system?A system, which can be expressed in terms of thermodynamic coordinates is called Thermodynamic system.Open system: System can exchange both energy and matter, thus, both energy and matter is not conserved here.Closed system can exchange energy with its surroundings (as heat or work), but not matter.Isolated system: A system that is open to the environment can interchange energy and matter, but a system that is insulated from it cannot.

Thus, we can conclude that, in closed system the mass is conserved, but the energy is not conserved.

Learn more about Thermodynamic system here:

https://brainly.com/question/26035962

#SPJ1

Other Questions
Which of these can be used as a hook in the introduction of an informative essay? Select 4 options. a short history an analogy a quotation an anecdote a dictionary definition an in-depth analysis who is the greatest scientists of india?? You are an assistant director of the alumni association at a local university. You attend a presentation given by the universitys research director and one of the topics discussed is what undergraduates do after they matriculate. More specifically, you learn that in the year 2018, a random sample of 216 undergraduates was surveyed and 54 of them (25%) decided to continue school to pursue another degree, and that was up two percentage points from the prior year. The Dean of the College of Business asks the research director if that is a statistically significant increase. The research director says she isnt sure, but she will have her analyst follow up. You notice in the footnotes of the presentation the sample size in the year of 2017 was 200 undergraduates, and that 46 of them continued their education to pursue another degree. There is a short break in the meeting. Take this opportunity to answer the deans question using a confidence interval for the difference between the proportions of students who continued their education in 2018 and 2017. (Use 95% confidence level and note that the university has about 10,000 undergraduate students). all of the following are examples of organic matter soil except 9(p4)=18 p= I am not great at math, please explain just a little bit I will give brainliest to the right answer!! Find the vertex and the length of the latus rectum. x= 1/2 (y - 5) + 7 When chyme enters the duodenum, ____ is released and stimulates the pancreas to secrete bicarbonates. A. gastrin B. secretin C. insulin D. cholecystokinin E. glucagon WILL MARK BRAINLIEST IF ANSWER IS CORRECT You are in Colombia, and your best friend is planning a party. You are an expert on planning parties and want to tell your friend what you usually do to prepare. Que ropa compras para las fiesta? Make sure you use the yo form of the verb comprar and state at least 2 clothing items. Cuales aperitivos te encantan? Using the correct form of the verb encantar, state at least 2 appetizers that you love to prepare for your parties. Cuanto cuestan las decoraciones para la fiesta? Use the correct form of the verb costar and Colombian currency to state how much the decorations cost. Con que pagas la fiesta? Use the correct form of the verb pagar to state what form of payment you use to pay for the party. Que hay en la mesa de la comida? Use the verb hay and three items you put on your table at the party. Given the following data for Vinyard Corporation: D=1000 V=4000 E=3000 V=4000 Calculate the proportions of debt (D/V) and equity (E/V) for the firm that you would use for estimating the weighted average cost of capital (WACC): A. 40% debt and 60% equity B. 50% debt and 50% equity C. 25% debt and 75% equity D. none of the given values What term is used to identify the difference between the number of units of an item listed on the master schedule and the number of firm customer orders? How to solve this maths equation??? pls help me, its urgent!!! asap what do the edaphosaurus use their back sail for? help me asap you guys i need help Eakins Inc.'s common stock currently sells for $15.00 per share, the company expects to earn $2.75 per share during the current year, its expected payout ratio is 70%, and its expected constant growth rate is 6.00%. New stock can be sold to the public at the current price, but a flotation cost of 8% would be incurred. By how much would the cost of new stock exceed the cost of retained earnings Use the difference of squares identity to write this polynomial expression in factored form : 9x^2-49 Choose three words from chapters 112 in Pride and Prejudice that you did not know or had to look up in a dictionary. Write a new sentence for each word using the same meaning that was used in the text. You are hiking in a canyon and you notice an echo. You decide to let out a yell and notice it took 2 seconds before you heard the echo of your yell. How far away is the canyon wall that reflected your yell How can you drop a raw egg onto a concrete floor without cracking it? Barnes & Noble and Amazon would be considered a(n) _______ because they sell similar products. Question 4 options: strategic group oligopoly overlapping group customer group 0.25 L of aqueous solution contains 0.025g of HCLO4 (strong acid) what will be the Ph of the solution g