Answer:
elastic energy
Explanation:
When a gymnast falls on a trampoline from a height, after coming in contact with the trampoline, both the gymnast and the trampoline start to move down due to the elastic property of the trampoline.
During this stretching of the trampoline there comes a maximum point up to which the trampoline is stretched. At this point, both the kinetic energy and the gravitational potential energy of the gymnast are zero due to zero speed and zero height, respectively.
The only energy stored in the gymnast's body at this point is the elastic potential energy due to stretching of the trampoline. Hence,the correct option is:
elastic energy
Una cuerda horizontal tiene una longitud de 5 m y masa de 0,00145 kg. Si sobre esta cuerda se da un pulso generando una longitud de onda de 0,6 m y una frecuencia de 120 Hz. La tensión a la cual está sometida la cuerda es:
a. 1,5 N
b. 15,0 N
c. 3,1 N
d. 5,2 N
Answer:
Option (A) is correct.
Explanation:
A horizontal rope has a length of 5 m and a mass of 0.00145 kg. If a pulse occurs on this string, generating a wavelength of 0.6 m and a frequency of 120 Hz. The tension to which the string is subjected is
mass of string, m = 0.00145 kg
Frequency, f = 120 Hz
wavelength = 0.6 m
Speed = frequency x wavelength
speed = 120 x 0.6 = 72 m/s
Let the tension is T.
Use the formula
[tex]v =\sqrt\frac{T L}{m}\\\\72 = \sqrt\frac{T\times 5}{0.00145}\\\\T = 1.5 N[/tex]
Option (A) is correct.
Question 3 of 10
Which statement describes the law of conservation of energy?
A. Air resistance has no effect on the energy of a system.
B. Energy cannot be created or destroyed.
C. The total energy in a system can only increase.
D. Energy cannot change forms.
هما
SUBMIT
Answer:
B . energy cannot be created or destroyed
explain why sound wave travel faster in liquid than gas
Answer:
Because gas contains free molecules but not liquid.
Please mark as brainliast
Is the actual height the puck reached greater or less than your prediction? Offer a possible reason why this might be.
Answer:
Answer to the following question is as follows;
Explanation:
The puck's real altitude is lower than ones projection. That's because the mechanism may not be completely frictionless. Electricity is nevertheless wasted owing to particle interactions such as friction, which might explain why the present the results is lower than predicted.
a vehicle start moving at 15m/s. How long will it take to stop at a distance of 15m?
Answer:
Explanation:
Speed= distance/time
Or time = distance/speed
According to your question
Speed=15m/s
and. Distance=1.2km. ,we must change kilometer in meter because given speed is in m/s
D= 1.2km = 1.2×1000m =1200meter
Time = distance/ speed
1200/15 =80second
Or. 1min and 20 sec will be your answer.
two point charges with charge q are initially separated by a distance d. if you double the charge on both charges, how far should the charges be separated for the potential energy between them to remain the same
Answer:
r ’= 4 r
Explanation:
Electric potential energy is
U = [tex]k \frac{q_1q_2}{r_{12}}[/tex]k q1q2 / r12
in this exercise
q₁ = q₂ = q
U = k q² / r
for when the charge change
U ’= k q’² / r’
indicate that
q ’= 2q
U ’= U
we substitute
U = k (2q) ² / r ’
U = 4 k q² / r ’
we substitute
[tex]k \ \frac{q^2}{r} = 4 k \ \frac{q^2}{r'}[/tex]k q² / r = 4 k q² / r ’
r ’= 4 r
Find the coefficient of kinetic friction between a 3.80-kg block and the horizontal surface on which it rests if an 87.0-N/m spring must be stretched by 6.50 cm to pull it with constant speed. Assume that the spring pulls in the horizontal direction.
Answer:
μ = 0.15
Explanation:
Let's start by using Hooke's law to find the force applied to the block
F = k x
F = 87.0 0.065
F = 5.655 N
Now we use the translational equilibrium relation since the block has no acceleration
∑ F = 0
F -fr = 0
F = fr
the expression for the friction force is
fr = μ N
if we write Newton's second law for the y-axis
N -W = 0
N = W = mg
we substitute
F = μ mg
μ = F / mg
μ = [tex]\frac{5.655}{3.8 \ 9.8}[/tex]
μ = 0.15
If a car generates 22 hp when traveling at a steady 100 km/h , what must be the average force exerted on the car due to friction and air resistance
Answer:
The average force exerted on the car is 590.12 N.
Explanation:
Given that,
The power generated, P = 22 hp = 16405.4 W
Speed of the car, v = 100 km/h = 27.8 m/s
We need to find the average force exerted on the car due to friction and air resistance.
We know that,
Power, P = F v
Where
F is force exerted on the car
[tex]F=\dfrac{P}{v}\\\\F=\dfrac{16405.4}{27.8}\\\\F=590.12\ N[/tex]
So, the average force exerted on the car is 590.12 N.
A magnetic field of 0.080 T is in the y-direction. The velocity of wire segment S has a magnitude of 78 m/s and components of 18 m/s in the x-direction, 24 m/s in the y-direction, and 72 m/s in the z-direction. The segment has length 0.50 m and is parallel to the z-axis as it moves.
Required:
a. Find the motional emf induced between the ends of the segment.
b. What would the motional emf be if the wire segment was parallel to the y-axis?
Answer:
Explanation:
From the information given:
The motional emf can be computed by using the formula:
[tex]E = L^{\to}*(V^\to*\beta^{\to})[/tex]
[tex]E = L^{\to}*((x+y+z)*\beta^{\to})[/tex]
[tex]E = 0.50*((18\hat i+24 \hat j +72 \hat k )*0.0800)[/tex]
[tex]E = 0.50*((18*0.800)\hat k +0j+(72*0.080) \hat -i ))[/tex]
[tex]E = 0.50*((18*0.800)[/tex]
E = 0.72 volts
According to the question, suppose the wire segment was parallel, there will no be any emf induced since the magnetic field is present along the y-axis.
As such, for any motional emf should be induced, the magnetic field, length, and velocity are required to be perpendicular to one another .
Then the motional emf will be:
[tex]E = 0.50 \hat j *((18*0.800)\hat k -(72*0.080) \hat i ))[/tex]
E = 0 (zero)
If one lawn mower causes an 80-dB sound level at a point nearby, four lawnmowers together would cause a sound level of ____________ at that point. a.92 dB b.84 dB c.86 dB d.none of the above
Answer:
The intensity of 4 lawn movers is 86 dB.
Explanation:
Intensity of one lawnmower = 80 dB
Let the intensity is I.
Use the formula of intensity
[tex]dB = 10 log\left ( \frac{I}{Io} \right )\\\\80=10log\left ( \frac{I}{Io} \right )\\\\10^8 = \frac{I}{10^{-12}}\\\\I = 10^{-4} W/m^2[/tex]
Now the intensity of 4 lawn movers is
[tex]dB = 10 log\left ( \frac{4I}{Io} \right )\\\\dB=10log\left ( \frac{4\times10^{-4}}{10^{-12}} \right )\\\\dB = 86 dB\\[/tex]
A child with a weight of 230 N swings on a playground swing attached to 2.20-m-long chains. What is the gravitational potential energy of the child-Earth system relative to the child's lowest position at the following times?
(a) when the chains are horizontal (in J)
(b) when the chains make an angle of 33.0° with respect to the vertical (in J)
(c) when the child is at his lowest position (in J)
Answer:
a) U = 506 J, b) U = 37.11 J, c) U = 0
Explanation:
The gravitational power energy is given by the expression
U = m g (y -y₀)
In general, a reference system is set that allows the expression to be simplified, in this case let's assume the reference system at the child's lowest point, therefore y₀ = 0
Let's use trigonometry to find the child's height
h = y = L - L cos θ
we substitute
U = m g L (1 - cos θ)
a) when the chain is horizontal θ = 90 and cos 90 = 0
U = mg L
weight and mass are related
W = mg
m = W / g
U = 230 2.20
U = 506 J
b) θ = 33.0º
cos 33 = 0.83867
U = 230 (1 - 0.83867)
U = 37.11 J
c) in this case θ = 0 cos 0 = 1
U = 0
A particle of mass 1.2 mg is projected vertically upward from the ground with a velocity of 1.62 x 10 cm/h. Use the above information to answer the following four questions: 7. The kinetic energy of the particle at time t = 0 s is A. 1.215 x 10-3 J B. 2.430 J C. 1215 J D. 9.72 x 106 J E. OJ (2)
Answer:
K = 0 J
Explanation:
Given that,
The mass of the particle, m = 1.2 mg
The speed of the particle, [tex]v=1.62\times 10\ cm/h[/tex]
We need to find the kinetic energy of the particle at time t = 0 s.
At t = 0 s, the particle is at rest, v = 0
So,
[tex]K=\dfrac{1}{2}mv^2[/tex]
If v = 0,
[tex]K=0\ J[/tex]
So, the kinetic energy of the particle at time t = 0 s is 0 J.
An electric eel can generate a 180-V, 0.1-A shock for stunning its prey. What is the eel's power output
Power output = volts x amps
Power output = 170 volts x 0.1 amps
Power output = 18 watts
A piston-cylinder device contains 5 kg of refrigerant-134a at 0.7 MPa and 60°C. The refrigerant is now cooled at constant pressure until it exists as a liquid at 24°C. If the surroundings are at 100 kPa and-24°C, determine:
(a) the exergy of the refrigerant at the initial and the final states and
(b) the exergy destroyed during this process.
Answer:
Yes sure, keep it going, and never give up because your dreams are so important
A) The exergy of the refrigerant at the initial and final states are :
Initial state = - 135.5285 kJ Final state = -51.96 kJB) The exergy destroyed during this process is : - 1048.4397 kJ
Given data :
Mass ( M ) = 5 kg
P1 = 0.7 Mpa = P2
T1 = 60°C = 333 k
To = 24°C = 297 k
P2 = 100 kPa
A) Determine the exergy at initial and final states
At initial state :
U = 274.01 kJ/Kg , V = 0.034875 m³/kg , S = 1.0256 KJ/kg.k
exergy ( Ф ) at initial state = M ( U + P₂V - T₀S )
= 5 ( 274.01 + 100* 10³ * 0.034875 - 297 * 1.0256)
≈ - 135.5285 kJ
At final state :
U = 84.44 kJ / kg , V = 0.0008261 m³/kg, S = 0.31958 kJ/kg.k
exergy ( ( Ф ) at final state = M ( U + P₂V - T₀S )
= -51.96 kJ
B) Determine the exergy destroyed
exergy destroyed = To * M ( S2 - S1 )
= 297 * 5 ( 0.31958 - 1.0256 )
= - 1048.4397 KJ
Hence we can conclude that A) The exergy of the refrigerant at the initial and final states are : Initial state = - 135.5285 kJ, Final state = -51.96 kJ and The exergy destroyed during this process is : - 1048.4397 kJ
Learn more about exergy : https://brainly.com/question/25534266
If I could lift up to ten tons and I threw a ball the size of an orange but weighed a ton, to the ground, how big of an impact would it make? And could you also show me the equation to solve similar problems myself. Thank you.
Answer:
The impact force is 98000 N.
Explanation:
mass = 10 tons
The impact force is the weight of the object.
Weight =mass x gravity
W = 10 x 1000 x 9.8
W = 98000 N
The impact force is 98000 N.
2. How do the phytochemicals present in various foods help us?
Phytochemicals are compounds that are produced by plants ("phyto" means "plant"). They are found in fruits, vegetables, grains, beans, and other plants. Some of these phytochemicals are believed to protect cells from damage that could lead to cancer.
Two cars are moving. The first car has twice the mass of the second car but only half as much kinetic energy. When both cars increase their speed by 2.76 m/s, they then have the same kinetic energy. Calculate the original speeds of the two cars.
Let m be the mass of the second car, so the first car's mass is 2m.
Let K be the kinetic energy of the second car, so the first car's kinetic energy would be K/2.
Let u and v be the speeds of the first car and the second car, respectively. At the start,
• the first car has kinetic energy
K/2 = 1/2 (2m) u ² = mu ² ==> K = 2mu ²
• the second car starts with kinetic energy
K = 1/2 mv ²
It follows that
2mu ² = 1/2 mv ²
==> 4u ² = v ²
When their speeds are both increased by 2.76 m/s,
• the first car now has kinetic energy
1/2 (2m) (u + 2.76 m/s)² = m (u + 2.76 m/s)²
• the second car now has kinetic energy
1/2 m (v + 2.76 m/s)²
These two kinetic energies are equal, so
m (u + 2.76 m/s)² = 1/2 m (v + 2.76 m/s)²
==> 2 (u + 2.76 m/s)² = (v + 2.76 m/s)²
Solving the equations in bold gives u ≈ 1.95 m/s and v ≈ 3.90 m/s.
A simple pendulum takes 2.00 s to make one compete swing. If we now triple the length, how long will it take for one complete swing
Answer:
3.464 seconds.
Explanation:
We know that we can write the period (the time for a complete swing) of a pendulum as:
[tex]T = 2*\pi*\sqrt{\frac{L}{g} }[/tex]
Where:
[tex]\pi = 3.14[/tex]
L is the length of the pendulum
g is the gravitational acceleration:
g = 9.8m/s^2
We know that the original period is of 2.00 s, then:
T = 2.00s
We can solve that for L, the original length:
[tex]2.00s = 2*3.14*\sqrt{\frac{L}{9.8m/s^2} }\\\\\frac{2s}{2*3.14} = \sqrt{\frac{L}{9.8m/s^2}}\\\\(\frac{2s}{2*3.14})^2*9.8m/s^2 = L = 0.994m[/tex]
So if we triple the length of the pendulum, we will have:
L' = 3*0.994m = 2.982m
The new period will be:
[tex]T = 2*3.14*\sqrt{\frac{2.982m}{9.8 m/s^2} } = 3.464s[/tex]
The new period will be 3.464 seconds.
which is the correct formula for calculating the age of meteor right if using half life
Answer:
n × t_1/2
Exmplanation:
The age of meteorite is calculated by multiplying it's quantity n with the half life . This means that the formula is for age of this meteorite is;
Age of meteorite= n × t_1/2
where;
n = quantity of the meteorite
t_/2 = half life of the meteorite
Thus:
The correct formula is; n × t_1/2
A 0.033-kg bullet is fired vertically at 222 m/s into a 0.15-kg baseball that is initially at rest. How high does the combined bullet and baseball rise after the collision, assuming the bullet embeds itself in the ball
Answer:
The maximum height risen by the bullet-baseball system after the collision is 81.76 m.
Explanation:
Given;
mass of the bullet, m₁ = 0.033 kg
mass of the baseball, m₂ = 0.15 kg
initial velocity of the bullet, u₁ = 222 m/s
initial velocity of the baseball, u₂ = 0
let the common final velocity of the system after collision = v
Apply the principle of conservation of linear momentum to determine the common final velocity.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
0.033 x 222 + 0.15 x 0 = v(0.033 + 0.15)
7.326 = v(0.183)
v = 7.326 / 0.183
v = 40.03 m/s
Let the height risen by the system after collision = h
Initial velocity of the system after collision = Vi = 40.03 m/s
At maximum height, the final velocity, Vf = 0
acceleration due to gravity for upward motion, g = -9.8 m/s²
[tex]v_f^2 = v_i^2 +2gh\\\\0 = 40.03^2 - (2\times 9.8)h\\\\19.6h = 1602.4\\\\h = \frac{1602.4}{19.6} \\\\h = 81.76 \ m[/tex]
Therefore, the maximum height risen by the bullet-baseball system after the collision is 81.76 m.
A cylindrical specimen of aluminum having a diameter of 0.505 in. (12.8 mm) and a gauge length of 2.0 in. (50.8 mm) is pulled in tension. Use the load-elongation characteristics tabulated below to complete parts (a) through (f).
a. Plot the data as engineering stress versus engineering strain.
b. Compute the modulus of elasticity.
c. Determine the yield strength at a strain offset of 0.002.
d. Determine the tensile strength of this alloy.
e. What is the approximate ductility, in percent elongation?
f. Compute the strain energy density up to yielding (modulus of resilience).
( Load in N Load in lb Length in mm Length in in. 2.000 2.002 2.004 2.006 2.008 2.010 2.020 2.040 2.080 2.120 2.160 2.200 2.240 2.270 2.300 2.330 Fracture 50.800 7330 15,100 3400 23,100 5200 30,400 6850 34,400 7750 38,400 8650 41,3009300 44,800 10,100 46,200 10,400 53, 47,300 10,650 54.864 47,500 10,700 55.880 46,100 10,400 44,800 10,100 42,600 9600 3,400 8200 Fracture Fracture Fracture 50.851 50.902 50.952 51.003 51.054 1650 51.308 51.816 52.832 848 56.896 57.658 58.420 59.182
Answer:
A cylindrical specimen of aluminum having a diameter of 0.505 in. (12.8 mm) and a gauge length of 2.0 in. (50.8 mm) is pulled in tension. Use the load-elongation characteristics tabulated below to complete parts (a) through (f).
Help me plssssssss cause I’m struggling
Answer:
I am pretty sure it is C
Explanation:
It can be found all over the universe
a student weighs 1200N they are standing in an elevator that is moving downwards at a constant speed of
Answer:
Elevator That Is Moving Downwards At A Constant Speed Of 4.9 M/S. What Is The Magnitude Of The Net Force Acing On The Student?
This problem has been solved!
This problem has been solved!See the answer
This problem has been solved!See the answerA student weighs 1200N. They are standing in an elevator that is moving downwards at a constant speed of 4.9 m/s. What is the magnitude of the net force acing on the student?
Explanation:
use this R= m(g-a), where R = reaction = weight, m= mass, a= acceleration and g= acceleration due to gravity
Many collisions, like the collision of a bat with a baseball, appear to be instantaneous. Most people also would not imagine the bat and ball as bending or being compressed during the collision. Consider the following possibilities: The collision is instantaneous. The collision takes a finite amount of time, during which the ball and bat retain their shapes and remain in contact. The collision takes a finite amount of time, during which the ball and bat are bending or being compressed. How can two of these be ruled out based on energy or momentum considerations?
The collision is instantaneous.
The collision takes a finite amount of time, during which the ball and bat retain their shapes and remain in contact.
The collision takes a finite amount of time, during which the ball and bat are bending or being compressed.
How can two of these be ruled out based on energy or momentum considerations?
Answer:
The collision takes a finite amount of time, during which the ball and bat are bending or being compressed
Explanation:
These two conditions can be ruled out on the fact that :The collision takes a finite amount of time, during which the ball and bat are bending or being compressed
The rule of energy is been broken here because during the collision of objects energy and momentum is conserved. i.e. the change in shape of the ball when hit by the bat should not be noticed because the compression and returning to normal shape happens instantaneously
1. An excited lithium atom emits a red light with wavelength a = 671nm. What is the corresponding photon energy? hc (6.63 x 10-34).S)(3.0 x 108m/s)
Answer:
E = 2,964 10⁻¹⁹ J
Explanation:
The energy of the photons is given by the Planck relation
E = h f
the speed of light is related to wavelength and frequency
c = λ f
we substitute
E = h c /λ
let's reduce the magnitude to the SI system
λ = 671 nm = 671 10⁻⁹ m
let's calculate
E = 6.63 10⁻³⁴ 3 10⁸ /671 10⁻⁹
E = 2,964 10⁻¹⁹ J
Which one of the following is not an example of convection? An eagle soars on an updraft of wind. A person gets a suntan on a beach. An electric heater warms a room. Smoke rises above a fire. Spaghetti is cooked in water.
Answer: The statement that is not an example of convection is (A person gets a suntan on a beach).
Explanation:
There are different modes of heat energy transfer which includes:
--> conduction
--> Radiation and
--> Convection
CONVECTION is a process by which heat energy is transferred in a fluid or air by the actual movement of the heated molecules. The cooler portion of the air surrounding a warmer part exerts a buoyant force on it. As the warmer part of the air moves, it is replaced by cooler air that is subsequently warmed.
Convection in gases is very common and gas expands more than liquid when subjected to high temperature.
--> it is used in bringing about the circulation of fresh air in the room in a process known as ventilation.Here, cool air is constantly being replaced with denser air ( warm air).
-->An electric heater warms a room and Smoke rises above a fire are typical example of convection in gases.
-->Spaghetti is cooked in water: As the water close to the burner warms, it rises to the top and boils. At the same time, cooler water on top moves downward to replace the rising hot water.
--> also the eagle uses convection current to stay afloat in the sky without flapping its wings to conserve energy.
But the option (A person gets a suntan on a beach) is an example of heat transfer through radiation. This is because the sun emits it's rays from the sky down to earth without any material medium unlike others. Therefore, this option is the ODD one out.
) Efficiency of a lever is always less than hundred percent.
Yes. Because it opposes the law of friction
I hope this helps.
Explanation:
Please mark me brainliest
A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Newtons. What is the frequency of this mode of vibration
Answer:
the frequency of this mode of vibration is 138.87 Hz
Explanation:
Given;
length of the copper wire, L = 1 m
mass per unit length of the copper wire, μ = 0.0014 kg/m
tension on the wire, T = 27 N
number of segments, n = 2
The frequency of this mode of vibration is calculated as;
[tex]F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz[/tex]
Therefore, the frequency of this mode of vibration is 138.87 Hz
Riley, a student, notices that the protractor tool does not measure the angle just as the ball leaves the surface. She sees that the ball must travel some distance before it crosses the protractor, so the direction of travel may have changed as the ball moves upwards. She says that this is the cause of the discrepancy between her predicted angle and the measured angle. Does this reasoning explain the discrepancy between your predicted angle and your measured angle. Use evidence to support your claim.
Answer:
Riley's reasoning is correct
Explanation:
Her reasoning is correct because as the ball moves upwards, the acceleration due to gravity would be vertical and in downward position. Therefore at all points as the ball moves, the velocity of the ball is going to change in magnitude as well as in direction. given that the direction keeps changing at certain points, the angle made by the initial velocity just as the ball left the surface would also have to continuously change.
If Riley has to wait for this ball to move some inches before she uses the protractor to measure the angle, the angle of travel would have to change.
Therefore there is going to be discrepancies between the measured angle and the predicted angle. The predicted is the angle of velocity with the horizontal just as this ball moves from the surface.
A typical incandescent light bulb consumes 75 W of power and has a mass of 20 g. You want to save electrical energy by dropping the bulb from a height great enough so that the kinetic energy of the bulb when it reaches the floor will be the same as the energy it took to keep the bulb on for 2.0 hours. From what height should you drop the bulb, assuming no air resistance and constant g?
Answer:
h = 2755102 m = 2755.102 km
Explanation:
According to the given condition:
Potential Energy = Energy Consumed by Bulb
[tex]mgh = Pt\\\\h = \frac{Pt}{mg}[/tex]
where,
h = height = ?
P = Power of bulb = 75 W
t = time = (2 h)(3600 s/1 h) = 7200 s
m = mass of bulb = 20 g = 0.02 kg
g = acceleration due to gravity = 9.8 m/s²
Therefore,
[tex]h = \frac{(75\ W)(7200\ s)}{(0.02\ kg)(9.8\ m/s^2)}[/tex]
h = 2755102 m = 2755.102 km