Answer:
It does not violate the first law because the total energy taken is what is used 100J = 25J + 75J
But violates 2nd lawbecause the engine has a higher energy after doing work than the initial for e.g A cold object in contact with a hot one never gets colder, transferring heat to the hot object and making it hotter confirming the second law
) Calculate current passing in an electrical circuit if you know that the voltage is 8 volts and the resistance is 10 ohms
Explanation:
Hey, there!
Here, In question given that,
potential difference (V)= 8V
resistance (R)= 10 ohm
Now,
According to the Ohm's law,
V= R×I { where I = current}
or, I = V/R
or, I = 8/10
Therefore, current is 4/5 A or 0.8 A.
(A= ampere = unit of current).
Hope it helps...
Can abnormality exist outside of a cultural context
The Bohr model pictures a hydrogen atom in its ground state as a proton and an electron separated by the distance a0 = 0.529 × 10−10 m. The electric potential created by the electron at the position of the proton is
Answer:
E = -8.23 10⁻¹⁷ N / C
Explanation:
In the Bohr model, the electric potential for the ground state corresponding to the Bohr orbit is
E = k q₁ q₂ / r²
in this case
q₁ is the charge of the proton and q₂ the charge of the electron
E = - k e² / a₀²
let's calculate
E = - 9 10⁹ (1.6 10⁻¹⁹)² / (0.529 10⁻¹⁰)²
E = -8.23 10⁻¹⁷ N / C
If you weigh 685 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 25.0 km
CHECK COMPLETE QUESTION BELOW
you weigh 685 NN on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 25.0 kmkm ? Take the mass of the sun to be msmsm_s = 1.99×1030 kgkg , the gravitational constant to be GGG = 6.67×10−11 N⋅m2/kg2N⋅m2/kg2 , and the free-fall acceleration at the earth's surface to be ggg = 9.8 m/s2m/s2 .
Answer:
5.94×10^15N
Explanation:
the weight on the surface of a neutron star can be calculated by below expresion
W= Mg
W= weight of the person
m= mass of the person
g=gravity of the neutron star
But we need the mass which can be calculated as
m= W/g
m= 685/9.81
m= 69.83kg
From the gravitational law equation we have
F= GMm/r^2
G= gravitational constant = 6.67x10⁻¹¹
M= mass of the neutron star = 1.99x10³⁰ kg
r = distance between the person and the surface
Then r can be calculated as = 25/2 = 12.5 km , we divide by two because it's the distance between the person and the surface
g=gravity of the neutron star can be calculated as
g=(6.67×10^-11 ×1.99×10^30)/(12.5×10^3)^2
= 8.50×10^13m/s^2
Then from W= mg we can find our weight
W= 8.50×10^13m/s^2 × 69.83
= 5.94×10^15N
Therefore, weight on the surface of a neutron star is 5.94×10^15N
A 384 Hz tuning fork produces standing waves with a wavelength of 0.90 m inside a resonance tube. The speed of sound at experimental conditions is
Answer:
v = 345.6m/s
Explanation:
v = 384 x 0.9 = 345.6
v = 345.6m/s
hi guys!!! i have no more points, can someone nice guess all of these for me? :)
1.What happens to the ocean water before the precipitation part of the water cycle
2.During which stage of the water cycle does water from the ocean form clouds?
3.what is a runoff??
4.Which statement about oceans is incorrect? A.Evaporation occurs when water is warmed by the sun. B.Most evaporation and precipitation occur over the ocean. C.97 percent of Earth's water is fresh water from the ocean. D.Water leaves the ocean by the process of evaporation
5.How does most ocean water return to the ocean in the water cycle
tysm to u who answers :)
1. The ocean water collects back in the ocean.
2. Condensation is the process by which water vapor in the air is changed into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds.
3. an excessive amount of water flowing from downslope along earths surface
4. A.Evaporation occurs when water is warmed by the sun.
5. The water returns into the ocean by the water cycle . It evaporates , then it condensates , then it participates ( Rains ) and then goes back into the ocean.
Hope this answer correct ✌️
A student wants to create a 6.0V DC battery from a 1.5V DC battery. Can this be done using a transformer alone
Answer:
Therefore, we need an invert, and a rectifier, along with the transformer to do the job.
Explanation:
A transformer, alone, can not be used to convert a DC voltage to another DC voltage. If we apply a DC voltage to the primary coil of the transformer, it will act as short circuit due to low resistance. It will cause overflow of current through winding, resulting in overheating pf the transformer.
Hence, the transformer only take AC voltage as an input, and converts it to another AC voltage. So, the output voltage of a transformer is also AC voltage.
So, in order to convert a 6 V DC to 1.5 V DC we need an inverter to convert 6 V DC to AC, then a step down transformer to convert it to 1.5 V AC, and finally a rectifier to convert 1.5 V AC to 1.5 V DC.
Therefore, we need an invert, and a rectifier, along with the transformer to do the job.
PLEASE HELP WILL GIVE BRAINLIEST In an experiment, the hypothesis is that if leaf color is related to temperature, then exposing the plant to low temperatures will result in a leaf color change . This hypothesis is _____. 1. testable 2.falsifiable 3.a and b above 4.none of the above
Answer:
testable
Explanation:
high heat can cause browning and or welting
Answer:
A
Explanation:
If it is tested, it will really changed when the plant into low temperature
A hydraulic lift raises a 2 000-kg automobile when a 500-N force is applied to the smaller piston. If the smaller piston has an area of 10 cm2, what is the cross-sectional area of the larger piston
Answer:
The cross-sectional area of the larger piston is 392 cm²
Explanation:
Given;
output mass of the piston, m₀ = 2000 kg
input force of the piston, F₁ = 500 N
input area of the piston, A₁ = 10 cm² = 0.001 m²
The output force is given by;
F₀ = m₀g
F₀ = 2000 x 9.8
F₀ = 19600 N
The cross-sectional area of the larger piston or output area of the piston will be calculated by applying the following equations;
[tex]\frac{F_i}{A_i} = \frac{F_o}{A_o} \\\\A_o= \frac{F_o A_i}{F_i} \\\\A_o = \frac{19600*0.001}{500} \\\\A_o = 0.0392 \ m^2\\\\A_o = 392 \ cm^2[/tex]
Therefore, the cross-sectional area of the larger piston is 392 cm²
A foot is 12 inches and a mile is 5280I ft exactly. A centimeter is exactly 0.01m or mm. Sammy is 5 feet and 5.3tall. what is Sammy's height in inches?
Answer:
65.3 Inches tall
Explanation:
If Sammy is 5 feet and 5.3 inches tall, we simply need to convert the feet to inches, and sum the remaining inches from his height to determine his overall height in inches.
So, 5 feet = (12 inches/1foot) * (5 feet) = 60 inches
And 60 inches + 5.3 inches = 65.3 inches.
Hence, Sammy is 65.3 inches tall.
Cheers.
Coherent light from a sodium-vapor lamp is passed through a filter that blocks everything except for light of a single wavelength. It then falls on two slits separated by 0.490 mm . In the resulting interference pattern on a screen 2.12 m away, adjacent bright fringes are separated by 2.86 mm . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Determining wavelength. Part A What is the wavelength of the light that falls on the slits
Answer:
λ = 6.61 x 10⁻⁷ m = 661 nm
Explanation:
From the Young's Double Slit experiment, the the spacing between adjacent bright or dark fringes is given by the following formula:
Δx = λL/d
where,
Δx = fringe spacing = 2.86 mm = 2.86 x ⁻³ m
L = Distance between slits and screen = 2.12 m
d = slit separation = 0.49 mm = 0.49 x 10⁻³ m
λ = wavelength of light = ?
Therefore,
2.86 x 10⁻³ m = λ(2.12 m)/(0.49 x 10⁻³ m)
(2.86 x 10⁻³ m)(0.49 x 10⁻³ m)/(2.12 m) = λ
λ = 6.61 x 10⁻⁷ m = 661 nm
Question 2.
In the US, lengths are often measured in inches, feet, yards and miles. Let's do
some conversions. The definition of the inch is: 1 inch = 25.4 mm, exactly. A foot is
12 inches and a mile is 5280 ft, exactly. A centimetre is exactly 0.01 m or 10 mm.
Sammy is 5 feet and 5.3 inches tall.
a). What is Sammy's height in Inches? (answer to 3 significant figures)
(3)
b). What is Sammy's height in Feet? (answer to 3 significant figures)
what is Sammy's hight in feet according to this statement
Explanation:
1 inch = 25.4 mm
1 foot = 12 inches
1 mile = 5260 feet
1 cm = 0.01 m or 10 mm
Now Sammy's height is 5 feet and 5.3 inches.
(a) We need to find Sammy's height in inches.
Since, 1 foot = 12 inches
5 feet = 5 × 12 inches = 60 inches
Now, 5 feet and 5.3 inches = 60 inches + 5.3 inches = 65.3 inches
Sammy's height is 65.3 inches.
(b) We need to find Sammy's height in feet.
Since, 1 foot = 12 inches
[tex]1\ \text{inch}=\dfrac{1}{12}\ \text{feet}[/tex]
So,
[tex]5.3\ \text{inch}=\dfrac{5.3}{12}\ \text{feet}=0.4416\ \text{feet}[/tex]
5 feet and 5.3 inches = 5 feet + 0.4416 feet = 5.44 feet
Sammy's height is 5.44 feet.
In the lab, you shoot an electron towards the south. As it moves through a magnetic field, you observe the electron curving upward toward the roof of the lab. You deduce that the magnetic field must be pointing:_______.
a. to the west.
b. upward.
c. to the north.
d. to the east.
e. downward.
Answer:
a. to the west.
Explanation:
An electron in a magnetic field always experience a force that tends to change its direction of motion through the magnetic field. According to Lorentz left hand rule (which is the opposite of Lorentz right hand rule for a positive charge), the left hand is used to represent the motion of an electron in a magnetic field. Hold out the left hand with the fingers held out parallel to the palm, and the thumb held at right angle to the other fingers. If the thumb represents the motion of the electron though the field, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the particle.
In this case, if we point the thumb (which shows the direction we shot the electron) to the south (towards your body), with the palm (shows the direction of the force) facing up to the roof, then the fingers (the direction of the field) will point west.
¿Cómo podrías utilizar el sistema de posicionamiento global para proponer recorridos alternativos para llegar a un lugar específico (centro educativo, supermercado, el hogar, el parque, entre otros)?
Answer:
El sistema de posicionamiento global (conocido mundialmente como GPS) podría utilizarse para proponer recorridos alternativos para llegar a un lugar específico, como un parque, a través de la creación de un recorrido guiado por una aplicación móvil con diferentes rutas de acceso al lugar.
Así, por ejemplo, se crearían diferentes rutas de acceso desde un punto A hasta un punto B, teniendo en cuenta factores como: rapidez, congestión vehicular, pago o no de peajes, posibilidad de acceso a pie y determinados factores extra que influyan en la forma de llegar al lugar. Todo ello plasmado en un mapa interactivo en el cual se señalen las rutas disponibles mediante el marcado del mapa en cuestión.
All household circuits are wired in parallel. A 1140-W toaster, a 270-W blender, and a 80-W lamp are plugged into the same outlet. (The three devices are in parallel when plugged into the same outlet.) Assume that this is the standard household 120-V circuit with a 15-A fuse.
a. What current is drawn by each device?
b. To see if this combination will blow the 15-A fuse, find the total current used when all three appliances are on.
Answer:
total current = 12.417 A
so it will not fuse as current is less than 15 A
Explanation:
given data
toaster = 1140-W
blender = 270-W
lamp = 80-W
voltage = 120 V
solution
we know that current is express as
current = power ÷ voltage ......................1
here voltage is same in all three device
so
current by toaster is
I = [tex]\frac{1140}{120}[/tex]
I = 9.5 A
and
current by blender
I = [tex]\frac{270}{120}[/tex]
I = 2.25 A
and
current by lamp is
I = [tex]\frac{80}{120}[/tex]
I = 0.667 A
so here device in parallel so
total current is = 9.5 A + 2.25 A + 0.667 A
total current = 12.417 A
so it will not fuse as current is less than 15 A
light of wavelength 550 nm is incident on a diffraction grating that is 1 cm wide and has 1000 slits. What is the dispersion of the m = 2 line?
Answer:
The dispersion is [tex]D = 2.01220 *10^{5} \ rad/m[/tex]
Explanation:
From the question we are told that
The wavelength of the light is [tex]\lambda = 550 \ = 550 *10^{-9} \ n[/tex]
The width of the grating is[tex]k = 1\ cm = 0.01 \ m[/tex]
The number of slit is N = 1000 slits
The order of the maxima is m = 2
Generally the spacing between the slit is mathematically represented as
[tex]d = \frac{k}{N}[/tex]
substituting values
[tex]d = \frac{ 0.01}{1000}[/tex]
[tex]d = 1.0 *10^{-5} \ m[/tex]
Generally the condition for constructive interference is
[tex]d\ sin(\theta ) = m * \lambda[/tex]
substituting values
[tex]1.0 *10^{-5} sin (\theta) = 2 * 550 *10^{-9}[/tex]
[tex]\theta = sin^{-1} [\frac{ 2 * 550 *10^{-9}}{ 1.0 *10^{-5}} ][/tex]
[tex]\theta = 6.315^o[/tex]
Generally the dispersion is mathematically represented as
[tex]D = \frac{ m }{d cos(\theta )}[/tex]
substituting values
[tex]D = \frac{ 2 }{ 1.0 *10^{-5} cos(6.315 )}[/tex]
[tex]D = 2.01220 *10^{5} \ rad/m[/tex]
You are holding on to one end of a long string that is fastened to a rigid steel light pole. After producing a wave pulse that was 5 mm high and 4 em wide, you want to produce a pulse that is 4 cm wide but 7 mm high. You must move your hand up and down once,
a. a smaller distance up, but take a shorter time.
b. the same distance up as before, but take a shorter time.
c. a greater distance up, but take a longer time.
d. the same distance up as before, but take a longer time.
e. a greater distance up, but take the same time.
Answer:
It will take. the same distance up as before, but take a longer time
A ball is thrown upward from a height of 432 feet above the ground, with an initial velocity of 96 feet per second. From physics it is known that the velocity at time t is v (t )equals 96 minus 32 t feet per second. a) Find s(t), the function giving the height of the ball at time t. b) How long will the ball take to reach the ground? c) How high will the ball go?
Answer;
A)S(t)=96t-16t² +432
B)it will take 9 seconds for the ball to reach the ground.
C)864feet
Explanation:
We were given an initial height of 432 feet.
And v(t)= 96-32t
A) we are to Find s(t), the function giving the height of the ball at time t
The position, or heigth, is the integrative of the velocity. So
S(t)= ∫(96-32)dt
S(t)=96t-16t² +K
S(t)=96t-16t² +432
In which the constant of integration K is the initial height, so K= 432
b) we need to know how long will the ball take to reach the ground
This is t when S(t)= 0
S(t)=96t-16t² +432
-16t² +96t +432=0
This is quadratic equation, if you solve using factorization method we have
t= -3 or t= 9
Therefore, , t is the instant of time and it must be a positive value.
So it will take 9 seconds for the ball to reach the ground.
C)V=s/t
Velocity= distance/ time
=96=s/9sec
S=96×9
=864feet
By applying the integrations,
(a) [tex]S = 96t-16t^2+432[/tex]
(b) Time will be "t = 9".
(c) Height will be "576"
Given:
Height,
423 feetInitial velocity,
96 feet/secAccording to the question,
(a)
Integrate v:
[tex]S = 96t-16t^2+C[/tex]Initial Condition,
→ [tex]S = 96t-16t^2+432[/tex]
(b)
Hits the ground when,
S = 0→ [tex]0=96t-16t^2+432[/tex]
→ [tex]t =9[/tex]
(c)
Maximum height when,
v = 0→ [tex]0 = 96-32 t[/tex]
→ [tex]t = 3[/tex]
Now,
→ [tex]S = 96\times 3-16\times 3^2+432[/tex]
[tex]= 576[/tex]
Thus the answer above is correct.
Learn more:
https://brainly.com/question/16105731
how many stars are in our solar system?
Answer:
there are over 100 billion stars in our galaxy.
Question 5 of 10
Heat is being transferred through currents within a liquid. When will this heat
transfer mostly end?
O A. When the substance changes state and becomes a gas
O B. When the entire liquid is a single temperature
O C. When the substance is very hot on top and cold beneath
O D. When the particles stop bumping into each other
SUBMIT
Answer:
When the entire liquid is a single temperature
Explanation:
When a liquid is heated, a convection current is set up. Convection is the movement of
fluid particles in response to a temperature gradient.
When you start heating a liquid, the particles near the base of the heating vessel increase in temperature, become less dense and rise upwards while the denser particles move downwards. This convection current will continue until an equilibrium temperature is obtained throughout the liquid.
If a ray of light traveling in the liquid has an angle of incidence at the interface of 33.0 ∘, what angle does the refracted ray in the air make with the normal?
Answer:
29°
Explanation:
because the refracted ray angle is small than angle of incidence
Specific heat is a measurement of the amount of heat energy input required for one gram of a substance to increase its temperature by one degree Celsius. Solid lithium has a specific heat of 3.5 J/g·°C. This means that one gram of lithium requires 3.5 J of heat to increase 1°C. Plot the temperature of 1g of lithium after 3.5, 7, and 10.5 J of thermal energy are added.
Answer:
ΔT = 1ºC , 2ºCand 3ºC
Explanation:
In this exercise they indicate the specific heat of lithium
let's calculate the temperature increase as a function of the heat introduced
Q = m [tex]c_{e}[/tex] ΔT
ΔT = Q / m c_{e}
calculate
for Q = 3.5 J
ΔT = 3.5 / (1 3.5)
ΔT = 1ºC
For Q = 7.0 J
ΔT = 7 / (1 3.5)
ΔT = 2ºC
for Q = 10.5 J
ΔD = 10.5 / (1 3.5)
ΔT = 3ºC
we see that this is a straight line, see attached
A collector that has better efficiency in cold weather is the:
flat-plate collector due to reduced heat loss
evacuated tube collector due to its larger size
flat-plate collector due to the dark-colored coating
O evacuated tube collector due to reduced heat loss
Question 23 (1 point) Saved
One of the following is not found in Thermosyphon systems
o
Answer:
D. evacuated tube collector due to reduced heat loss
Explanation:
Evacuated tube collectors has vacuum which reduces the loss of heat and increase the efficiency of the collector. It has a major application in solar collector, and converts solar energy to heat energy. It can also be used for heating of a definite volume of water majorly for domestic purpose.
During cold weather, the conservation and efficient use of heat is required. Therefore, evacuated tube collector is preferred so as to reduce heat loss and ensure the maximum use of heat energy.
At what frequency should a 200-turn, flat coil of cross sectional area of 300 cm2 be rotated in a uniform 30-mT magnetic field to have a maximum value of the induced emf equal to 8.0 V
Answer:
The frequency of the coil is 7.07 Hz
Explanation:
Given;
number of turns of the coil, 200 turn
cross sectional area of the coil, A = 300 cm² = 0.03 m²
magnitude of the magnetic field, B = 30 mT = 0.03 T
Maximum value of the induced emf, E = 8 V
The maximum induced emf in the coil is given by;
E = NBAω
Where;
ω is angular frequency = 2πf
E = NBA(2πf)
f = E / 2πNBA
f = (8) / (2π x 200 x 0.03 x 0.03)
f = 7.07 Hz
Therefore, the frequency of the coil is 7.07 Hz
Which statement belongs to Dalton’s atomic theory? Atoms have a massive, positively charged center. Atoms cannot be created or destroyed. Atoms can be broken down into smaller pieces. Electrons are located in energy levels outside of the nucleus.
Answer:
the correct statement is
* atoms cannot be created or destroyed
Explanation:
The Datlon atomic model was proposed in 1808 and represents atoms as the smallest indivisible particle of matter, they were the building blocks of matter and are represented by solid spheres.
Based on the previous descriptive, the correct statement is
* atoms cannot be created or destroyed
Answer:
the Answer is b hope it help
Explanation:
The charger for your electronic devices is a transformer. Suppose a 60 Hz outlet voltage of 120 V needs to be reduced to a device voltage of 3.0 V. The side of the transformer attached to the electronic device has 45 turns of wire.
How many turns are on the side that plugs into the outlet?
Answer:
N₁ = 1800 turns
So, the side of the transformer that plugs into the outlet has 1800 turns.
Explanation:
The transformer turns ratio is given by the following equation:
V₁/V₂ = N₁/N₂
where,
V₁ = Voltage of outlet = 120 V
V₂ = Device Voltage = 3 V
N₁ = No. of turns on outlet side = ?
N₂ = No. of turns on side of device = 45
Therefore,
120 V/3 V = N₁/45
N₁ = (40)(45)
N₁ = 1800 turns
So, the side of the transformer that plugs into the outlet has 1800 turns.
Lamar has been running sprints to prepare for his next football game.He has found that he can maintain his maximum speed for 45 yards.He’s thinking of running in a 5km race in a few months,but doesn’t know if he can maintain his maximum speed for the entire 5 km.Can you help him determine how far he can?
Answer:
Kindly check explanation
Explanation:
Length of race = 5km
Maximum speed = 45 yards
Converting from yards to kilometer :
1km = 1093.613 yards
x = 45 yards
(1093.613 * x) = 45
x = 45 / 1093.613
x = 0.0411480 km
Where x = maximum length for which he can maintain his maximum speed expressed in kilometers.
Therefore, with the available information, it can be concluded that Lamar cannot maintain his maximum speed for the entire 5km race and will only be able maintain his maximum speed for 0.0411 kilometers.
Lamar cannot maintain his maximum speed for the entire 5km race and will only be able maintain his maximum speed for 0.0411 kilometers.
The calculation is as follows;
Length of race = 5km
Maximum speed = 45 yards
Converting from yards to kilometer :
1km = 1093.613 yards
x = 45 yards
[tex](1093.613 \times x) = 45[/tex]
[tex]x = 45 \div 1093.613[/tex]
x = 0.0411480 km
here x represent maximum length for which he can maintain his maximum speed expressed in kilometers.
Learn more: https://brainly.com/question/3617478?referrer=searchResults
An engine causes a car to move 10 meters with a force of 100 N. The engine produces 10,000 J of energy. What is the efficiency of this engine?
Answer:
10%
Explanation:
Efficiency = work done / energy used
e = (10 m × 100 N) / (10,000 J)
e = 0.1
The efficiency is 0.1, or 10%.
A rope, under a tension of 153 N and fixed at both ends, oscillates in a second-harmonic standing wave pattern. The displacement of the rope is given by . where at one end of the rope, is in meters, and is in seconds. What are (a) the length of the rope, (b) the speed of the waves on the rope, and (c) the mass of the rope? (d) If the rope oscillates in a third-harmonic standing wave pattern, what will be the period of oscillation?
Complete question is;
A rope, under a tension of 153 N and fixed at both ends, oscillates in a second harmonic standing wave pattern. The displacement of the rope is given by
y = (0.15 m) sin[πx/3] sin[12π t].
where x = 0 at one end of the rope, x is in meters, and t is in seconds. What are (a) the length of the rope, (b) the speed of the waves on the rope, and (c)the mass of the rope? (d) If the rope oscillates in a third - harmonic standing wave pattern, what will be the period of oscillation?
Answer:
A) Length of rope = 4 m
B) v = 24 m/s
C) m = 1.0625 kg
D) T = 0.11 s
Explanation:
We are given;
T = 153 N
y = (0.15 m) sin[πx/3] sin[12πt]
Comparing this displacement equation with general waveform equation, we have;
k = 2π/λ = π/2 rad/m
ω = 2πf = 12π rad/s
Since, 2π/λ = π/2
Thus,wavelength; λ = 4 m
Since, 2πf = 12π
Frequency;f = 6 Hz
A) We are told the rope oscillates in a second-harmonic standing wave pattern. So, we will use the equation;
λ = 2L/n
Since second harmonic, n = 2 and λ = L = 4 m
Length of rope = 4 m
B) speed is given by the equation;
v = fλ = 6 × 4
v = 24 m/s
C) To calculate the mass, we will use;
v = √T/μ
Where μ = mass(m)/4
Thus;
v = √(T/(m/4))
Making m the subject;
m = 4T/v²
m = (4 × 153)/24²
m = 1.0625 kg
D) Now, the rope oscillates in a third harmonic.
So n = 3.
Using the formula f = 1/T = nv/2L
T = 2L/nv
T = (2 × 4)/(3 × 24)
T = 0.11 s
I WILL GIVE BRAINLIEST Identify two types of motion where an object's speed remains the same while it continues to change direction
Answer:
velocity and acceleration
Answer:
Hey there!
Centripetal (Circular Motion) and Oscillating Motion.
Let me know if this helps :)