Answer:
1709.07 ft^3/s
Explanation:
Annual peak streamflow = Log10(Q [ft^3/s] )
mean = 1.835
standard deviation = 0.65
Probability of levee been overtopped in the next 15 years = 1/5
Determine the design flow ins ft^3/s
P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2
∴ T = 67.72 years
Q₁₅ = 1 - 0.2 = 0.8
Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )
K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )
= 2.1504
back to equation 1
Zt = 1.835 + ( 2.1504 * 0.65 ) = 3.23276
hence:
Log₁₀ ( Qt(ft^3/s) ) = Zt = 3.23276
hence ; Qt = 10^3.23276
= 1709.07 ft^3/s
Do you know who Candice is
Answer: Can these nuts fit in your mouth?
Explanation:
im just here for the points >:)
Determine the pressure difference in N/m2,between two points 800m apart in horizontal pipe-line,150 mm diameter, discharging water at the rate of 12.5litres per second. Take the frictional coefficient ,f, as being 0.008
Answer: [tex]10.631\times 10^3\ N/m^2[/tex]
Explanation:
Given
Discharge is [tex]Q=12.5\ L[/tex]
Diameter of pipe [tex]d=150\ mm[/tex]
Distance between two ends of pipe [tex]L=800\ m[/tex]
friction factor [tex]f=0.008[/tex]
Average velocity is given by
[tex]\Rightarrow v_{avg}=\dfrac{12.5\times 10^{-3}}{\frac{\pi }{4}(0.15)^2}\\\\\Rightarrow v_{avg}=\dfrac{15.9134\times 10^{-3}}{2.25\times 10^{-2}}\\\\\Rightarrow v_{avg}=7.07\times 10^{-1}\\\Rightarrow v_{avg}=0.707\ m/s[/tex]
Pressure difference is given by
[tex]\Rightarrow \Delta P=f\ \dfrac{L}{d}\dfrac{\rho v_{avg}^2}{2}\\\\\Rightarrow \Delta P=0.008\times \dfrac{800}{0.15}\times \dfrac{997\times (0.707)^2}{2}\\\\\Rightarrow \Delta P=10,631.45\ N/m^2\\\Rightarrow \Delta P=10.631\ kPa[/tex]
how does load transfer of space needle
Answer:
The Space Needle is a cut away with minimal residual deflection due to load transfer.
The propeller shaft of the submarine experiences both torsional and axial loads. Draw Mohr's Circle for a stress element on the outside surface of the solid shaft. Determine the principal stresses, the maximum in-plane shear stress and average normal stress using Mohr's Circle.
Answer: Attached below is the missing detail and Mohr's circle.
i) б1 = 9.6 Ksi
б2 = -10.7 ksi
ii) 10.2 Ksi
iii) -0.51Ksi
Explanation:
First step :
direct compressive stress on shaft
бd = P / π/4 * d^2
= -20 / 0.785 * 5^2 = -1.09 Ksi
shear stress at the outer surface due to torsion
ζ = 16*T / πd^3
= (16 * 250 ) / π * 5^3 = 010.19 Ksi
Calculate the Principal stress, maximum in-plane shear stress and average normal stress
Using Mohr's circle ( attached below )
i) principal stresses:
б1 = 4.8 cm * 2 = 9.6 Ksi
б2 = -5.35 cm * 2 = -10.7 ksi
ii) maximum in-plane shear stress
ζ = radius of Mohr's circle
= 5.1 cm = 10.2 Ksi ( Given that ; 1 cm = 2Ksi )
iii) average normal stress
= 9.6 + ( - 10.7 ) / 2
= -0.51Ksi
An ideal neon sign transformer provides 9130 V at 51.0 mA with an input voltage of 240 V. Calculate the transformer's input power and current.
Answer:
Input power = 465.63 W
current = 1.94 A
Explanation:
we have the following data to answer this question
V = 9130
i = 0.051
the input power = VI
I = 51.0 mA = 0.051
= 9130 * 0.051
= 465.63 watts
the current = 465.63/240
= 1.94A
therefore the input power is 465.63 wwatts
while the current is 1.94A
the input power is the same thing as the output power.
Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a uniformly distributed load = w, what is the moment present at a length of L/4?
Answer:
jsow
hfhcffnbxhdhdhdhdhdhdddhdhdgdhdhdhdhdhdhhhdhdjsksmalalaksjdhfgrgubfghhhhhhh
Explanation:
j
grudbbending stress distribution is a.rectangle b.parabolic c.curve d.i section
A 1m3 tank containing air at 25℃ and 500kPa is connected through a valve to
another tank containing 5kg of air at 35℃ and 200kPa. Now the valve is opened,
and the entire system is allowed to reach thermal equilibrium, which is at 20℃
(Take: Ru = 8.314 kJ / kg.K).
Answer:
The right answer is "2.2099 m³".
Explanation:
Given:
Mass,
m = 5 kg
Temperature,
T = 35℃
or,
= 35 + 273
Pressure,
P = 200 kPa
Gas constant,
R = 0.2870 kj/kgK
By using the ideal gas equation,
The volume will be:
⇒ [tex]PV=mRT[/tex]
or,
⇒ [tex]V=\frac{mRT}{P}[/tex]
By substituting the values, we get
[tex]=\frac{5(0.2870)(35+273)}{200}[/tex]
[tex]=\frac{441.98}{200}[/tex]
[tex]=2.2099 \ m^3[/tex]
Air is compressed in a well insulated compressor from 95 kPa and 27 C to 600 kPa and 277 C. Use the air tables; assume negligible changes in kinetic and potential energy. Find the isentropic efficiency of the compressor. Find the exit temperature of the air if the compressor was reversible.
Answer:
a) 1.9%
b) T2s = 505.5 k = 232.5°C
Explanation:
P1 = 95 kPa
T1 = 27°C = 300 k
P2 = 600 kPa
T1 = 277°c = 550 k
Table used : Table ( A - 17 ) Ideal gas properties of air
a) determining the isentropic efficiency of the compressor
Л = ( h2s - h1 ) / ( h2a - h1 ) ---- ( 1 )
where ; h1 = 300.19 kJ/kg , T1 = 300 K , h2a = 554.74 kJ/kg , T2 = 550 k
To get h2s we have to calculate the the value of Pr2 using Pr1(relative pressure)
Pr2 = P2/P1 * Pr = ( 600 / 95 ) * 1.306 hence; h2s = 500.72 kJ/kg
back to equation1
Л = 0.019 = 1.9%
b) Calculate the exit temperature of the air if compressor is reversible
if compressor is reversible the corresponding exit temperature
T2s = 505.5 k = 232.5°C
given that h2s = 500.72 kJ/kg
Set the leak rate to zero and choose a non-zero value for the proportional feedback gain.Restart the simulation and turn on the outflow valve.What happens to the liquid level in the tank?Repeat this process with higher and lower values for the proportional feedback gain.What happens when the proportional feedback gain is increased?What happens when it is decreased?Find the proportional gain that will reach steady state the quickest without oscillationin the state of the valve and restart the simulation.What is the system time constant, as determined from the tank level versus time plot.
Answer:
Explanation:
The proportional gain K is usually a fixed property of the controller . If proportional gain is increased , The sensitivity of the controller to error is increased but the stability is impaired. The system approaches the behaviour of on off controlled system and it response become oscillatory
A 20-mm-diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is not to exceed 110 MPa when one end is twisted through an angle of 15°, what must be the length of the bar?
Answer:
1.887 m
Explanation:
(15 *pi)/180
= 0.2618 rad
Polar moment
= Pi*d⁴/32
= (22/7*20⁴)/32
= 15707.96
Torque on shaft
= ((22/7)*20³*110)/16
= 172857.14
= 172.8nm
Shear modulus
G = 79.3
L = Gjθ/T
= 79.3x10⁹x(1.571*10^-8)x0.2618/172.8
= 1.887 m
The length of the bar is therefore 1.887 meters
Activity 1. Fill the blank with the correct answer. Write your answer on the blank. 1. ___________________ is a regular pattern of dots displayed on the screen which acts as a visual aid and also used to define the extent of your drawing. 2. Ortho is short for ___________________, which means either vertical or horizontal. 3. Tangent is a point where two _______________________ meet at just a single point. 4. If you want to create a new drawing, simply press ___________________ for the short cut key. 5. There are _______________Osnap that can help you performs your task easier.
Answer:
1. Drawing grid.
2. Orthogonal.
3. Geometries.
4. CTRL+N.
5. Thirteen (13).
Explanation:
CAD is an acronym for computer aided design and it is typically used for designing the graphical representation of a building plan. An example of a computer aided design (CAD) software is AutoCAD.
Some of the features of an AutoCAD software are;
1. Drawing grid: is a regular pattern of dots displayed on the screen of an AutoCAD software, which acts as a visual aid and it's also used to define the extent of a drawing.
2. Ortho is short or an abbreviation for orthogonal, which means either vertical or horizontal.
3. Tangent is a point where two geometries meet at just a single point.
4. If you want to create a new drawing, simply press CTRL+N for the short cut key.
5. There are thirteen object snaps (Osnap) that can help you perform your task on AutoCAD easily. The 13 object snaps (Osnap) are; Endpoint, Midpoint, Apparent intersect, Intersection, Quadrant, Extension, Tangent, Center, Insert, Perpendicular, Node, Parallel, and Nearest.
Find the general solution of the given differential equation. Give the largest interval over which the general solution is defined. Determine whether there are any transient terms in the general solution.
x dx/dy−y=x^2sinx
Answer:
Interval: x∈ ( 0, ∞ )
There are no transient terms
Explanation:
x (dy/dx) – y= x^2sinx
Attached below is the detailed solution of the Given problem
There are no transient terms found in the general solution
Interval: x∈ ( 0, ∞ )
A designer needs to select the material for a plate under tensile stress. Assuming that the applied tensile force is 13,000 lb and the area under the stress is 4 square inches, determine which material should be selected to assure safety. Assume safety factor is 2. Material A: Ultimate Tensile stress is 8000 lb/in2Material B: Ultimate Tensile stress is 5500 lb/in2
Consider the equation y = 10^(4x). Which of the following statements is true?
A plot of log(y) vs. x would be linear with a slope of 4.
A plot of log(y) vs. log (x) would be linear with a slope of 10.
A plot of log(y) vs. x would be linear with a slope of 10.
A plot of y vs. log(x) would be linear with a slope of 4.
A plot of log(y) vs. log (x) would be linear with a slope of 4.
A plot of y vs. log(x) would be linear with a slope of 10.
Answer: Plot of [tex]\log y[/tex] vs [tex]x[/tex] would be linear with a slope of 4.
Explanation:
Given
Equation is [tex]y=10^{4x}[/tex]
Taking log both sides
[tex]\Rightarrow \log y=4x\log (10)\\\Rightarrow \log y=4x[/tex]
It resembles with linear equation [tex]y=mx+c[/tex]
Here, slope of [tex]\log y[/tex] vs [tex]x[/tex] is 4.
In low speed subsonic wind tunnels, the value of test section velocity can be controlled by adjusting the pressure difference between the inlet and test-section for a fixed ratio of inlet-to-test section cross-sectional area.
a. True
b. false
Answer:
Hence the given statement is false.
Explanation:
For low-speed subsonic wind tunnels, the air density remains nearly constant decreasing the cross-section area cause the flow to extend velocity, and reduce pressure. Similarly increasing the world cause to decrease and therefore the pressure to extend.
The speed within the test section is decided by the planning of the tunnel.
Thus by adjusting the pressure difference won't change the worth of test section velocity.
Answer:
The given statement is false .
A flow inside a centrifuge can be approximated by a combination of a central cylinder and a radial line source flow, giving the following potential function:
Ø= a2/r -cosØ + aßlnr = r
Where a is the radius of the central base of the centrifuge and ß is a constant.
a) Provide expressions for the velocities Vr and vo .
b) Find the expression for the stream function.
Answer:
a) Vr = - a^2/r cosθ + aß / r
Vθ = 1/r [ -a^2/r * sinθ ]
b) attached below
Explanation:
potential function
Ø= a^2 /r cosØ + aßlnr ----- ( 1 )
a = radius , ß = constant
a) Expressions for Vr and Vθ
Vr = dØ / dr ----- ( 2 )
hence expression : Vr = - a^2/r cosθ + aß / r
Vθ = 1/r dØ / dθ ------ ( 3 )
back to equation 1
dØ / dr = - a^2/r sinθ + 0 --- ( 4 )
Resolving equations 3 and 4
Vθ = 1/r [ -a^2/r * sinθ ]
b) expression for stream function
attached below
Given resistance 30ohms Inductance 200mH is connected to a 230v,50hZ supply. Impedance 69.6ohms Calculate current consumed?
Answer:
the current consumed is 3.3 A
Explanation:
Given;
resistance, R = 30 ohms
inductance, L = 200 mH
Voltage supply, V = 230 V
frequency of the coil, f = 50 Hz
impedance, Z = 69.6 Ohms
The current consumed is calculated as;
[tex]I = \frac{V}{Z} \\\\I = \frac{230}{69.6} \\\\I = 3.3 \ A[/tex]
Therefore, the current consumed is 3.3 A
Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
using relevant grids.
ow Pass Filter Design 0.0/5.0 points (graded) Determine the transfer function H(s) for a low pass filter with the following characteristics: a cutoff frequency of 100 kHz a stopband attenuation rate of 40 dB/decade. a nominal passband gain of 20 dB, which drops to 14 dB at the cutoff frequency Write the formula for H(s) that satisfies these requirements:
Answer:
H(s) = 20 / [ 1 + s / 10^5 ]^2
Explanation:
Given data:
cutoff frequency = 100 kHz
stopband attenuation rate = 40 dB/decade
nominal passband gain = 20 dB
new nominal passband gain at cutoff = 14 dB
Represent the transfer function H(s)
The attenuation rate show that there are two(2) poles
H(s) = k / [ 1 + s/Wc ]^2 ----- ( 1 )
where : Wc = 100 kHz = 10^5 Hz , K = 20 log k = 20 dB ∴ k = 20
Input values into equation 1
H(s) = 20 / [ 1 + s / 10^5 ]^2
Calculate density, specific weight and weight of one litter of petrol having specific gravity 0.7
Explanation:
mass=19kg
density=800kg/m³
volume=?
as we know that
density=mass/volume
density×volume=mass
volume=mass/density
putting the values
volume=19kg/800kg/m³
so volume=0.02375≈0.02m³
The following is a correlation for the average Nusselt number for natural convection over spherical surface. As can be seen in the above, the Nusselt number approaches 2 as Rayleigh number approaches zero. Prove that this situation corresponds to conduction heat transfer and in conduction heat transfer over sphere, the Nusselt number becomes 2. Hint: First step: Write an expression for heat transfer between two spherical shells that share the same center. Second step: Assume the outer spherical shell is infinitely large.
Answer:
Explanation:
[tex]r_2=[/tex]∞
[tex]q=4\pi kT_1(T_2-T_1)\\[/tex]
[tex]q=2\pi kD.[/tex]ΔT--------(1)
[tex]q=hA[/tex] ΔT[tex]=4\pi r_1^2(T_2_s-T_1_s)\\[/tex]
[tex]N_u=\frac{hD}{k} = 2+\frac{0.589 R_a^\frac{1}{4} }{[1+(\frac{0.046}{p_r}\frac{9}{16} )^\frac{4}{9} } ------(3)[/tex]
By equation (1) and (2)
[tex]2\pi kD.[/tex]ΔT=h.4[tex]\pi r_1^2[/tex]ΔT
[tex]2kD=hD^2\\\frac{hD}{k} =2\\N_u=\frac{hD}{k}=2\\[/tex]-------(4)
From equation (3) and (4)
So for sphere [tex]R_a[/tex]→0
Consider two houses that are identical, except that the walls are built using bricks in one house, and wood in the other. The walls of the brick house are twice as thick. Which house do you think will be more energy efficient?
Answer:
Walls Built Using Bricks and Wood
The brick house is more energy-efficient than the one built with wood.
Explanation:
Because of their high thermal mass, which gives bricks the ability to absorb heat and release it over time, bricks remain more energy-efficient than other building materials, including wood. In summer, bricks leave your home cool. In winter, they make it warm. With these two advantages provided by bricks over other building materials, bricks are the most energy-efficient building material.
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turbine if the steam is exhausted as a saturated vapor?
Answer:
[tex]\eta_{turbine} = 0.603 = 60.3\%[/tex]
Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ = [tex]h_{g\ at\ 125KPa}[/tex] = 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than [tex]s_g[/tex] and greater than [tex]s_f[/tex] at 125 KPa. Therefore, the steam is in a saturated mixture state. So:
[tex]x = \frac{s_2-s_f}{s_{fg}} \\\\x = \frac{6.5843\ KJ/kg.K - 1.3741\ KJ/kg.K}{5.91\ KJ/kg.K}\\\\x = 0.88[/tex]
Now, we will find [tex]h_{2s}[/tex](enthalpy at the outlet for the isentropic process):
[tex]h_{2s} = h_{f\ at\ 125KPa}+xh_{fg\ at\ 125KPa}\\\\h_{2s} = 444.36\ KJ/kg + (0.88)(2240.6\ KJ/kg)\\h_{2s} = 2416.088\ KJ/kg[/tex]
Now, the isentropic efficiency of the turbine can be given as follows:
[tex]\eta_{turbine} = \frac{h_1-h_2}{h_1-h_{2s}}\\\\\eta_{turbine} = \frac{3093.3\ KJ/kg-2684.9\ KJ/kg}{3093.3\ KJ/kg-2416.088\ KJ/kg}\\\\\eta_{turbine} = \frac{408.4\ KJ/kg}{677.212\ KJ/kg}\\\\\eta_{turbine} = 0.603 = 60.3\%[/tex]
A 0.82-in-diameter aluminum rod is 5.5 ft long and carries a load of 3000 lbf. Find the tensile stress, the total deformation, the unit strains, and the change in the rod diameter.
Answer:
Tensile stress = 0.1855Kpsi
Total deformation = 0.0012243 in
Unit strain = 1.855 *10^-5 or 18.55μ
Change in the rod diameter = 5.02 * 10^ -6 in
Explanation:
Data given: D= 0.82 in
L = 5.5 ft * 12 = 66 in
load (p) = 3000 (Ibf) /32.174 = 93.243 Ibm
Area = (π/4) D² = (π/4) 0.82² = 0.502655 in²
∴ Tensile stress Rt = P/A = 93.243/0.502655 = 185.50099 pound/in²
Rt = 0.1855 Kpsi
∴ Total deformation = PL / AE = Rt * L/ Eal
= 0.1855 * 10³ * 66 / 10000 * 10³
= 0.0012243 in
∴the unit strains = total deformation / L = 0.0012243/ 66
=0.00001855 = 1.855 *10^-5
= 18.55μ
∴ Change in rod Δd/ d = μ ΔL/L
= (0.33) 1.855 *10^-5 * 0.82
= 5.02 * 10^ -6 in
what type of slab and beam used in construction of space neddle
jrjrkeekkekekkwkkakkllalllalallalllalalaallalalaalalalalalallallallllallalalallaaallalallllllallllllllalaalalalaaaaalalaaaaaaalgjgiejxpwunfifjruritiririirieoeowowowowowowowowooeowowowoeeoeowowowowowowowoowowwowowowoozoeisiaokseekxidjdkdjfidjfjdjfjfjrifjrifjdirjdjrjfjrjfjrjfjrfuejwwuxmaneanfjkaosndjxieneamalhaqzeeshanvhorahfuensiwjakaksjdhfhfnfhfndjxnxmakaalalalwlwlwwow
A signalized intersection has a sum of critical flow ratios of 0.72 and a total cycle lost time of 12 seconds. Assuming a critical intersection v/c ration of 0.9, calculate the minimum necessary cycle length.
Answer:
[tex]T_o=82.1sec[/tex]
Explanation:
From the question we are told that:
Lost Time [tex]t=12secs[/tex]
Sum of critical flow ratios [tex]X=0.72[/tex]
Generally the Webster Method's equation for Optimum cycle time is is mathematically given by
[tex]T_o=\frac{1.5t+5}{1-x}[/tex]
[tex]T_o=\frac{1.5*12+5}{1-0.72}[/tex]
[tex]T_o=82.1sec[/tex]
Identify the first step in preparing a spectrophotometer for use.
A. Make sure all samples and the blank are ready for measurement.
B. Prepare a calibration curve.
C. Measure the absorbance of the blank.
D. Turn on the light source and the spectrophotometer.
Answer:
D. Turn on the light source and the spectrophotometer.
Explanation:
A spectrophotometer is a machine used to measure the presence of any light-absorbing particle in a solution as well as its concentration. To prepare a spectrophotometer for use, the first step is to turn on the spectrophotometer and allow it to warm up for at least 15 minutes. After this is done, the next step will be to ensure that the samples and blank are ready. Next, an appropriate wavelength is set for the solute being determined. Finally, the absorbance is measured of both the blank and samples.
The temperature gradient in a spherical (or cylindrical) wall at steady state will always decrease (in magnitude) with increasing distance from the center (line), i.e. radial distance.
A. True
B. False
Answer:
True
Explanation:
Yes it is true that the Temperature gradient would also decrease with magnitude just as the distances rise from the centre line.
We have this cylinder equation as
[T1-T2 / ln(r1-r2)]2πKL
The radial distance is r2-r1
The gradient of temperature is T1-T2
From the equation,
The temperature gradient has a direct and proportional relationship to radial distance
T1-T2 ∝ ln(r2-r1)
1/T1-T2 = k(r2-r1)
This inverse relationship above confirms that the statement is true
Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of the turbine is 5 MW, determine (a) the reversible power output and (b) the second-law efficiency of the turbine. Assume the surroundings to be at 25°C.
Answer:
(a) the reversible power output of turbine is 5810 kw
(b) The second-law efficiency of he turbine = 86.05%
Explanation:
In state 1: the steam has a pressure of 6 MPa and 600°C. Obtain the enthalpy and entropy at this state.
h1 = 3658 kJ/kg s1=7.167 kJ/kgK
In state 2: the steam has a pressure of 50 kPa and 100°C. Obtain the enthalpy and entropy at this state
h2 = 2682kl/kg S2= 7.694 kJ/kg
Assuming that the energy balance equation given
Wout=m [h1-h2+(v1²-v2²) /2]
Let
W =5 MW
V1= 80 m/s V2= 140 m/s
h1 = 3658kJ/kg h2 = 2682 kJ/kg
∴5 MW x1000 kW/ 1 MW =m [(3658-2682)+ ((80m/s)²-(140m/s)²)/2](1N /1kg m/ s²) *(1KJ/1000 Nm)
m = 5.158kg/s
Consider the energy balance equation given
Wrev,out =Wout-mT0(s1-s2)
Substitute Wout =5 MW m = 5.158kg/s 7
s1= 7.167 kJ/kg-K s2= 7.694kJ/kg-K and 25°C .
Wrev,out=(5 MW x 1000 kW /1 MW) -5.158x(273+25) Kx(7.167-7.694)
= 5810 kW
(a) Therefore, the reversible power output of turbine is 5810 kw.
The given values of quantities were substituted and the reversible power output are calculated.
(b) Calculating the second law efficiency of the turbine:
η=Wout/W rev,out
Let Wout = 5 MW and Wrev,out = 5810 kW
η=(5 MW x 1000 kW)/(1 MW *5810)
η= 86.05%