Answer:
The expectation for an event with outcomes:
{x₁, x₂, ..., xₙ}
Each one with probability:
{p₁, p₂, ..., pₙ}
Is:
Ev = x₁*p₁ + ... + xₙ*pₙ
There are 500 tickets sold.
1 of these, wins $3,000 (this is the event x₁)
4 of these, wins $100 (this is the event x₂)
2 of these, wins $75 (this is the event x₃)
The others do not have a prize.
So the probability of winning the $3000 is equal to the quotient between the number of tickets with that prize (1) and the total number of tickets (500)
p₁ = 1/500
Similarly, the probability of winning $100 will be:
p₂ = 4/500
And for the $75 prize:
p₃ = 2/500
Then the probability of not winning is:
p₄ = 493/500
Then the expected value for a single ticket is:
Ev = $0*493/500 + $75*2/500 + $100*4/500 + $3000*1/500
Ev = $7.1
If you take in account that you pay $50 for the ticket, the actual expectation should be:
E = $7.10 - $50 = -$42.90
How
many solutions are there to the equation below?
4(x - 5) = 3x + 7
A. One solution
B. No solution
O C. Infinitely many solutions
SUB
Answer:
A one solution
Step-by-step explanation:
4(x - 5) = 3x + 7
Distribute
4x - 20 = 3x+7
Subtract 3x from each side
4x-3x-20 = 3x+7-3x
x -20 = 7
Add 20 to each side
x -20+20 = 7+20
x = 27
There is one solution
Answer:
Step-by-step explanation:
Let's simplify that before we make the decision, shall we? We'll get rid of the parenthesis by distribution and then combine like terms.
4x - 20 = 3x + 7 and combining like terms and getting everything on one side of the equals sign:
1x - 27 = 0. Since that x has a power of 1 on it (linear), that means we have only 1 solution. If that was an x², we would have 2 solutions; if that was an x³, we would have 3 solutions, etc.
This is a list of the heights ( each nearest cm ) of 12 children
150 134 136 139 131 141
132 134 136 137 150 146
Select the type of the data.
Discrete
Continuous
Categorical
Qualitative
choose one
NO FAKE ANSWERS
FIRST MARKED BRAINLIST
qualitative
Step-by-step explanation:
b cos the question is in quality format
Answer:
cutee!
SUP???
Hiii friend :]
cuteee~!
prettyyy
Which of the following is the most accurate statement about statistics?
a) We can absolutely be 100% certain in accurately generalizing the characteristics of entire population based on the sample data
b) By analyzing data, we may be able to identify connections and relationships in our data
c) We can explore in the midst of variation to better understand our data
d) limited data or experience likely generates less confidence
e) Non of the above
Answer:
b) By analyzing data, we may be able to identify connections and relationships in our data.
Step-by-step explanation:
In statistics decisions are based on probability sampling distributions. As statics is collection and analysis of data along with its interpretation and presentation.what is the quotient 3/8 ÷5/12
Answer:
9/10
Step-by-step explanation:
3/8 ÷5/12
Copy dot flip
3/8 * 12/5
Rewriting
3/5 * 12/8
3/5 * 3/2
9/10
7/9 - 2/3 and 2/3 - 1/6
Answer:
The answer is 1/9 and 1/2
Evaluate the expression when a=-7 and y=3 3y-a
Answer:
3y-a
3.3-7
9-7
2
Step-by-step explanation:
first we have to do multiply by replacing the value of y and the subtract by using the value of a.
Hope this will be helpful for you
Question 7(Multiple Choice Worth 1 points)
(07.02 MC)
Jason has two bags with 6 tiles each. The files in each bag are shown below
1
2
3
4
5
6
Without looking, Jason draws a file from the first bag and then a file from the second bag What is the probability of Jason drawing the file numbered 5 from the first bag and an odd file from the second bag?
0
영
o
Answer:a.3/6
Step-by-step explanation:
Because there’s a total of 12 files in each bag which is 6 in each
answer this question
Answer:
(-2, 13) (-1,8) (0, 5) (1, 4) (2, 5) (3, 8)
(2.4 , 6) or (-0.4, 6)
Step-by-step explanation:
Graph y = 6 on top of y = [tex]x^{2}[/tex] -2x + 5 and use the points where the two lines meet.
About 9% of the population has a particular genetic mutation. 400 people are randomly selected. Find the mean for the number of people with the genetic mutation in such groups of 400
Answer:
36 people
Step-by-step explanation:
The expected value E(X) = mean of sample = np
Where, p = population proportion, p = 9% = 0.09
n = sample size, = 400
The mean of the number of people with genetic mutation, E(X) = np = (400 * 0.09) = 36
36 people
Brendan has $65 worth of balloons and flowers delivered to his mother. He pays the bill plus an 8.5% sales tax and an 18% tip on the total cost including tax. He also pays a $10 delivery fee that is charged after the tax and tip. How much change does he receive if he pays with two $50 bills? Round to the nearest cent.
Answer:
its 6.78 i believe
Step-by-step explanation:
Point P is plotted on the coordinate grid. If point S is 12 units to the left of point P, what are the coordinates of point S? On a coordinate grid from negative 12 to positive 12 in increments of 2, a point P is plotted at the ordered pair 6, negative 4. (6, −16) (−6, −16) (−6, −4) (6, 4)
9514 1404 393
Answer:
(−6, −4)
Step-by-step explanation:
Translating a point 12 units left subtracts 12 from its x-coordinate.
P(6, -4) +(-12, 0) = S(-6, -4)
A G.P is such that the 3rd term minus a first term is 48. The 4th term minus 2nd term 144. Find: (i) Common ratio ii) The first term (ii) 6th term of the sequence
Answer:
Step-by-step explanation:
r is the common ratio.
Third term minus first term is 48.
a₃ - a₁ = 48
a₃ = a₁r²
a₁r² - a₁ = 48
a₁(r²-1) = 48
r²-1 = 48/a₁
Fourth term minus second term is 144.
a₄ - a₂ = 144
a₂ = a₁r
a₄ = a₁r³
a₁r³ - a₁r = 144
a₁r(r²-1) = 144
r²-1 = 144/(a₁r)
48/a₁ = 144/(a₁r)
r = 3
:::::
r²-1 = 48/a₁
a₁ = 6
:::::
a₆ = a₁r⁵ = 1458
(i) The common ratio for the given condition is 3.
ii) The first term of the sequence is 6.
iii) The 6th term of the sequence is 1458.
What is a sequence?It is defined as the systematic way of representing the data that follows a certain rule of arithmetic.
Divergent sequences are those in which the terms never stabilize; instead, they constantly increase or decrease as n approaches infinity,
It is given that a is a geometric progression such that the 3rd term minus a first term is 48. The 4th term minus the 2nd term 144.
Each number following the first in a geometric sequence is multiplied by a particular number, known as the common ratio.
As the third term minus the first term is 48.
a₃ - a₁ = 48
a₃ = a₁r²
a₁r² - a₁ = 48
a₁(r²-1) = 48
r²-1 = 48/a₁
The fourth term minus the second term is 144.
a₄ - a₂ = 144
a₂ = a₁r
a₄ = a₁r³
a₁r³ - a₁r = 144
a₁r(r²-1) = 144
r²-1 = 144/(a₁r)
48/a₁ = 144/(a₁r)
r = 3
r²-1 = 48/a₁
a₁ = 6
a₆ = a₁r⁵ = 1458
Thus the common ratio for the given condition is 3, the first term of the sequence is 6 and the 6th term of the sequence is 1458.
Learn more about the sequence here:
brainly.com/question/21961097
#SPJ2
please help
Find the missing side of this right
triangle.
X
7
12
X
= [?]
Answer:
13.9 (if x is the Hypotenuse)
Step-by-step explanation:
which one is the Hypotenuse (the side opposite of the 90 degree angle) ?
because that determines the calculation.
if x is the Hypotenuse then Pythagoras looks like this
x² = 7² + 12² = 49 + 144 = 193
x = sqrt(193) = 13.9
if 12 is the Hypotenuse, then it looks like this
12² = 7² + x²
144 = 49 + x²
95 = x²
x = sqrt(95) = 9.75
Is this true or false ??
=============================================================
Explanation:
We'll use these two properties of integrals [tex]\displaystyle \text{If f(x) is an even function, then } \int_{-a}^{a}f(x)dx = 2\int_{0}^{a}f(x)dx[/tex]
[tex]\displaystyle \text{If f(x) is an odd function, then } \int_{-a}^{a}f(x)dx = 0[/tex]
These properties are valid simply because of the function's symmetry. For even functions, we have vertical axis symmetry about x = 0; while odd functions have symmetry about the origin.
------------------------
Here's how the steps could look
[tex]\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\int_{-7}^{7}((ax^8+c)+bx)dx\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\int_{-7}^{7}(ax^8+c)dx+\int_{-7}^{7}(bx)dx\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\left(2\int_{0}^{7}(ax^8+c)dx\right)+(0)\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=2\int_{0}^{7}(ax^8+c)dx\\\\\\[/tex]
Therefore, the given statement is true. The values of a,b,c don't matter. You could replace those '7's with any real number you want and still end up with a true statement.
We can see that ax^8+c is always even, while bx is always odd.
------------------------
Side note:
For the second step, I used the idea that [tex]\int(f(x)+g(x))dx=\int f(x)dx+\int g(x)dx\\\\[/tex]
which allows us to break up a sum into smaller integrals.
See above. okokokoookkokokokokkkkokokkokokkok
Answer:
B
Step-by-step explanation:
B is the correct answer
1/4 + 4/10 what is the answer plz give correct
Answer:
0.65 is the correct answer
Step-by-step explanation:
hopes it helps
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]\boxed{\frac{13}{20}}[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
[tex]\boxed{\text{Calculating the answer...}}\\\\\frac{1}{4} +\frac{4}{10}\\------------\\LCM(4,10) = 20\\\\\rightarrow \frac{1}{4}=\frac{1*5}{4*5} = \frac{5}{20}\\\\\rightarrow \frac{4}{10}=\frac{4*2}{10*2}=\frac{8}{20}\\\\\\\rightarrow\frac{5}{20}+ \frac{8}{20} = \boxed{\frac{13}{20}}\\\\\\\text{The answer is in it's simplest form.}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Find x and explain how you found x
Answer:
x=60
Step-by-step explanation:
There are different ways to find x but this is what I found easiest.
To solve first note that AOD and CFB are vertical angles; this means that they are congruent. AOD consists of two angles with the measurements of 90 and x. CFB consists of two angles with the measurements of 30 and 2x. So, to find x set add the adjacent angles and set them equal to the other pair of angles. The equation would be [tex]90+x=30+2x[/tex]. First, subtract x from both sides; this makes the equation [tex]90=30+x[/tex]. Then, subtract 30 from both sides. This gives the final answer, x=60.
Which explains whether or not the graph represents a direct variation?
Answer:
The slope is 3 and equation of the line is y=3x. I think the answer is the 1st option
Step-by-step explanation:
Given:
y=3x
Direct variation equations have the form:
y=kx,
where
k is the constant of proportionality
so k=3
A half-century ago, the mean height of women in a particular country in their 20s was inches. Assume that the heights of today's women in their 20s are approximately normally distributed with a standard deviation of inches. If the mean height today is the same as that of a half-century ago, what percentage of all samples of of today's women in their 20s have mean heights of at least inches?
Answer:
0.26684
Step-by-step explanation:
Given that :
Mean, μ = 62.5
Standard deviation, σ = 1.96
P(Z ≥ 63.72)
The Zscore = (x - μ) / σ
P(Z ≥ (x - μ) / σ)
P(Z ≥ (63.72 - 62.5) / 1. 96) = P(Z ≥ 0.6224)
P(Z ≥ 0.6224) = 1 - P(Z < 0.6224)
1 - P(Z < 0.6224) = 1 - 0.73316 = 0.26684
1289 +(-1236) + (2434) =
0 -1431
O 2345
O 2487
0 -1956
Answer:
This answer is 2487
which will be the third one
Hope this help
A survey of 77 teenagers finds that 30 have 5 or more servings of soft drinks a week. a. Give a 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week. b. In the general population, 30% have 5 or more servings of soft drinks a week. Is there evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population
Answer:
a) The 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week is (0.2982, 0.481).
b) 30% = 0.3 is part of the confidence interval, which means that there is no evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population.
Step-by-step explanation:
Question a:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
A survey of 77 teenagers finds that 30 have 5 or more servings of soft drinks a week.
This means that [tex]n = 77, \pi = \frac{30}{77} = 0.3896[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.3896 - 1.645\sqrt{\frac{0.3896*0.6104}{77}} = 0.2982[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.3896 + 1.645\sqrt{\frac{0.3896*0.6104}{77}} = 0.481[/tex]
The 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week is (0.2982, 0.481).
Question b:
30% = 0.3 is part of the confidence interval, which means that there is no evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population.
Which equation is true?
f of negative 10 = 1
f of 2 = negative 10
f of 0 = 6
f of 1 = negative 10
Answer:
f(0) = 6
Step-by-step explanation:
Complete question:
The function f (x) is given by the set of ordered pairs 1,0 (-10,2), (0,6) (3,17) (-2,-1) which equation is true
f(-10)=1
f(2)=-10
f(0)=6
f(1)=-10
Given the coordinate (x, y). This shows that the input function is x and the output function is y, i.e. f(x) = y
From the pair of coordinates given, hence;
f(1) = 0
f(-10) = 2
f(0) = 6
f(3) = 17
f(-2) = -1
From the following options, this shows that f(0) = 6 is correct
Answer:
f(0) = 6
Step-by-step explanation:
EDGE
What type of object is pictured below?
O A. Point
O B. Ray
C. Segment
D. Line
Answer:
It is a ray because there are two points with a line passing through them which is extenging on one side but not on the other.
Construct the confidence interval for the population standard deviation for the given values. Round your answers to one decimal place. n=21 , s=3.3, and c=0.9
Answer:
The correct answer is "[tex]2.633< \sigma < 4.480[/tex]".
Step-by-step explanation:
Given:
n = 21
s = 3.3
c = 0.9
now,
[tex]df = n-1[/tex]
[tex]=20[/tex]
⇒ [tex]x^2_{\frac{\alpha}{2}, n-1 }[/tex] = [tex]x^2_{\frac{0.9}{2}, 21-1 }[/tex]
= [tex]31.410[/tex]
⇒ [tex]x^2_{1-\frac{\alpha}{2}, n-1 }[/tex] = [tex]10.851[/tex]
hence,
The 90% Confidence interval will be:
= [tex]\sqrt{\frac{(n-1)s^2}{x^2_{\frac{\alpha}{2}, n-1 }} } < \sigma < \sqrt{\frac{(n-1)s^2}{x^2_{1-\frac{\alpha}{2}, n-1 }}[/tex]
= [tex]\sqrt{\frac{(21-1)3.3^2}{31.410} } < \sigma < \sqrt{\frac{(21.1)3.3^2}{10.851} }[/tex]
= [tex]\sqrt{\frac{20\times 3.3^2}{31.410} } < \sigma < \sqrt{\frac{20\times 3.3^2}{10.851} }[/tex]
= [tex]2.633< \sigma < 4.480[/tex]
The temperature at 5 a.m. was −7.4°C. By 9 a.m., the temperature was −4.7°C. How much warmer was the temperature at 9 a.m.?
Answer:
2.7°C.
Step-by-step explanation:
If it was -7.4°C. at 5 am, then -4.7°C. at 9am, then the temperature rose by 2.7°C.
Proof:
-7.4
-4.7
--------
2.7
Given C(4, 3) and D(-4, -3) are two points on a circle, centered at the origin. Given
that CD is a diameter of the circle,
a) Find the radius of the circle.
b) State the equation of the circle
Answer:000
Step-by-step explanation:000
Simplify to the extent possible:
(logx16)(log2 x)
Answer:
Step-by-step explanation:
Use the change-of-base rule.
To make concrete, the ratio of cement to sand is 1 : 3. If cement and sand are sold in bags of equal mass, how many bags of cement are required to make concrete using 15 bags of sand?
Answer:
5 bags of cement are required.
Step-by-step explanation:
Since to make concrete, the ratio of cement to sand is 1: 3, if cement and sand are sold in bags of equal mass, to determine how many bags of cement are required to make concrete using 15 bags of sand the following calculation must be done:
Cement = 1
Sand = 3
3 = 15
1 = X
15/3 = X
5 = X
Therefore, 5 bags of cement are required.
Help Please ASAP!!! Not sure how to solve this problem. Can someone help me please? Thank you for your help!
Answer:
This question is formatted incorrectly
Step-by-step explanation:
The firm has bonds with par value of 10,000,000 VND, coupon rate of 11%, annual interest payment, and the remaining maturity period is 07 years. If the bond's interest rate and current risk level have a return rate of 12%, what price should company C sell the bond in the present?
a.
10,000,000
b.
14,152,000
c.
12,053,000
d.
11,150,000