Answer:
S = 1/2 g t^2 where t is the time to fall 1.2 m
t = (2 S / g)^1/2 = (2 * 1.2 / 9.8) = .495 s
Sy = Vy T = 3 m/sec * .495 sec = 1.48 m distance from edge of table
(Rotational speed has no effect since table is smooth)
A car starts from rest .If its acceleration is 1.5m/s^2 in 1.5 seconds. then calculate the distance traveled by it.
Answer:1.6875 m
Explanation:
Formula= 1/2 x at^2
When cars travel around a banked (curved) road at the optimum angle,the normal reaction force (n) can provide the necessary centripetal force without the need for a friction force. (a)Describe whar would happen to Optimum banking angle when radius doubles? (b)Describe what would happen to optimum angle when speed doubles? (c)A car negotiate a turn of radius 80cm.What is the optimum banking angle for this curve if the speed is to be equal to 12m/s?
Answer:
(a) The optimum banking Decreases
(b) The optimum banking Increases
(c) The optimum banking is approximately 86.88°
Explanation:
(a) The equation of motion on a banked road is given as follows;
[tex]v = \sqrt{R \cdot g \times \left(\dfrac{tan (\theta) + \mu}{1 - \mu \cdot tan (\theta) }\right) }[/tex]
For no friction, we have;
v = √(R·g·tan(θ))
Where;
R₁ = The radius of the road
g = The acceleration due to gravity ≈ 9.81 m/s² = Constant
θ₁ = The bank angle
μ = The coefficient pf friction = Constant
v = The vehicle's speed
If the radius doubles, for no friction, we have;
v² = R·g·(tan(θ))
tan(θ) = v²/(R·g)
Therefore, when the radius doubles, tan(θ) becomes smaller and therefore, the optimum banking angle θ decreases (becomes smaller)
(b) When the speed doubles, we have;
v₁ = 2·v
∴ tan(θ₁) = (v₁)²/(R·g) = 4·(v)²/(R·g) = 4·tan(θ)
When the speed doubles, tan(θ) increases and therefore, the optimum banking angle θ increases increases
(c) The radius negotiated by the car, R = 80 cm = 0.8 m
The speed of the car, v = 12 m/s
From tan(θ) = v²/(R·g), we have;
tan(θ) = 12²/(0.8 × 9.81) ≈ 18.349
θ ≈ arctan(18.349°) ≈ 86.88°
When the spacecraft is at the halfway point, how does the strength of the gravitional force on the spaceprobe by Earth compre with the strength
Solution :
When the spacecraft is at halfway point, the distance from the Earth as well as Mars are same. We have to account the masses of the planets. The gravitational force that is exerted by the Earth is greater because of its combined mass with the space probe.
The mass of Earth is greater than the mass of Mars. Therefore, the force of Earth is more than Mars.
a ball is launched upward at an angle from the ground. which way does its acceleration point at the top?
For a ball that is launched upward at an angle from the ground, the direction of its acceleration at the top of the projectile curve is downwards.
Acceleration of the ball at the topAs the ball is projected upward its acceleration points upwards until the ball reaches the maximum height or top of the projectile path.
At the top of the projectile path, its acceleration start pointing downwards.
Thus, for a ball that is launched upward at an angle from the ground, the direction of its acceleration at the top of the projectile curve is downwards.
Learn more about downward acceleration here: https://brainly.com/question/22048837
#SPJ1
Answer:
vertical
Explanation:
a current of 6.0A runs through a circuit for 2.5 minutes how much change was delivered to this circuit
Answer:
900C
Explanation:
Change 2.5 mins to secs by multiplying by 60 which is 150secs
hope this helps please like and mark as brainliest
A 5.0 kg box moving at 2.0 m/s on a horizontal, frictionless surface runs into a light horizontal spring of force constant 85 N/cm. Use the work-energy theorem to find the maximum compression of the spring.
Answer:
x = 4.85 cm
Explanation:
From work energy theorem when dealing with a spring in compression, we know that total work done is;
W_t = ½kx²
Where;
k is Force constant
x is max compression
Now, we know that this is also equal to the kinetic energy.
K.E = ½mv²
Thus;
½kx² = ½mv²
Making x the subject;
x = √(mv²/k)
We are given;
m = 5 kg
v = 2 m/s
k = 85 N/cm = 8500 N/m
Thus;
x = √(mv²/k)
x = √(5 × 2²/8500)
x = 0.0485 m
x = 4.85 cm
How much heat is required to evaporate 0.15 kg of lead at 1750°C, the boiling point for lead? The heat of vaporization for lead is Lv = 871 × 103 J/kg.
Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
The heat required to evaporate 0.15 kg of lead at 1750°C will be 130,650 J.
What is heat?The movement of energy from a hot to a cold item is characterized as heat. Heat energy flows from a hot material to a cold one.
This occurs because faster-vibrating molecules transmit their energy to slower-vibrating ones.
The given data in the problem is;
m is the mass of lead = 0.15 kg
T is the temperature = 1750°C,
The latent heat of vaporization for lead is, [tex]\rm L_V[/tex] = 871 × 10³ J/kg.
The heat is found as;
[tex]\rm Q= m \times L_V \\\\ \rm Q= 0.15 \times 871 \times 10^3 \\\\ Q=130,650 \ J[/tex]
Hence the heat required to evaporate 0.15 kg of lead at 1750°C will be 130,650 J.
To learn more about the heat refer to the link;
brainly.com/question/1429452
(a) What is the escape speed on a spherical asteroid whose radius is 301 km and whose gravitational acceleration at the surface is 0.412 m/s2
Answer:
[tex]V.E=498.02m/s^2[/tex]
Explanation:
From the question we are told that:
Radius [tex]r=301Km[/tex]
Gravitational acceleration [tex]g=0.412 m/s^2[/tex]
Generally the equation for Escape velocity is mathematically given by
[tex]V.E^2=2gr[/tex]
[tex]V.E^2=2*0.412m/s^2*301000[/tex]
[tex]V.E^2=248024[/tex]
[tex]V.E=\sqrt{248024}[/tex]
[tex]V.E=498.02m/s^2[/tex]
what is the relationship between Hectare and cubic meter
Which of the following statements describes how tectonic plates move?
A. They move from the crust to the core.
B. They move from the mantle to the inner core.
C. They move from the inner core to the outer core.
D. They move slowly on top of the mantle.
Answer:
D
Explanation:
The tectonic plates move on the mantle, sort of floating on it as they are part of the crust. When they collide things like mountain ranges form, and big earthquakes happen.
why does a desert cooler cool better than a hot dry day
On a hot dry day, the amount of water vapour present in atmosphere is less. Thus, water present inside the desert cooler evaporates more, thereby cooling the surroundings more. Hence, a desert cooler cools better on a hot dry day.
A steer must eat at least 100 pounds of grain to gain less than 10 pounds of muscle tissue. This illustrates Group of answer choices the second law of thermodynamics. that some energy is destroyed in every energy conversion. the first law of thermodynamics. that energy transformations are typically 100% efficient.
Answer:
the second law of thermodynamics. that some energy is destroyed in every energy conversion.
Explanation:
According to the second law of thermodynamics, energy conversion is never 100% efficient. Some energy is always lost as it is being converted from one form to the other.
The fact that a steer must eat at least 100 pounds of grain to gain less than 10 pounds of muscle tissue shows that not all the energy taken up from the grain is channelled towards building the muscle tissue. Some energy from the grains are lost on the way according to the second law of thermodynamics.
a ship using an echo sounding device receives an echo from the bottom 0.8 seconds after the sound is emitted. if the velocity of sound in water is 1500m as what is the depth of water?
Answer: depth= 1875m
Explanation: divide t by 2 because its echo it will go and come back thats why we divide it with 2
Then apply formula Depth(d)=velocity (v)/time (t)
Putting values we get ,
d=1500/0.4
d=1875m
Potential Energy (kJ)
Reaction Progress →
A) Does this graph represent an endothermic or exothermic reaction? Explain your answer. (2 points) HELP PLEASE ITS URGENT !!
Answer:
Endothermic reaction
Explanation:
(a) Endothermic reaction: These are reactions that absorb heat from the surrounding during a chemical reaction. The enthalpy change for endothermic reaction is always positive, and the energy level of the product is higher than that of the reactant
(b) Exothermic reaction: These are reactions that release heat to the surrounding during chemical reaction. The enthalpy change for exothermic reaction is always positive, and the energy level of the product is lower than that of the reactant.
From the diagram in the question,
Since the energy level of the product is higher than that of the reactant then the reaction is an endothermic reaction and as such, ΔH is positive
Un alambre de plástico, aislante y recto mide 10 cm de longitud y tiene una densidad de carga de +150 nC/m, distribuidos de manera uniforme por toda su longitud. Se encuentra sobre una mesa horizontal. A) Encuentre la magnitud y la dirección del campo eléctrico que produce este alambre en un punto que está 8 cm directamente arriba de su punto medio. B) Si el alambre ahora se dobla para formar un círculo que se coloca aplanado sobre la mesa, calcule la magnitud y la dirección del campo eléctrico que produce en un punto que se encuentra 6 cm directamente arriba de su centro.
Answer:
English only
Explanation:
When solving problems related to Electric Fields, care must be taken about symmetries. In our particular case when we take a look to at the drawings of the attached file, we realize:
1.-By symmetry each dx associated at a, has an opposite dx with point b as reference. The respective dE ( the charge is uniform ) is the same, as the charge of the wire is positive the force and the Field on a test charge (+) located at h will be upward, therefore the components dEx will cancel each other and the Electric Field becomes E = Ey = ∫ 2×dE× cosθ
The solutions:
A) Ey = 4623 N/C
B) Ey = 19.34 N/C
E = Ey = ∫ 2×dE× cosθ
Here cosθ = h/ d ⇒ cosθ = h/√h² + x² dE = K× dQ / d²
d² = h² + x²
k = 8.9 ×10⁹ Nm²C⁻² ; dQ = λ×dx λ = 150×10⁻⁹ C h = 0.08 m
Then by substitution
Ey = 2 ∫[K× λ×dx/ (h² + x²) ] × h / √h² + x²
reordering that equation:
Ey = 2×K×λ×h ∫ dx / [√ ( h² + x² ) ]³ (2)
To solve the integral we make use of a change of variables
x = h × tanα then x² = h² ×tan²α and dx = h× sec²α dα
plugging that values in equation (2)
Ey = 2×K×λ×h ∫ h× sec²α× dα / [√ ( h² + h²tan²α)]³
Ey = 2×K×λ×h² ∫ sec²α× dα / [ h × √ (1 + tan²α)]³ 1 + tan²α = sec²α
Ey = 2×K×λ×h²× ∫ (sec²α / h³× sec³α )×dα
Ey = 2×K×λ/h × ∫ ( 1 / secα dα
Ey = 2×K×λ/h × sinα now we αneed to come back to our original variables:
as x = h × tanα tanα = x/h then x is the opposite leg in a right triangle and h the adjacent one then the hypothenuse is √ (h² + x²) then sin α = x/ √ (h² + x²)
Ey = 2×K×λ/h × x/ √ (h² + x²) |₀⁰°⁰⁵
Ey = 2×8.9×10⁹× 150×10⁻⁹× 5×10⁻²/8× 10⁻²× √ 10⁻² ( 8 + 5 ) N/C
Ey = 4623 N/C
To answer the second question again we will make use of symmetries if you look at drawing ( Figure 2 ) you see that again the components in direction of x-axis cancel each other and the components in y-axis direction will add. Then
Ey = ∫ dE× cosθ
following the same procedure we will find:
Ey = ∫ [K×λ × dl/d²] × h/ d
The importan point here is that the radius of the circle is
2×π×r = 0.01 ( the length of the wire) ⇒ r = 0.16×10⁻² m
And we need to take into account that the integration is over the circle and the length of the circle is 0.01 m or ××2×π×r. All other factors are constant. Then by substitution
Ey = [K×λ ×h× / ( √ r² + h²)³ ] × 10⁻² N/C
Ey = 8.9 × 10⁹ × 150× 10⁻⁹ × 6× 10⁻² × 10⁻² / √ 10⁻² ( 0.16 + 6)
Ey = 0.8 × 10² / 6
Ey = 19.34 N/C
One type of atomic particle that is found in the nucleus does not contribute to
an element's atomic number. What are two characteristics of this type of
atomic particle?
Answer:
1) They are electrically neutral
2) They have slightly more weight than protons
Explanation:
The given atomic particle found in the nucleus has the following characteristics;
The location of the particle = The nucleus
The (numbers of the) particle does not contribute to (change) the atomic number of the element
The particles found within the nucleus of an atom are; Neutrons and protons
The particle within the nucleus that determines the atomic number = The number of protons
Therefore, the particle referenced in the question is the neutrons
The two characteristics of the neutron are;
1) The neutrons are neutral, electrically
2) Neutrons have slightly more weight than protons
3) Neutrons are magnetic
4) Neutrons are very small
5) Neutrons consist of three quarks; One 'Up', and two 'Down' quarks
Therefore, two characteristics of the particle are;
1) They are electrically neutral and 2) They are slightly heavier than protons.
No me sale este problema :c, plano inclinado
Answer:
i didn't understand,
Explanation:
sorry
The most successful types of plants on Earth are
Answer:
The angiosperms dominate Earth's surface and vegetation in more environments, particularly terrestrial habitats, than any other group of plants. As a result, angiosperms are the most important ultimate source of food for birds and mammals, including humans.
Explanation:
plz mark brainlest
In both the camera and the __________, light enters a narrow opening and is projected onto a photosensitive surface. Group of answer choices
Answer: The HUMAN EYE
Explanation:
The human eye is made up of different parts which ranges from controlling the amount of light that enters the eye to the focusing of the image that is formed. The camera is a device which is both mechanically and electronically operated which shares a number of similarities with the eye.
In the human eye, the IRIS helps to regulate the amount of rays passing through the pupil to the lens by either contracting or dilating in light or dark environment respectively. While in the camera, the DIAPHRAGM controls the amount of light entering the camera.
The PUPIL serves as the passage for light into the eye while in the camera, the APERTURE does the same.
The photosensitive surface in the eye is the YELLOW SPOT while in the camera, the photosensitive surface is the PHOTOGRAPHIC FILM.
Two drums of the same size and same height are taken.
i)what will be the difference in liquid pressure on their bases if A of them is completely filled and B is half filled and kept at the same place.
ii) what will be the difference in liquid pressure on their bases if both A and B are filled with water completely but one of them is kept at nepal and another in india?why?
iii) what will be the difference in liquid pressure on their bases if A is filled with water and B is filled with salty water and kept at delhi in the same position?why?
Answer:
i) The pressure acting on the base of B will be half the pressure acting on the base of A
ii) The pressure acting on the base of B will be the same as the pressure acting on the base of A
iii) The pressure on the base of drum A will be slightly less than the pressure on the base of drum B
Explanation:
The pressure acting on the base of the drum, P = h·ρ·g
Where;
h = The level of the liquid in the drum
[tex]h_{max}[/tex] = The height of the drums
ρ = The density of the liquid in the drum
g = The acceleration due to gravity ≈ 9.81 m/s²
i) If A is completely filled, we have [tex]h_A[/tex] = [tex]h_{max}[/tex]
Therefore, [tex]P_A[/tex] = [tex]h_{max}[/tex]×[tex]\rho_{liquid}[/tex]×g
If B is half filled, we have, [tex]h_B[/tex] = (1/2)·[tex]h_{max}[/tex]
[tex]P_B[/tex] = (1/2) × [tex]h_{max}[/tex]×[tex]\rho_{liquid}[/tex]×g
Therefore, [tex]P_B[/tex] = (1/2) × [tex]P_A[/tex]
The pressure acting on the base of B will be half the pressure acting on the base of A
ii) If both A and B are each filled with water (the same liquid), then the pressure on their bases will be [tex]P_A[/tex] = [tex]h_{max}[/tex]×[tex]\rho_{water}[/tex]×g = [tex]P_B[/tex], the same, given that the acceleration due to gravity, g, is constant and the same in Nepal and India
iii) If A is filled with water, and B is filled with salty water, we have that, the density of salty water is slightly higher than water, therefore, we get;
[tex]P_A[/tex] = [tex]h_{max}[/tex]×[tex]\rho_{water}[/tex]×g < [tex]P_B[/tex] =
The pressure on the base of drum A will be less than the pressure on the base of drum B.
If the particles that make up an object begin to move quickly, their average kinetic energy _____ and the object's temperature _____. Group of answer choices
Explanation:
If the particles that make up an object begin to move quickly, their average kinetic energy increases the object's temperature rises. Group of answer choices
An airplane with a ground speed of 550 km/hr travels along a heading of 30 degrees n of w at that high altitude there is a powerful 210 km/hr wind
Answer:
Determine the direction that the pilot is aiming the plane.
Explanation:
En la figura, la tensión desarrollada en cada
cuerda está dada por los dinamómetros:
T1=8 N y T2=6 N, y el ángulo de inclinación
de la primera cuerda es de 45°. Determine la
masa de la caja que debe sostener y el
ángulo con respecto a la horizontal.
Answer:
Parte A
El ángulo con respecto al horizonte, de la segunda cuerda es de aproximadamente 19,47°
Parte B
La masa de la caja que se va a sostener es de aproximadamente 0,7808 kg.
Explanation:
Parte A
Los parámetros dados son;
La tensión en la cuerda, T₁ = 8 N
La tensión en la cuerda, T₂ = 6 N
El ángulo de inclinación de la primera cuerda con la horizontal, θ₁ = 45°
Sea θ₂ el ángulo de inclinación de la segunda cuerda, obtenemos;
T₁·cos (θ₁) = T₂·cos (θ₂)
∴ 8 N × cos (45°) = 6 N × cos (θ₂)
cos (θ₂) = 8 N × cos (45°) / (6 N) = (√2)/2 × (4/3) = (2·√2)/3
θ₂ = arcos ((2·√2) / 3) ≈ 19,47°
El ángulo con respecto al horizonte, de la segunda cuerda, θ₂ ≈ 19,47°
Parte B
El peso de la caja, W = T₁·sin (θ₁) + T₂·sin (θ₂)
∴ W = 8 N × sen (45 °) + 6 N × sen (19,47 °) ≈ 7,66 N
El peso de la caja que se va a sostener, W ≈ 7,66 N
La masa de la caja que se va a sostener, m ≈ 7,66 N / (9,81 m/s²) ≈ 0,7808 kg
What is the relationship between Avogadro's number and a mole?
A. There are 6.02 x 1023 items in a mole, which equals Avogadro's
number
B. A mole is a smaller amount than Avogadro's number.
C. Avogadro's number is used to count particles, and a mole is used
to measure mass.
D. A mole applies to any item, but Avogadro's number is limited to
atoms.
SUBM
Answer:
A. There are 6.02 x 1023 items in a mole, which equals Avogadro's
number
Explanation:
The mole of a substance is
1.8kg 42J 9.8 how high is the shelf
Answer:
2.38m
Explanation:
Use potential energy
PE= mgh
42= 1.8*9.8*h
solve for h
to get h= 2.38 m
three condensers are connected in series across a 150 volt supply, the voltages across them are 40,50 and 60 volts respectively, and the charge on each condenser is 6×10^-8 c.calculate (a) the capacitance of each condenser (b)the effective capacitance of the combination
Answer:
(a) 1.5 nF, 1.2 nF, 1 nF
(b) 0.4 nF
Explanation:
V = 150 V
V' = 40 V, V'' = 50 V, V''' = 60 V, q = 6 x 10^-8 C
(a) C' = q/V' = 6 x 10^-8 / 40 = 1.5 x 10^-9 F
C'' = q/V'' = 6 x 10^-8 / 50 = 1.2 x 10^-9 F
C''' = q/V''' = 6 x 10^-8 / 60 = 1 x 10^-9 F
(b) The effective capacitance is
[tex]\frac{1}{C}=\frac{1}{C'}+\frac{1}{C''}+\frac{1}{C'''}\\\\\frac{1}{C}=\frac{10^9}{1.5}+\frac{10^9}{1.2}+\frac{10^9}{1}\\\\C = 0.4\times 10^{-9} F[/tex]
Which of the following quantity is unit-less? 1 Specific gravity 2 Mass density 3 Acceleration due to gravity 4 All of the above
Answer:
1
Explanation:
Specific gravity is a ratio (of 2 densities) so it has no unit.
The work function for silver is 4.73 eV. (a) Convert the value of the work function from electron volts to joules.
Answer:
[tex]W=7.56\times 10^{-19}\ J[/tex]
Explanation:
Given that,
The work function for silver is 4.73 eV.
We need to find the value of the work function from electron volts to joules.
We know that,
[tex]1\ eV=1.6\times 10^{-19}\ J[/tex]
For 4.73 eV,
[tex]4.73\ eV=1.6\times 10^{-19}\times 4.73\\\\=7.56\times 10^{-19}\ J[/tex]
So, the work function for silver is [tex]7.56\times 10^{-19}\ J[/tex].
A particle is moving on a circular path of radius R. What will be its displacement and distance covered after 3 ½ round?
(please help fast)
Answer:
2r or diameter
Explanation:
After 3 1/2 rounds it will end up on the other side of the circle and displacement will be 2 x the radius = d
Distance = 7 π R
Displacement = 2 R from the starting point directed through the center of the circle
From class, weight is a measurement of the force of
acting on an object.
Friction
Normal
Gravity
Tension
Applied
Answer:
the answer is well known as gravity