Answer:
There is no solution to this.
Explanation :
We have a double system of equation to solve. Let x be the big number and let y be the smaller number, such that y < x.
x is equal to twice a smaller number plus 3, which translates into : x = 2y + 3
and x is equal to twice the sum of the smaller number and 1 : x = 2 * (y + 1)
We get this system to solve : [tex]\left \{{{x=2y+3} \atop {x=2(y+1)}} \right. \left \{{{x-2y=3} \atop {x-2y=2}} \right.[/tex]
It's either x minus 2y equals 3, or x minus 2y = 2 but it can't be both. No solutions exist because the situation describes two lines that have the same slope and different y-intercepts
Consider the following results for two independent random samples taken from two populations.
Sample 1 Sample 2
n1=50 n2=35
x¯1=13.6 x¯2=11.6
σ1=2.2 σ2=3.0
Required:
a. What is the point estimate of the difference between the two population means?
b. Provide a 90% confidence interval for the difference between the two population means.
c. Provide a 95% confidence interval for the difference between the two population means.
Answer:
a. 2
b. The 90% confidence interval for the difference between the two population means is (1.02, 2.98).
c. The 95% confidence interval for the difference between the two population means is (0.83, 3.17).
Step-by-step explanation:
Before solving this question, we need to understand the central limit theorem and the subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Sample 1:
[tex]\mu_1 = 13.6, s_1 = \frac{2.2}{\sqrt{50}} = 0.3111[/tex]
Sample 2:
[tex]\mu_2 = 11.6, s_2 = \frac{3}{\sqrt{35}} = 0.5071[/tex]
Distribution of the difference:
[tex]\mu = \mu_1 - \mu_2 = 13.6 - 11.6 = 2[/tex]
[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.3111^2+0.5071^2} = 0.595[/tex]
a. What is the point estimate of the difference between the two population means?
Sample difference, so [tex]\mu = 2[/tex]
b. Provide a 90% confidence interval for the difference between the two population means.
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.9}{2} = 0.05[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.05 = 0.95[/tex], so Z = 1.645.
The margin of error is:
[tex]M = zs = 1.645(0.595) = 0.98[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 2 - 0.98 = 1.02
The upper end of the interval is the sample mean added to M. So it is 2 + 0.98 = 2.98
The 90% confidence interval for the difference between the two population means is (1.02, 2.98).
c. Provide a 95% confidence interval for the difference between the two population means.
Following the same logic as b., we have that [tex]Z = 1.96[/tex]. So
[tex]M = zs = 1.96(0.595) = 1.17[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 2 - 1.17 = 0.83
The upper end of the interval is the sample mean added to M. So it is 2 + 1.17 = 3.17
The 95% confidence interval for the difference between the two population means is (0.83, 3.17).
What is the chance of getting 3 of the same cards in a row in a 52 cards deck?
Answer:
1/425
Step-by-step explanation:
The first card can be any card, so we don’t have to evaluate the probability.
Now we can suppose that the exit card is a two
- For the second card we have 3/51 of possibilities that is a 2 = 1/17
- For the third card we have 2/50 of possibilities that is a 2 = 1/25
1/17 * 1/25 = 1/425
(4-1) + (6 + 5) = help plz
Prove the following identities : i) tan a + cot a = cosec a sec a
Step-by-step explanation:
[tex]\tan \alpha + \cot\alpha = \dfrac{\sin \alpha}{\cos \alpha} +\dfrac{\cos \alpha}{\sin \alpha}[/tex]
[tex]=\dfrac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha\cos\alpha}=\dfrac{1}{\sin\alpha\cos\alpha}[/tex]
[tex]=\left(\dfrac{1}{\sin\alpha}\right)\!\left(\dfrac{1}{\cos\alpha}\right)=\csc \alpha \sec\alpha[/tex]
Question :
tan alpha + cot Alpha = cosec alpha. sec alphaRequired solution :
Here we would be considering L.H.S. and solving.
Identities as we know that,
[tex] \red{\boxed{\sf{tan \: \alpha \: = \: \dfrac{sin \: \alpha }{cos \: \alpha} }}}[/tex][tex] \red{\boxed{\sf{cot \: \alpha \: = \: \dfrac{cos \: \alpha }{sin \: \alpha} }}}[/tex]By using the identities we gets,
[tex] : \: \implies \: \sf{ \dfrac{sin \: \alpha }{cos \: \alpha} \: + \: \dfrac{cos \: \alpha }{sin \: \alpha} }[/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin \: \alpha \times sin \: \alpha }{cos \: \alpha \times sin \: \alpha} \: + \: \dfrac{cos \: \alpha \times cos \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]
[tex] : \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \times sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \: sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \: cos \: \alpha } } [/tex]
[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha \: + \: cos {}^{2} \alpha}{cos \: \alpha \: sin \alpha} } [/tex]
Now, here we would be using the identity of square relations.
[tex]\red{\boxed{ \sf{sin {}^{2} \alpha \: + \: cos {}^{2} \alpha \: = \: 1}}}[/tex]By using the identity we gets,
[tex] : \: \implies \: \sf{ \dfrac{1}{cos \: \alpha \: sin \alpha} }[/tex]
[tex]: \: \implies \: \sf{ \dfrac{1}{cos \: \alpha } \: + \: \dfrac{1}{sin\: \alpha} }[/tex]
[tex]: \: \implies \: \bf{sec \alpha \: cosec \: \alpha}[/tex]
Hence proved..!!Please help
4. The equation of a curve is y = (3 - 2x)^3 + 24x.
(a) Find an expression for dy/dx
5. The equation of a curve is y = 54x - (2x - 7)^3.
(a) Find dy/dx
(4) y = (3 - 2x)³ + 24x
Use the power and chain rules:
dy/dx = 3 (3 - 2x)² d/dx [3 - 2x] + 24
dy/dx = 3 (3 - 2x)² (-2) + 24
dy/dx = -24x ² + 72x - 30
(5) y = 54x - (2x - 7)³
Same basic procedure:
dy/dx = 54 - 3 (2x - 7)² d/dx [2x - 7]
dy/dx = 54 - 3 (2x - 7)² (2)
dy/dx = -24x ² + 168x - 240
PLEASE HELPPPPP ASAPPPPPPPPPPPPP PLEASEEEE
Answer:
0.5679
Step-by-step explanation:
From. The table Given above :
The probability of female Given an advanced degree ;
P(F|A) = p(FnA) / p(A)
From the table, p(FnA) = 322
P(Advanced degree), P(A) = (245 + 322) = 567
Hence,
P(F|A) = p(FnA) / p(A) = 322 / 567 = 0.5679
To test the effectiveness of a business school preparation course, 8 students took a general business test before and after the course. The results are given below. Exam Score Exam Score Student Before Course (1) After Course (2) 1 530 670 2 690 770 3 910 1,000 4 700 710 5 450 550 6 820 870 7 820 770 8 630 610 If they hope that the prep course is effective in improving the exam scores, what is the alternative hypothesis?
Solution :
Group Before After
Mean 693.75 743.75
Sd 155.37 143.92
SEM 54.93 50.88
n 8 8
Null hypothesis : The preparation course not effective.
[tex]$H_0: \mu_d = 0$[/tex]
Alternative hypothesis : The preparation course is effective in improving the exam scores.
[tex]$H_a : \mu_d>0$[/tex] (after - before)
Pleaseee Help. What is the value of x in this simplified expression?
(-1) =
(-j)*
1
X
What is the value of y in this simplified expression?
1 1
ky
y =
-10
K+m
+
.10
m т
9514 1404 393
Answer:
x = 7
y = 5
Step-by-step explanation:
The applicable rule of exponents is ...
a^-b = 1/a^b
__
For a=-j and b=7,
(-j)^-7 = 1/(-j)^7 ⇒ x = 7
For a=k and b=-5,
k^-5 = 1/k^5 ⇒ y = 5
I really need help big time thank you
Solve the following system of equations
x^2+2y^2=59
2x^2+y^2=43
(x ,y), (x, y) (x, y) (x, y)
Answer:
(-3,5),(-3,-5),(3,5),(3,-5)
Step-by-step explanation:
i changed my answer :)
An isosceles right triangle has a hypotenuse that measures 4√2 cm. What is the area of the triangle?
PLEASE HELP
Answer:
8
Step-by-step explanation:
As it's an isosceles right triangle, it's sides are equal, say x. x^2+x^2=(4*sqrt(2))^2. x=4, Area is (4*4)/2=8
PLEASE HELP AND BE RIGHT BEFORE ANSWERING
9514 1404 393
Answer:
see attached
Step-by-step explanation:
Since point P is the center of dilation, it doesn't move. (It is "invariant.") The other points on the figure move to 1/4 of their original distance from P. On this diagram, it is convenient that the distances are all multiples of 4 units, so dividing by 4 is made easy.
HELP!!!!!!!!!!! SOMEONE PLEASE HELP!!!
For the graph below, which of the following is a possible function for h?
A) h(x) = 4-x
B) h(x) = 2x
C) h(x) = 5x
D) h(x) = 3x
9514 1404 393
Answer:
C) h(x) = 5^x
Step-by-step explanation:
h(x) is shown on the graph as having the highest rate of growth. That means, relative to the other functions, the base of the exponential is larger. Of the choices offered, the one with the largest growth factor is ...
h(x) = 5^x
_____
The general form of an exponential function is ...
f(x) = (initial value) · (growth factor)^x
X+34>55
Solve the inequality and enter your solution as an inequality comparing the variable to a number
Answer:
x > 21
General Formulas and Concepts:
Pre-Algebra
Equality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityStep-by-step explanation:
Step 1: Define
Identify
x + 34 > 55
Step 2: Solve for x
[Subtraction Property of Equality] Subtract 34 on both sides: x > 21A recipe calls for 2 1/2 tablespoons of oil and 3/4 tablespoons of vinegar. What is the ratio of oil to vinegar in this recipe?
Answer:
10:3
Step-by-step explanation:
Make 2 1/2 an improper fraction, you will get 5/2. You dont have to do anything to the 3/4.
For you to find the ratio of an fraction, you have to take the numerator but the denominator has to be the same.
So make 5/2 to a 10/4.
Take the numerator 10 & 3.
Your answer will be 10:3
No problem.
Which of the following exponential equations is equivalent to the logarithmic
equation below?
log 970 = x
A.x^10-970
B. 10^x- 970
C. 970^x- 10
D. 970^10- X
Given:
The logarithmic equation is:
[tex]\log 970=x[/tex]
To find:
The exponential equations that is equivalent to the given logarithmic equation.
Solution:
Property of logarithm:
If [tex]\log_b a=x[/tex], then [tex]a=b^x[/tex]
We know that the base log is always 10 if it is not mentioned.
If [tex]\log a=x[/tex], then [tex]a=10^x[/tex]
We have,
[tex]\log 970=x[/tex]
Here, base is 10 and the value of a is 970. By using the properties of exponents, we get
[tex]970=10^x[/tex]
Interchange the sides, we get
[tex]10^x=970[/tex]
Therefore, the correct option is B, i.e., [tex]10^x=970[/tex].
Note: It should be "=" instead of "-" in option B.
!!!!Please Answer Please!!!!
ASAP!!!!!!
!!!!!!!!!!!!!
Answer:
False
Step-by-step explanation:
well i think that the answer from my calculations
I need help with this
Answer:
below
Step-by-step explanation:
A AND C is the right option
congruent angles are angles with exactly the same measure
Factor the trinomial x^2-8x-65
Step-by-step explanation:
here's the answer to your question
What is the value of x in the triangle? 45, 45, x
Answer:
90
Step-by-step explanation:
it its a 45 45 90 triangle
Bob's truck averages 23 miles per gallon. If Bob is driving to his mother's house, 72 miles away, how many gallons of gas are needed? Round to the nearest tenth.
Answer:
3.1 gallons
Step-by-step explanation:
To solve this, we need to figure out how many gallons of gas go into 72 miles. We know 23 miles is equal to one gallon of gas, and given that the ratio of miles to gas stays the same, we can say that
miles of gas / gallons = miles of gas / gallons
23 miles / 1 gallon = 72 miles / gallons needed to go to Bob's mother's house
If we write the gallons needed to go to Bob's mother's house as g, we can say
23 miles / 1 gallon = 72 miles/g
multiply both sides by 1 gallon to remove a denominator
23 miles = 72 miles * 1 gallon /g
multiply both sides by g to remove the other denominator
23 miles * g = 72 miles * 1 gallon
divide both sides by 23 miles to isolate the g
g = 72 miles * 1 gallon/23 miles
= 72 / 23 gallons
≈ 3.1 gallons
What is the complete factorization of the polynomial below?
x3 + 8x2 + 17x + 10
A. (x + 1)(x + 2)(x + 5)
B. (x + 1)(x-2)(x-5)
C. (x-1)(x+2)(x-5)
O D. (x-1)(x-2)(x + 5)
Answer: A (x+1)(x+2)(x+5)
Step-by-step explanation:
Simplificar expresiones algebraicas
Create a sample of 10 numbers that has a mean of 8.6.
Answer:
10 + 8 + 10 + 10 + 10 + 10 + 8 + 8 + 6 + 6
Which of the following is the differnce of two squares
A cylindrical piece of iron pipe is shown below. The wall of the pipe is 1.25 inches thick: The figure shows a cylinder of height 14 inches and diameter 8 inches What is the approximate inside volume of the pipe?
332 cubic inches
69 cubic inches
703 cubic inches
99 cubic inches
Answer: 332 cubic inches
Step-by-step explanation:
You can eliminate 69 and 99 as those answers don't make any sense. This leaves you with 703 and 332.
It says the wall of the pipe is 1.25 inches thick so you multiply that by 2 and subtract it by the diameter to get the insider diameter of 5.5
Now you just use the equation V = (3.14)(r^2)(14) where the radius is half of 5.5.
So to finalize the equation you get V = (3.14)(5.5)^2(14) which comes out to 332 cubic inches
The best choice is 332 cubic inches.
69 cubic inches and 99 cubic inches are less and 703 cubic inches is a large approximation.
Diameter = d= 8 inches
Height= Length = l= 14 inches
Thickness= 1.25 inches
Outer Radius= R= diameter/2= 8/2=4 inches
Inner radius = r= Radius - thickness
= 4- 1.25= 2.75 inches
Volume of the cylinder = Area × length
= π r²× l
= 22/7 × (2.75)² × 14
= 332. 616 inches cube
So the best answer is 332 cubic inches
https://brainly.com/question/21067083
help please! i'm in class and i have 10 mins left. :)
Answer:
3:8
Step-by-step explanation:
i will gadit
that only
A line passes through point (5, –3) and is perpendicular to the equation y = x. What's the equation of the line? Question 26 options: a) y = x b) y = –x – 7 c) y = x + 3 d)y = –x + 2
Answer:
sorry my bad bro I have no clue
Graph the inequality.
7 <= y - 2x < 12
Answer:
X(-12,-7)
Step-by-step explanation:
This is the answer to your problem. I hope it helps. I don't know how to explain it sorry.
An inlet pipe can fill an empty swimming pool in 5hours, and another inlet pipe can fill the pool in 4hours. How long will it take both pipes to fill the pool?
Answer:
It will take 2 hours, 13 minutes and 20 seconds for both pipes to fill the pool.
Step-by-step explanation:
Given that an inlet pipe can fill an empty swimming pool in 5hours, and another inlet pipe can fill the pool in 4hours, to determine how long it will take both pipes to fill the pool, the following calculation must be performed:
1/5 + 1/4 = X
0.20 + 0.25 = X
0.45 = X
9/20 = X
9 = 60
2 = X
120/9 = X
13,333 = X
Therefore, it will take 2 hours, 13 minutes and 20 seconds for both pipes to fill the pool.