Answer: (V1+V2)/2
Explanation: This is because basically with the question they are trying to say u(initial velocity) is V1 and v(final velocity) is V2 as the journey starts off with V1 and ends with V2 so therefore we know an equation where average velocity=(u+v)/2. So here it’s (V1+V2)/2
Which of the following regions of the electromagnetic spectrum have longer wavelengths than visible light? 1. infrared radiation 2. ultraviolet radiation 3. microwave radiation
Answer:infrared radiation
Explanation:
Infrared radiation and microwave radiation of the electromagnetic spectrum have longer wavelengths than visible light.
What is electromagnetic wave?EM waves are another name for electromagnetic waves. When an electric field interacts with a magnetic field, electromagnetic waves are created. These electromagnetic waves make up electromagnetic radiations. It is also possible to say that electromagnetic waves are made up of magnetic and electric fields that are oscillating. The basic equations of electrodynamics, Maxwell's equations, have an answer in electromagnetic waves.
If we arrange electromagnetic wave with decrease in wavelength, we get:
Radio waves > microwave > Infrared > Visible light > Ultraviolet > X-rays > Gamma radiation.
Hence, Infrared radiation and microwave radiation of the electromagnetic spectrum have longer wavelengths than visible light.
Learn more about electromagnetic wave here:
https://brainly.com/question/29774932
#SPJ5
Calculate the density of the following material.
1 kg helium with a volume of 5.587 m³
700 kg/m³
5.587 kg/m³
0.179 kg/m³
Answer:
[tex]density \: = \frac{mass}{volume} [/tex]
1 / 5.587 is equal to 0.179 kg/m³
Hope it helps:)
Answer:
The answer is
0.179 kg/m³Explanation:
Density of a substance is given by
[tex]Density \: = \frac{mass}{volume} [/tex]
From the
mass = 1 kg
volume = 5.583 m³
Substitute the values into the above formula
We have
[tex]Density \: = \frac{1 \: kg}{5.583 \: {m}^{3} } [/tex]
We have the final answer as
Density = 0.179 kg/m³Hope this helps you
You need to repair a broken fence in your yard. The hole in your fence is
around 3 meters in length and for whatever reason, the store you go to
has oddly specific width 20cm wood. Each plank of wood costs $16.20,
how much will it cost to repair your fence? (Hint: 1 meter = 100 cm) *
Answer:
cost = $ 243.00
Explanation:
This exercise must assume that it uses a complete table for each piece, we can use a direct ratio of proportions, if 1 table is 0.20 m wide, how many tables will be 3.00 m
#_tables = 3 m (1 / 0.20 m)
#_tables = 15 tables
Let's use another direct ratio, or rule of three, for cost. If a board costs $ 16.20, how much do 15 boards cost?
Cost = 15 (16.20 / 1)
cost = $ 243.00
In the direction perpendicular to the drift velocity, there is a magnetic force on the electrons that must be cancelled out by an electric force. What is the magnitude of the electric field that produces this force
Answer:
E = VdB
Explanation:
This is because canceling the electric and magnetic force means
q.vd. B= we
E= Vd. B
A 1.2-m length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x= 5.0m on x-axis.
a. 1.6 nt in the negative z direction
b. 1.6 nt in the positive z direction
c. 2.4 T in the positive z direction
d. 2.4 nt in the negative z direction
e. None of the above
Answer:
None of the above
Explanation:
The formula of the magnetic field of a point next to a wire with current is:
B = 2×10^(-7) × ( I /d)
I is the intensity of the current.
d is the distance between the wire and the point.
● B = 2*10^(-7) × (20/5) = 8 ×10^(-7) T
Two identical planets orbit a star in concentric circular orbits in the star's equatorial plane. Of the two, the planet that is farther from the star must have
Answer:
The planet that is farther from the star must have a time period greater.
Explanation:
We can determine the ratio of the period's planet with the radius of the circular orbit in the star's equatorial plane:
[tex] T = 2\pi*\sqrt{\frac{r^{3}}{GM}} [/tex] (1)
Where:
r: is the radius of the circular orbit of the planet and the star
T: is the period
G: is the gravitational constant
M: is the mass of the planet
From equation (1) we have:
[tex] T = 2\pi*\sqrt{\frac{r^{3}}{GM}} = k*r^{3/2} [/tex] (2)
Where k is a constant
From equation (2) we have that of the two planets, the planet that is farther from the star must have a time period greater.
I hope it helps you!
A circular loop in the plane of a paper lies in a 0.45 T magnetic field pointing into the paper. The loop's diameter changes from 17.0 cm to 6.0 cm in 0.53 s.
A) Determine the direction of the induced current.
B) Determine the magnitude of the average induced emf.
C) If the coil resistance is 2.5 Ω, what is the average induced current?
Answer:
(A). The direction of the induced current will be clockwise.
(B). The magnitude of the average induced emf 16.87 mV.
(C). The induced current is 6.75 mA.
Explanation:
Given that,
Magnetic field = 0.45 T
The loop's diameter changes from 17.0 cm to 6.0 cm .
Time = 0.53 sec
(A). We need to find the direction of the induced current.
Using Lenz law
If the direction of magnetic field shows into the paper then the direction of the induced current will be clockwise.
(B). We need to calculate the magnetic flux
Using formula of flux
[tex]\phi_{1}=BA\cos\theta[/tex]
Put the value into the formula
[tex]\phi_{1}=0.45\times(\pi\times(8.5\times10^{-2})^2)\cos0[/tex]
[tex]\phi_{1}=0.01021\ Wb[/tex]
We need to calculate the magnetic flux
Using formula of flux
[tex]\phi_{2}=BA\cos\theta[/tex]
Put the value into the formula
[tex]\phi_{2}=0.45\times(\pi\times(3\times10^{-2})^2)\cos0[/tex]
[tex]\phi_{2}=0.00127\ Wb[/tex]
We need to calculate the magnitude of the average induced emf
Using formula of emf
[tex]\epsilon=-N(\dfrac{\Delta \phi}{\Delta t})[/tex]
Put the value into t5he formula
[tex]\epsilon=-1\times(\dfrac{0.00127-0.01021}{0.53})[/tex]
[tex]\epsilon=0.016867\ V[/tex]
[tex]\epsilon=16.87\ mV[/tex]
(C). If the coil resistance is 2.5 Ω.
We need to calculate the induced current
Using formula of current
[tex]I=\dfrac{\epsilon}{R}[/tex]
Put the value into the formula
[tex]I=\dfrac{0.016867}{2.5}[/tex]
[tex]I=0.00675\ A[/tex]
[tex]I=6.75\ mA[/tex]
Hence, (A). The direction of the induced current will be clockwise.
(B). The magnitude of the average induced emf 16.87 mV.
(C). The induced current is 6.75 mA.
You simultaneously shine two light beams, each of intensity I0, on an ideal polarizer. One beam is unpolarized, and the other beam is polarized at an angle of exactly 30.0∘ to the polarizing axis of the polarizer. Find the intensity of the light that emerges from the polarizer. Express your answer in term of I0 .
Answer:
The emerging intensity is equal to 0.75[tex]I_{o}[/tex]
Explanation:
The initial intensity of the light = [tex]I_{o}[/tex]
The angle of polarization β = 30°
We know that the polarized light intensity is related to the initial light intensity by
[tex]I[/tex] = [tex]I_{0} cos^{2}\beta[/tex]
where [tex]I[/tex] is the emerging polarized light intensity
inserting values gives
[tex]I[/tex] = [tex]I_{0} cos^{2}[/tex] 30°
[tex]cos^{2}[/tex] 30° = [tex](cos 30)^{2}[/tex] = [tex](\frac{\sqrt{3} }{2} )^{2}[/tex] = 0.75
[tex]I[/tex] = 0.75[tex]I_{o}[/tex]
What is temperature?
O A. The force exerted on an area
B. A measure of mass per unit volume
O C. The net energy transferred between two objects
OD. A measure of the movement of atoms or molecules within an
object
Answer:
The net energy transferred between two objects
Explanation:
The physical property of matter that expresses hot or cold is called temperature. It demonstrates the thermal energy. A thermometer is used to measure temperature. It defines the rate to which the chemical reaction occurs. It tells about the thermal radiation emitted from an object.
The correct option that defines temperature is option C.
Answer:
A measure of the movement of atoms or molecules within an object
Explanation:
Process of elimination
If mirror M2 in a Michelson interferometer is moved through 0.233 mm, a shift of 792 bright fringes occurs. What is the wavelength of the light producing the fringe pattern?
Answer:
The wavelength is [tex]\lambda = 589 nm[/tex]
Explanation:
From the question we are told that
The distance of the mirror shift is [tex]k = 0.233 \ mm = 0.233*10^{-3} \ m[/tex]
The number of fringe shift is n = 792
Generally the wavelength producing this fringes is mathematically represented as
[tex]\lambda = \frac{ 2 * k }{ n }[/tex]
substituting values
[tex]\lambda = \frac{ 2 * 0.233*10^{-3} }{ 792 }[/tex]
[tex]\lambda = 5.885 *10^{-7} \ m[/tex]
[tex]\lambda = 589 nm[/tex]
Water is draining from an inverted conical tank with base radius 8 m. If the water level goes down at 0.03 m/min, how fast is the water draining when the depth of the water is 6 m
Answer:
0.03/π m/min
Explanation:
See attached file pls
Suppose a 1300 kg car is traveling around a circular curve in a road at a constant
9.0 m/sec. If the curve in the road has a radius of 25 m, then what is the
magnitude of the unbalanced force that steers the car out of its natural straight-
line path?
Answer:
F = 4212 N
Explanation:
Given that,
Mass of a car, m = 1300 kg
Speed of car on the road is 9 m/s
Radius of curve, r = 25 m
We need to find the magnitude of the unbalanced force that steers the car out of its natural straight- line path. The force is called centripetal force. It can be given by :
[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{1300\times 9^2}{25}\\\\F=4212\ N[/tex]
So, the force has a magnitude of 4212 N
"A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if"
Answer:
A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if
the dispersion is great
A circular loop of wire has radius of 9.50 cmcm. A sinusoidal electromagnetic plane wave traveling in air passes through the loop, with the direction of the magnetic field of the wave perpendicular to the plane of the loop. The intensity of the wave at the location of the loop is 0.0215 W/m2W/m2, and the wavelength of the wave is 6.90 mm.What is the maximum emf induced in the loop?
Express your answer with the appropriate units.
Answer:
The induced emf is [tex]\epsilon = 0.1041 \ V[/tex]
Explanation:
From the question we are told that
The radius of the circular loop is [tex]r = 9.50 \ cm = 0.095 \ m[/tex]
The intensity of the wave is [tex]I = 0.0215 \ W/m^2[/tex]
The wavelength is [tex]\lambda = 6.90\ m[/tex]
Generally the intensity is mathematically represented as
[tex]I = \frac{ c * B^2 }{ 2 * \mu_o }[/tex]
Here [tex]\mu_o[/tex] is the permeability of free space with value
[tex]\mu_o = 4 \pi *10^{-7} N/A^2[/tex]
B is the magnetic field which can be mathematically represented from the equation as
[tex]B = \sqrt{ \frac{ 2 * \mu_o * I }{ c} }[/tex]
substituting values
[tex]B = \sqrt{ \frac{ 2 * 4\pi *10^{-7} * 0.0215 }{ 3.0*10^{8}} }[/tex]
[tex]B = 1.342 *10^{-8} \ T[/tex]
The area is mathematically represented as
[tex]A = \pi r^2[/tex]
substituting values
[tex]A = 3.142 * (0.095)^2[/tex]
[tex]A = 0.0284[/tex]
The angular velocity is mathematically represented as
[tex]w = 2 * \pi * \frac{c}{\lambda }[/tex]
substituting values
[tex]w = 2 * 3.142 * \frac{3.0*10^{8}}{ 6.90 }[/tex]
[tex]w = 2.732 *10^{8} rad \ s^{-1}[/tex]
Generally the induced emf is mathematically represented as
[tex]\epsilon = N * B * A * w * sin (wt )[/tex]
At maximum induced emf [tex]sin (wt) = 1[/tex]
So
[tex]\epsilon = N * B * A * w[/tex]
substituting values
[tex]\epsilon = 1 * 1.342 *10^{-8} * 0.0284 *2.732 *10^{8}[/tex]
[tex]\epsilon = 0.1041 \ V[/tex]
Can anyone provide me the answer with explanation?
Answer:
the answer to your question us c honey
Answer:
C
Explanation:
This is so because different materials vary in resistance and conductance of current, heat. Metals are good conductors while none metals like rubber, plastic, glass etc are good insulators or resistors.
Please help!
Much appreciated!
Answer:
F = 2.7×10¯⁶ N.
Explanation:
From the question given:
F = (9×10⁹ Nm/C²) (3.2×10¯⁹ C × 9.6×10¯⁹ C) /(0.32)²
Thus we can obtain the value value of F by carrying the operation as follow:
F = (9×10⁹) (3.2×10¯⁹ × 9.6×10¯⁹) /(0.32)²
F = 2.7648×10¯⁷ / 0.1024
F = 2.7×10¯⁶ N.
Therefore, the value of F is 2.7×10¯⁶ N.
The roller coaster car reaches point A of the loop with speed of 20 m/s, which is increasing at the rate of 5 m/s2. Determine the magnitude of the acceleration at A if pA
Answer and Explanation:
Data provided as per the question is as follows
Speed at point A = 20 m/s
Acceleration at point C = [tex]5 m/s^2[/tex]
[tex]r_A = 25 m[/tex]
The calculation of the magnitude of the acceleration at A is shown below:-
Centripetal acceleration is
[tex]a_c = \frac{v^2}{r}[/tex]
now we will put the values into the above formula
= [tex]\frac{20^2}{25}[/tex]
After solving the above equation we will get
[tex]= 16 m/s^2[/tex]
Tangential acceleration is
[tex]= \sqrt{ac^2 + at^2} \\\\ = \sqrt{16^2 + 5^2}\\\\ = 16.703 m/s^2[/tex]
Expectant mothers many times see their unborn child for the first time during an ultrasonic examination. In ultrasonic imaging, the blood flow and heartbeat of the child can be measured using an echolocation technique similar to that used by bats. For the purposes of these questions, please use 1500 m/s as the speed of sound in tissue. I need help with part B and C
To clearly see an image, the wavelength used must be at most 1/4 of the size of the object that is to be imaged. What frequency is needed to image a fetus at 8 weeks of gestation that is 1.6 cm long?
A. 380 kHz
B. 3.8 kHz
C. 85 kHz
D. 3.8 MHz
Answer:
380 kHz
Explanation:
The speed of sound is taken as 1500 m/s
The length of the fetus is 1.6 cm long
The condition is that the wavelength used must be at most 1/4 of the size of the object that is to be imaged.
For this 1.6 cm baby, the wavelength must not exceed
λ = [tex]\frac{1}{4}[/tex] of 1.6 cm = [tex]\frac{1}{4}[/tex] x 1.6 cm = 0.4 cm =
0.4 cm = 0.004 m this is the wavelength of the required ultrasonic sound.
we know that
v = λf
where v is the speed of a wave
λ is the wavelength of the wave
f is the frequency of the wave
f = v/λ
substituting values, we have
f = 1500/0.004 = 375000 Hz
==> 375000/1000 = 375 kHz ≅ 380 kHz
help... Please help!!!!!!!!!!!
Answer:
a) 6.8--5.10 thats equal 11.9
b) m=ris/run +10 equal 0.06/8 =7.5*10^-3
The Milky Way has a diameter (proper length) of about 1.2×105 light-years. According to an astronaut, how many years would it take to cross the Milky Way if the speed of the spacecraft is 0.890 c?
Answer:
t = 134834.31 years
Explanation:
First we find the speed of the ship:
v = 0.890 c
where,
v = speed of the ship = ?
c = speed of light = 3 x 10⁸ m/s
Therefore, using the values, we get:
v = (0.89)(3 x 10⁸ m/s)
v = 2.67 x 10⁸ m/s
Now, we find the distance in meters:
Distance = s = (1.2 x 10⁵ light years)(9.461 x 10¹⁵/1 light year)
s = 11.35 x 10²⁰ m
Now, for the time we use the following equation:
s = vt
t = s/v
t = (11.35 x 10²⁰ m)/(2.67 x 10⁸ m/s)
t = (4.25 x 10¹² s)(1 h/3600 s)(1 day/24 h)(1 year/365 days)
t = 134834.31 years
Parallel light rays with a wavelength of 563 nm fall on a single slit. On a screen 3.30 m away, the distance between the first dark fringes on either side of the central maximum is 4.70 mm . Part A What is the width of the slit
Answer:
The width of the slit is 0.4 mm (0.00040 m).
Explanation:
From the Young's interference expression, we have;
(λ ÷ d) = (Δy ÷ D)
where λ is the wavelength of the light, D is the distance of the slit to the screen, d is the width of slit and Δy is the fringe separation.
Thus,
d = (Dλ) ÷ Δy
D = 3.30 m, Δy = 4.7 mm (0.0047 m) and λ = 563 nm (563 ×[tex]10^{-9}[/tex] m)
d = (3.30 × 563 ×[tex]10^{-9}[/tex] ) ÷ (0.0047)
= 1.8579 × [tex]10^{-6}[/tex] ÷ 0.0047
= 0.0003951 m
d = 0.00040 m
The width of the slit is 0.4 mm (0.00040 m).
"When red light in vacuum is incident at the Brewster angle on a certain glass slab, the angle of refraction is"
Complete Question
When red light in vacuum is incident at the Brewster angle on a certain glass slab, the angle of refraction is [tex]36.0 ^o[/tex] . What are
(a) the index of refraction of the glass and
(b) the Brewster angle?
Answer:
a
[tex]n_r = 1.376[/tex]
b
[tex]i = 54^o[/tex]
Explanation:
From the question we are told that
The angle of refraction is [tex]r = 36.0 ^o[/tex]
Generally according Brewster law
[tex]i + r = 90[/tex]
Here [tex]i[/tex] is the angle of incidence which is also the Brewster angle
So
[tex]i + 36.0 = 90[/tex]
[tex]i = 54^o[/tex]
Now the refractive index is mathematically represented as
[tex]n_r = tan (i)[/tex]
substituting values
[tex]n_r = tan (54)[/tex]
[tex]n_r = 1.376[/tex]
A charge of 15 is moving with velocity of 6.2 x17 which makes an angle of 48 degrees with respect to the magnetic field. If the force on the particle is 4838 N, find the magnitude of the magnetic field.
a. 06.0T.
b. 08.0T.
c. 07.0T.
d. 05.0 T.
Complete question:
A charge of 15C is moving with velocity of 6.2 x 10³ m/s which makes an angle of 48 degrees with respect to the magnetic field. If the force on the particle is 4838 N, find the magnitude of the magnetic field.
a. 0.06 T
b. 0.08 T
c. 0.07 T
d. 0.05 T
Answer:
The magnitude of the magnetic field is 0.07 T.
Explanation:
Given;
magnitude of the charge, q = 15C
velocity of the charge, v = 6.2 x 10³ m/s
angle between the charge and the magnetic field, θ = 48°
the force on the particle, F = 4838 N
The magnitude of the magnetic field can be calculated by applying Lorentz force formula;
F = qvBsinθ
where;
B is the magnitude of the magnetic field
B = F / vqsinθ
B = (4838) / (6.2 x 10³ x 15 x sin48)
B = 0.07 T
Therefore, the magnitude of the magnetic field is 0.07 T.
What is the direction of the net gravitational force on the mass at the origin due to the other two masses?
Answer:
genus yds it's the
Explanation:
xmgxfjxfjxgdfjusufzjyhmfndVFHggssjtjhryfjftjsrhrythhrsrhrhsfhsgdagdah vhj
A skull believed to belong to an ancient human being has a carbon-14 decay rate of 5.4 disintegrations per minute per gram of carbon (5.4 dis/min*gC). If living organisms have a decay rate of 15.3 dis/min*gC, how old is this skull
Answer:
9.43*10^3 year
Explanation:
For this question, we ought to remember, or know that the half life of carbon 14 is 5730, and that would be vital in completing the calculation
To start with, we use the formula
t(half) = In 2/k,
if we make k the subject of formula, we have
k = in 2/t(half), now we substitute for the values
k = in 2 / 5730
k = 1.21*10^-4 yr^-1
In(A/A•) = -kt, on rearranging, we find out that
t = -1/k * In(A/A•)
The next step is to substitite the values for each into the equation, giving us
t = -1/1.21*10^-4 * In(5.4/15.3)
t = -1/1.21*10^-4 * -1.1041
t = 0.943*10^4 year
Which examination technique is the visualization of body parts in motion by projecting x-ray images on a luminous fluorescent screen?
Answer:
Fluoroscopy
Explanation:
A Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched.
A magnetic field near the floor points down and is increasing. Looking down at the floor, does the non-Coulomb electric field curl clockwise or counter-clockwise?
a. clockwiseb. counter-clockwise c. no curly E
Answer:
when a magnetic field near the floors points down and is increasing then the electric field curl (a) clockwise.
Explanation:
The magnetic field this is the area that is around a magnet which there is presence of magnetic force. The Moving electric charges can create magnetic fields. we say In physics, that the magnetic field is a field that passes through space and which makes a magnetic force move electric charges.
The Non-coulomb electric field curls ; ( B ) counterclockwise
Non-coulomb electric field also known as induced EMF is the Negative time rate of change of a magnetic flux in a closed loop through the loop. Non-coulomb electric field is expressed as ; Fnc = qEnc
Given that the magnetic field points downwards and the value of the electric field ( ε ) is increasing ( i.e. ε > 0 ) The direction of the non-coulomb electric field will curl in a counter-clockwise direction.
Hence we can conclude that The Non-coulomb electric field curls in a counterclockwise direction.
Learn more : https://brainly.com/question/12975267
Does the moon light originate from the moon only
Answer:
No
Explanation:
Moon has no light of its own. It just shines because its surface reflects light from the sun and that's what we see.
:-)
Seismic attenuation and how spherical spreading affect amplitude, can anyone explain this please!
Answer:
Hey there!
This can be a confusing topic, so it's totally fine if you get confused...
First, Seismic Attenuation is how seismic waves lose energy as they expand and spread.
Secondly, when distance increases, amplitude decreases. This is because the distance (spherical spreading would mean radius) is inversely proportional to amplitude.
Let me know if this helps :)
An aluminum rod 17.400 cm long at 20°C is heated to 100°C. What is its new length? Aluminum has a linear expansion coefficient of 25 × 10-6 C-1.
Answer:
the new length is 17.435cm
Explanation:
the new length is 17.435cm
pls give brainliest
The new length of aluminum rod is 17.435 cm.
The linear expansion coefficient is given as,
[tex]\alpha=\frac{L_{1}-L_{0}}{L_{0}(T_{1}-T_{0})}[/tex]
Given that, An aluminum rod 17.400 cm long at 20°C is heated to 100°C.
and linear expansion coefficient is [tex]25*10^{-6}C^{-1}[/tex]
Substitute, [tex]L_{0}=17.400cm,T_{1}=100,T_{0}=20,\alpha=25*10^{-6}C^{-1}[/tex]
[tex]25*10^{-6}C^{-1} =\frac{L_{1}-17.400}{17.400(100-20)}\\\\25*10^{-6}C^{-1} = \frac{L_{1}-17.400}{1392} \\\\L_{1}=[25*10^{-6}C^{-1} *1392}]+17.400\\\\L_{1}=17.435cm[/tex]
Hence, The new length of aluminum rod is 17.435 cm.
Learn more:
https://brainly.com/question/19495810