A pharmacist needs 16 liters of a 4% saline solution. He has a 1% solution and a 5% solution available. How many liters of the 1% solution and how many liters of the 5% solution should he mix to make the 4% solution?

Answers

Answer 1

x = liters of 1% solution

y = liters of 5% solution

x + y = 16

0.01x + 0.05y = 0.04*16 = 0.64

y = 16 - x

0.01x + 0.05(16 - x) = 0.64

0.01x + 0.8 - 0.05x = 0.64

0.16 = 0.04x

x = 4

y = 12


Related Questions

i will rate you brainliest

Answers

Answer:

D) 3/2(X-4)

Step-by-step explanation:

Invert and multiply to get:

3(x+4)/2(x²-16)

factor the bottom

3(x+4)/2(x+4)(x-4)

The (x+4)’s cancel out, and you’re left with

3/2(X-4)

[tex]\dfrac{{x+4\over2}}{{x^2-16\over3}}[/tex]

[tex]=\dfrac{3(x+4)}{2(x+4)(x-4)}=\frac{3}{2(x-4)} [/tex]

but in original fraction, denominator can't be zero so we have to exclude x=±4

do that answer is D

a college entrance exam company determined that a score of 25 on the mathematics portion of the exam suggests that a student is ready for

Answers

Answer:

Student is ready for college level mathematics.

The null hypothesis will be H0 = 25

The alternative hypothesis is Ha > 25

Step-by-step explanation:

The correct order of the steps of a hypothesis test is given following  

1. Determine the null and alternative hypothesis.

2. Select a sample and compute the z - score for the sample mean.

3. Determine the probability at which you will conclude that the sample outcome is very unlikely.

4. Make a decision about the unknown population.

These steps are performed in the given sequence to  test a hypothesis.

In which set(s) of numbers would you find the number -832 a. whole number b. irrational number c. integer d. rational number e. real number f. natural number

Answers

Answer:

integer of course

Step-by-step explanation:

an integer can either be negative or positive.

It is known that 80% of all brand A external hard drives work in a satisfactory manner throughout the warranty period (are "successes"). Suppose that n= 15 drives are randomly selected. Let X = the number of successes in the sample. The statistic X/n is the sample proportion (fraction) of successes. Obtain the sampling distribution of this statistic.

Answers

Answer:

P (x= 5) =  0.0001

P(x=3) =  0.008699

Step-by-step explanation:

This is a binomial distribution .

Here p = 0.8  q= 1-p = 1-0.8 = 0.2

n= 15

So we find the probability for x taking different values from 0 - 15.

The formula used will be

n Cx p^x q^n-x

Suppose we want  to find the value of x= 5

P (x= 5) = 15C5*(0.2)^10*(0.8)^5 = 0.0001

P(x=3) = 15C3*(0.2)^12*(0.8)^3 =  9.54 e ^-7= 0.008699

Similarly we can find the values for all the trials from 0 -15  by substituting the values of x =0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15.

The value for p(x = 5) is 0.0001 and the value for p(x = 3) is 0.008699.

It is given that the 80% of all brand A external hard drives work in a satisfactory manner throughout the warranty period.

It is required to find the sampling distribution if n =15 samples.

What is sampling distribution?

It is defined as the probability distribution for the definite sample size the sample is the random data.

We have p =80% = 0.8 and q = 1 - p1 -0.8 ⇒ 0.2

n = 15

We can find the probability for the given x by taking different values from 0 to 15

the formula can be used:

[tex]\rm _{n}^{}\textrm{C}_x p^xq^{n-x}[/tex]

If we find the value for p(x = 5)

[tex]\rm _{15}^{}\textrm{C}_5 p^5q^{15-5}\\\\\rm _{15}^{}\textrm{C}_5 0.8^50.2^{10}[/tex]⇒ 0.0001

If we find the value for p(x = 3)

[tex]\rm _{15}^{}\textrm{C}_3 0.8^30.2^{12}\\[/tex] ⇒  

Similarly, we can find the values for all the trials from 0 to 15 by putting the values of x = 0 to 15.

Thus, the value for p(x = 5) is 0.0001 and the value for p(x = 3) is 0.008699.

Learn more about the sampling distribution here:

https://brainly.com/question/10554762

Can someone please help me with this question?

Answers

Answer:

B

Step-by-step explanation:

11q + 5 ≤ 49

Subtract 5 from each side

11q + 5-5 ≤ 49-5

11q ≤44

Divide each side by 11

q ≤44/11

q≤4

There is a close circle at 4 because of the equals sign and the lines goes to the left

Answer:

B

Step 1:

To solve this, we need to isolate the variable q. To do so, we will subtract 5 from both sides of the inequality.

[tex]11q+5(-5)\leq 49(-5)\\11q\leq 44[/tex]

Step 2:

We divide both sides by 11 to get our q.

[tex]\frac{11q}{11}\leq \frac{44}{11} \\q\leq 4[/tex]

q ≤ 4

Step 3:

To find the correct graph, we need to know that a close circle means a ≤ or ≥ and an open one means a < or >. Here, we are using a ≤ so C and D are not our answers. Also remember that if the "arrow" is pointing left (<), then the arrow on the graph should be facing the left side. If the arrow is facing the right side, then that means we are using > or ≥. Here, we are using ≤ (left), so that means the arrow on the graph should be on a 4, facing left, with a closed circle.

Our answer is B.

A manufacturer of paper coffee cups would like to estimate the proportion of cups that are defective (tears, broken seems, etc.) from a large batch of cups. They take a random sample of 200 cups from the batch of a few thousand cups and found 18 to be defective. The goal is to perform a hypothesis test to determine if the proportion of defective cups made by this machine is more than 8%.

Required:
a. Calculate a 95% confidence interval for the true proportion of defective cups made by this machine.
b. What is the sample proportion?
c. What is the critical value for this problem?
d. What is the standard error for this problem?

Answers

Answer:

a

  The 95% confidence interval is  [tex]0.0503 < p < 0.1297[/tex]

b

The sample proportion is  [tex]\r p = 0.09[/tex]

c

The critical value is  [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

d

 The standard error is  [tex]SE =0.020[/tex]

Step-by-step explanation:

From the question we are told that

   The  sample size is  n =  200

     The number of defective is  k =  18

The null hypothesis is  [tex]H_o : p = 0.08[/tex]

The  alternative hypothesis is  [tex]H_a : p > 0.08[/tex]

Generally the sample proportion is mathematically evaluated as

            [tex]\r p = \frac{18}{200}[/tex]

            [tex]\r p = 0.09[/tex]

Given that the confidence level is  95% then the level  of significance is mathematically evaluated as

        [tex]\alpha = 100 - 95[/tex]

        [tex]\alpha = 5\%[/tex]

        [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is  

        [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

Generally the standard of error is mathematically represented as

          [tex]SE = \sqrt{\frac{\r p (1 - \r p)}{n} }[/tex]

substituting values

         [tex]SE = \sqrt{\frac{0.09 (1 - 0.09)}{200} }[/tex]

        [tex]SE =0.020[/tex]

The  margin of error is  

       [tex]E = Z_{\frac{ \alpha }{2} } * SE[/tex]

=>    [tex]E = 1.96 * 0.020[/tex]

=>   [tex]E = 0.0397[/tex]

The  95% confidence interval is mathematically represented as

     [tex]\r p - E < \mu < p < \r p + E[/tex]

=>   [tex]0.09 - 0.0397 < \mu < p < 0.09 + 0.0397[/tex]

=>  [tex]0.0503 < p < 0.1297[/tex]

Which of the following statements are true? Select all that apply.
If the equation were graphed, it would be a horizontal line.
Both functions have the same slope.
The origin is the y-intercept for the function expressed in the table.
The linear equation does not have a y-intercept.
The table and the graph express an equivalent function.

Answers

Answer:

Both functions have the same slope.The origin is the y-intercept for the function expressed in the table.The table and the graph express an equivalent function.

Step-by-step explanation:

Both functions have the same slope

The slope is m in the equation; y =mx+c which is the formula for a straight line.

m = change in Y/change in x

Using 2 points: (1,3/4) and ( 4,3) from the table;

= (3 - 3/4) / ( 4 - 1)

= 2.25/3

= 0.75 which is 3/4 which is the same as the slope of the function in the equation.

The origin is the y-intercept for the function expressed in the table.

Slope of function in table is known to be 0.75. Find c to complete equation.

3 = 0.75 ( 4) + c

3 = 3 + c

c = 0

c is the y-intercept. The origin of a line is 0 so if c is 0 then the origin is the y intercept.

The table and the graph express an equivalent function.

The function for the table as calculated is;

y = 0.75x + 0

y = 0.75x

This is the same as the function for the equation for the graph which is y = 3/4x.

Answer:Both functions have the same slope.

The origin is the y-intercept for the function expressed in the table.

The table and the graph express an equivalent function.

Step-by-step explanation:

Compare the linear functions expressed below by data in a table and by an equation.

A 2-column table with 4 rows. Column 1 is labeled x with entries negative 6, negative four-thirds, 1, 4. Column 2 is labeled y with entries negative StartFraction 9 Over 2 EndFraction, negative 1, three-fourths, 3. y = three-fourths x.

Which of the following statements are true?  Select all that apply.

If the equation were graphed, it would be a horizontal line.

Both functions have the same slope.

The origin is the y-intercept for the function expressed in the table.

The linear equation does not have a y-intercept.

The table and the graph express an equivalent function.

the point p(-3,4) is reflected in the line x +2=0. find the coordinate of the image x​

Answers

Answer:

(- 1, 4 )

Step-by-step explanation:

The line x + 2 = 0 can be expressed as

x + 2 = 0 ( subtract 2 from both sides )

x = - 2

This is the equation of a vertical line parallel to the y- axis and passing through all points with an x- coordinate of - 2

Thus (- 3, 4 ) is 1 unit to the left of - 2

Under a reflection in the line x = - 2

The x- coordinate will be the same distance from x = - 2 but on the other side while the y- coordinate remains unchanged.

Thus

(- 3, 4 ) → (- 1, 4 )

Lauren is a college sophomore majoring in business. This semester Lauren is taking courses in accounting, economics, management information systems, public speaking, and statistics. The sizes of these classes are, respectively, 375, 35, 45, 25, and 60.Required:Find the mean and the median of the class sizes. What is a better measure of Lauren's "typical class size"—the mean or the median?

Answers

Answer:

Mean = 108

Median = 45

The better measure of Lauren's "typical class size" is the Mean

Step-by-step explanation:

1. Calculating mean and median.

The mean is an important measure of central tendency, and it is the average of the measurement of a given set of data. It is calculated as follows:

[tex]Mean\ (\overline {X}) &= \frac{\sum X}{N}[/tex]

where X = individual data sets

N = total number of data

[tex]Mean= \frac{375\; +\ 35\ +\ 45\ +\ 25\ +\ 60}{5} \\=\frac{540}{5} \\= 108[/tex]

The Median divides the measurements into two equal parts, and in order to calculate the median, the distribution has to first be arranged in ascending or descending order. Arranging this series in descending order:

375, 60, 45, 35, 25

The formula for calculating median is given by:

[tex]M_{d} = \frac{N\ +\ 1}{2} th\ data\\\\=\frac{5\ +\ 1}{2}th\ data\\\\=\frac{6}{2} th\ data\\= 3rd\ data\\M_{d} = 45[/tex]

from the list or arranged data in descending order (375, 60, 45, 35, 25), the third data is 45.

Therefore, Median = 45

2. The better measure of typical class size is Mean because the mean depends on all the values of the data sets, whereas the median does not. When there are extreme values (outliers) the effect on the median is very small, whereas it is effectively captured by the mean.

Solve the following system of eq ions. Express your answer as an ordered
pair in the format (a,b), with no spaces between the numbers or symbols.
3x + 4y=17
- 4x – 3y= - 18
Answer here

Answers

Answer:

(3,2)

Step-by-step explanation:

3x + 4y=17

- 4x – 3y= - 18

Multiply the first equation by 4

4(3x + 4y=17 )

12x +16y = 68

Multiply the second equation by 3

3( - 4x – 3y= - 18)

-12x -9y = -54

Add the new equations together to eliminate x

12x +16y = 68

-12x -9y = -54

-----------------------

    7y = 14

Divide by 7

7y/7 = 14/7

y=2

Now find x

3x+4(2) = 17

3x+8 = 17

Subtract 8 from each side

3x+8-8 = 17-8

3x = 9

Divide by 3

x = 3

Can somebody help me please?

Answers

Answer:

[tex]\boxed{x \geq 353}[/tex]

Step-by-step explanation:

Hey there!

Info Given

- Dot is solid

- Line goes to the right

- Dot is at 353

So by using the given info we can conclude that the inequality is,

x ≥ 353

Hope this helps :)

Answer:

Inequality: 100 + 50w ≥ 18000

What to put on graph: w ≥ 358

Fill in the blanks and explain the pattern.

4.25, 4.5,__,__,__,5.5,__,6.0

Answers

Answer:

4.25, 4.5, 4.75, 5.00, 5.25, 5.5, 5.75, 6.00

Step-by-step explanation:

it is an arithmetic sequence with common difference 0.25

Dan weighs 205 pounds but is only 5 feet 8 inches tall. Evan is 6 feet tall. How much would you expect Evan to weigh if they have the same height/weight ratio? WILL MARK BRAINLIST

Answers

Answer:

Around 217 pounds

Step-by-step explanation:

Let's convert the height into inches.

5 feet 8 = [tex]5\cdot12 + 8 = 60 + 8 = 68[/tex]

6 feet [tex]= 6\cdot12 = 72[/tex].

We can set up a proportion

[tex]\frac{205}{68} = \frac{x}{72}[/tex]

We can use the cross products property to find x.

[tex]205\cdot72=14760\\\\\\14760\div68\approx217[/tex]

Hope this helped!

Answer:

217.0588235 lbs

Step-by-step explanation:

Convert ft inches to inches

5 ft = 5*12 = 60 inches

5 ft 8 inches = 68 inches

6 ft = 6*12 = 72 inches

We can use ratios to solve

205 lbs        x lbs

------------- = ----------------

68 inches     72 inches

Using cross products

205 * 72 = 68x

Divide by 68

205 *72/68 = x

217.0588235 lbs

If the area of the square is A(s) = s², find the formula for the area as a function of time, and then determine A(s(3)).

Answers

A(t) = 100t^2 + 500t + 625

3,025 square pixels

Answer:

A(t) equals 100t²+ 500t + 625.

The area of the square image after 3 seconds is 3,025 square pixels.

Give the domain and range of each relation using set notation​

Answers

Answer:

See below.

Step-by-step explanation:

First, recall the meanings of the domain and range.

The domain is the span of x-values covered by the graph.

And the range is the span of y-values covered by the graph.

1)

So, we have here an absolute value function.

As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:

[tex]\{x|x\in\textbb{R}\}[/tex]

(You are correct!)

For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:

[tex]\{y|y\leq 7\}[/tex]

2)

We have here an ellipse.

First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:

[tex]-4\leq x\leq 6[/tex]

So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:

[tex]\{x|-4\leq x\leq 6\}[/tex]

For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:

[tex]-5\leq y\leq 1[/tex]

This represents all the y-values between -5 and 1, including -5 and 1.

In set notation, thi is:

[tex]\{y|-5\leq y\leq 1\}[/tex]

A number is chosen at random from the set of consecutive natural numbers $\{1, 2, 3, \ldots, 24\}$. What is the probability that the number chosen is a factor of $4!$? Express your answer as a common fraction.

Answers

Answer:

[tex]Probability = \frac{1}{3}[/tex]

Step-by-step explanation:

Given

[tex]Set:\ \{1, 2, 3, \ldots, 24\}[/tex]

[tex]n(Set) = 24[/tex]

Required

Determine the probability of selecting a factor of 4!

First, we have to calculate 4!

[tex]4! = 4 * 3 * 2 * 1[/tex]

[tex]4! = 24[/tex]

Then, we list set of all factors of 24

[tex]Factors:\ \{1, 2, 3, 4, 6, 8, 12, 24\}[/tex]

[tex]n(Factors) = 8[/tex]

The probability of selecting a factor if 24 is calculated as:

[tex]Probability = \frac{n(Factor)}{n(Set)}[/tex]

Substitute values for n(Set) and n(Factors)

[tex]Probability = \frac{8}{24}[/tex]

Simplify to lowest term

[tex]Probability = \frac{1}{3}[/tex]

About ​% of babies born with a certain ailment recover fully. A hospital is caring for babies born with this ailment. The random variable represents the number of babies that recover fully. Decide whether the experiment is a binomial experiment. If it​ is, identify a​ success, specify the values of​ n, p, and​ q, and list the possible values of the random variable x. Is the experiment a binomial​ experiment?

Answers

Answer:

This is a binomial experiment .

Step-by-step explanation:

As the percent is not indicated the success is the amount of percent (if given) say it is 10 % . So p will be equal to = 0.1 and q will be = 1-0.1= 0.9

and n would be five or any number as a binomial experiment is repeated for a fixed number of times.

And x would take any value of n i.e.

X= 0,1,2,3,4,5

If it is 20 % . So p will be equal to = 0.2 and q will be = 1-0.2= 0.8

The probability is the number of the percent indicated. But as it is not indicated we assume it to be 10 % or 20 % .Or suppose any number for it to be a binomial experiment.

The number of trials n would be fixed .

The success remains constant for all trials.

All trials are independent.

Find the intervals on which the function f(x) = ax2 + bx + c (where "a" doesn't = 0) is increasing and decreasing. Describe the reasoning behind your answer.

Answers

Answer:

Step-by-step explanation:

Given that:

[tex]\mathtt{f(x) = ax^2 + bx + c}[/tex]

The derivative of the function of x is  [tex]\mathtt{f'(x) = 2ax + b}[/tex]

Thus; f(x) is increasing when f'(x) > 0

f(x) is decreasing when f'(x) < 0

i.e

f'(x) > 0 , when  b > 0  and a < 0

2ax + b < 0

2ax < - b

[tex]\mathtt{x < \dfrac{-b}{2a}}[/tex]

f'(x) < 0 , when  b < 0  and a > 0

2ax + b > 0

2ax > - b

[tex]\mathtt{x > \dfrac{-b}{2a}}[/tex]

The bowling scores for six people are:
27, 142, 145, 146, 154, 162
What is the most appropriate measure of center?
O A. The standard deviation
O B. The range
O C. The median
O D. The mean​

Answers

Answer: Option D. will be the answer.

Explanation: The bowling scores for six persons have been given as 27, 142, 145, 146, 154, 162.

The most appropriate measure of the center of these scores will be the median.

Here median will be mean of 146 and 146 because number of persons are 6 which is an even number.

So there are two center scores those are 145 and 146 and median =  

Option D. will be the answer.

i will rate you brainliest

Answers

A) S=262+301.3+346.5+...

The other three have terms that are decreasing in magnitude meaning the series will converge. The first one has terms that are increasing so the series will just continue to increase towards infinity and diverge.

Answer:

First option

Step-by-step explanation:

Common ratio is greater than 1

Which is an example of a situation that is in equilibrium?
A. The amount of air in a room increases quickly when the door is
opened.
B. The amount of money in a bank account never changes
C. The amount of water in a cup decreases as it evaporates
D. A flower slowly grows taller​

Answers

Answer:B the amount of money in a bank account never changes.

Step-by-step explanation:

Answer:

B. The amount of money in a bank account never changes.

Step-by-step explanation:

Equilibrium is achieved when the state of a reversible reaction of opposing forces cancel each other out. While in a state of equilibrium, the competing influences are balanced out. Imagine a cup with a hole in it being filled with water from a tap. The level of water in this cup would stay the same if the rate at which the water that flows inside is the same as the water that flows outside. Option B will be the correct answer because the amount of money going into the account is at the same rate of money coming out of the account.

Solve the equation 3(2x + 2) = 3x − 15.

Answers

Hi there! :)

Answer:

x = -7.

Step-by-step explanation:

Starting with:

3(2x + 2) = 3x - 15

Begin by distributing '3' with the terms inside of the parenthesis:

3(2x) + 3(2) = 3x - 15

Simplify:

6x + 6 = 3x - 15

Isolate the variable by subtracting '3x' from both sides:

6x - 3x + 6 = 3x - 3x - 15

3x + 6 = -15

Subtract 6 from both sides:

3x + 6 - 6 = -15 - 6

3x = -21

Divide both sides by 3:

3x/3 = -21/3

x = -7.

Answer:

x = -7

Step-by-step explanation:

3(2x+2) = 3x - 15

First, we should simplify on the left side.

6x + 6 = 3x - 15 ; Now we subtract six from both sides.

      -6          -6

6x = 3x - 21 ; next we just subtract 3x from both sides.

-3x   -3x

3x = -21

Finally, we divide 3 from both sides to separate the three from the x.

x = -7

Hope this helps!! <3 :)

Find the area of the shape shown below.
2
2
nd
2
Need help Plz hurry and answer!!!

Answers

Answer:

=6 units squared

Step-by-step explanation:

area=1/2h(a+b)

        =1/2×2(4+2)

        =6

A collector as a set of 224 coins. Some are valued at 20 cents and others at 25 cents. If the collector has 74 25-cent coins, then what is the total value of the collection

Answers

Answer:

48.50 dollars.

Step-by-step explanation:

The collector has a total of 224 coins but 74 of them are 25 cents coins. So, in order to find the number of 20-cent coins we're going to subtract the number of 25-cent coins from the total.

Number of 20-cent coins = 224 - 74 = 150.

Thus, the collector has 150 20-cent coins and 74 25-cent coins for a total of 224 coins.

Now, to know the total value of the collection we need to multiply the value of the coins by the number of coins there are of this value (we are going to do it with the 20-cent and the 25-cent coins) and then sum up our results.

Total value = 74(25) + 150 (20) = 1850 + 3000 = 4850 cents.

So the total value is 4850 cents, we know that each dollar has 100 cents so, to express this number in dollars we are going to divide it by 100 and thus we have that the total value of the collection is 48.50 dollars.

The price of a technology stock was $ 9.56 yesterday. Today, the price rose to $ 9.69 . Find the percentage increase. Round your answer to the nearest tenth of a percent.

Answers

Answer and Step-by-Step explanation:

% increase = 100 x [(new price) - (original price)] / (original price)] = 100 (9.67 - 9.56) / 9.56

% increase ≅ 1.2% (to the nearest tenth)

Find the union and interesection of each of the following A={3,6,9,12}, B ={6,8,9}

Answers

Answer:

Hello,

The answer would be,

A union B = {3,6,9,12}

and A intersection B= {6,9}

Answer:

[tex]\huge\boxed{ A\ union \ B = \{3,6,8,9,12\}}[/tex]

[tex]\huge\boxed{A\ intersection \ B = \{6,9\}}[/tex]

Step-by-step explanation:

A = {3,6,9,12}

B = {6,8,9}

A∪B = {3,6,9,12} ∪ { 6,8,9}   [Union means all of the elements should be included in the set of A∪B]

=> A∪B = {3,6,8,9,12}

Now,

A∩B = {3,6,9,12} ∩ {6,8,9}  [Intersection means common elements of the set]

=> A∩B = {6,9}

Evaluate cosA/2 given cosA=-1/3 and tanA >0

Answers

Answer:

[tex]\bold{cos\dfrac{A}{2} = -\dfrac{1}{\sqrt3}}[/tex]

Step-by-step explanation:

Given that:

[tex]cosA=-\dfrac{1}3[/tex]

and

[tex]tanA > 0[/tex]

To find:

[tex]cos\dfrac{A}{2} = ?[/tex]

Solution:

First of all,we have cos value as negative and tan value as positive.

It is possible in the 3rd quadrant only.

[tex]\dfrac{A}{2}[/tex] will lie in the 2nd quadrant so [tex]cos\dfrac{A}{2}[/tex] will be negative again.

Because Cosine is positive in 1st and 4th quadrant.

Formula:

[tex]cos2\theta =2cos^2(\theta) - 1[/tex]

Here [tex]\theta = \frac{A}{2}[/tex]

[tex]cosA =2cos^2(\dfrac{A}{2}) - 1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =cosA+1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =-\dfrac{1}3+1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =\dfrac{2}3\\\Rightarrow cos(\dfrac{A}{2}) = \pm \dfrac{1}{\sqrt3}[/tex]

But as we have discussed, [tex]cos\dfrac{A}{2}[/tex] will be negative.

So, answer is:

[tex]\bold{cos\dfrac{A}{2} = -\dfrac{1}{\sqrt3}}[/tex]

The number of values of xx in the interval [0,5π][0,5π] satisfying the equation 3sin2x−7sinx+2=03sin2⁡x-7sin⁡x+2=0 is/are

Answers

Answer:

6

Step-by-step explanation:

Given, 3sin2x−7sinx+2=03sin2⁡x-7sin⁡x+2=0

⇒(3sinx−1)(sinx−2)=0⇒3sin⁡x-1sin⁡x-2=0

⇒sinx=13 or 2⇒sin⁡x=13 or 2

⇒sinx=13    [∵sinx≠2]⇒sin⁡x=13    [∵sin⁡x≠2]

Let  sinα=13,0<α<π2,sinα=13,0<α<π2, then sinx=sinαsinx=sinα

now x=nπ+(−1)nα(n∈I)x=nπ+(−1)nα(n∈I)

⇒x=α,π−α,2π+α,3π−α,4π+α,5π−α⇒x=α,π−α,2π+α,3π−α,4π+α,5π−α Are the solution in [0,5π][0,5π]

Hence, required number of solutions are 6

The driveway needs to be resurfaced. what is the BEST estimate of the area of the driveway?​

Answers

Answer:

125π ft²

Step-by-step explanation:

1/4π(30)² - 1/4π(20)² = 125π

This is the ASVAB question If 500 people are at a concert and 70% are adults. How many children are there?

Answers

Answer:

150

Step-by-step explanation:

70% of 500 people are adults and the remainder are children.

30% of 500 are children30*500/100= 150

There are 150 children

Other Questions
On June 4, 1989, students gathered in Tiananmen Square to mourn the death of the pro-reform leader Simplify -2x^3 y x xy^2 (4x2y3)2=? thank you for the help Suppose that the values of x, y, and z are given by x=2/3 y=5/7 z= -11/3 What is xy/z i give you 5 stars please help February 1, 2018, Salisbury Company purchased land for the future factory location at a cost of $112,000. The dilapidated building that was on the property was demolished so that construction could begin on the new factory building. The new factory was completed on November 1, 2018. Costs incurred during this period were: Item Amount Demolition dilapidated building $2,000 Architect Fees $11,250 Legal Fees - for title search $1,450 Interest During Active Construction Period $5,025 Real estate transfer tax $975 Construction Costs $605,000 Using this information, how much should be recorded as the cost of the land? Please help! Simplify: 3(2x-4y) - 2(4y-x) Thank you! in a study of tv dramas, a researcher examines how often characters in a romance resort to violence. What kind of structual question is being asked Group-oriented negotiators are concerned about their own interests above all else. Is this statement true or false? NEED ANSWER ASAP!! PLEASE!!! The length of a rectangle is 1 foot more than twice the width. Write an expression that represents the length. *PLEASE ANSWER* Compare the volume of these two shapes,given their radii and heights are the same . why do veins have valves Martin Shkreli, former CEO of pharmaceutical company Retrophin,, has many traits of a leader. He is very intelligent, brash, extroverted, and driven to succeed. But he lacks the key trait to keep the confidence of others, which eventually led to a fraud conviction. He lacks Suppose you observe the following situation: Security Beta Expected Return A 1.16 .1137 B .92 .0984 Assume these securities are correctly priced. Based on the CAPM, what is the return on the market What helps determine apopulation's carrying capacity?A. the rate of primary productivityB. the amount of available resourcesC, the average age of the members of thepopulation A number is chosen at random from 1 to 10. Findthe probability of selecting 4 or a factor of 6.Step by step. Roselyn is driving to visit her family, which lives 150150150 kilometers away. Her average speed is 606060 kilometers per hour. The car's tank has 202020 liters of fuel at the beginning of the drive, and its fuel efficiency is 666 kilometers per liter. Fuel costs 0.600.600, point, 60 dollars per liter. Chemistry deals with all the following except: Select one: a. The composition of matter. b. The properties of matter. c. Our eating habits. d. The conversion of matter between various states. Give an example from American history of a time when the majority of Americans were wrong about an issue and tried to take away the rights of others. A plan for a dog park has a grassy section and a sitting section as shown in the figure. Which equation can be used to find the area of the grassy section?