Answer:
The answer is "[tex]\bold{87.3906 \ MPa \sqrt{m}}[/tex]".
Explanation:
Given value:
[tex]\sigma = 1400 \ MPa \ \ \ \ \ \ \ \ where \ \sigma = failure \ strength\\\\a = 1 \ mm = 1 \times 10^{-3} \ m \ \ \ \ \ \ \ \ \ \ where\ a = crack\ length\\\\b= 12.5 \ cm = 125 \ mm = 0.125 \ m\\\\[/tex]
[tex]\to \alpha = \frac{a}{b} =\frac{1}{125} = 8 \times 10^{-3}\\\\[/tex]
[tex]k_{b} = \frac{1.12 + \alpha (2.62 \alpha -1.59)}{1-0.7 \alpha}\\[/tex]
[tex]= \frac{1.12 + (8\times 10^{-3}(2.62(8\times 10^{-3}) -1.59))}{1-(0.7 \times 8\times 10^{-3})}\\\\= \frac{1.12 + (8\times 10^{-3}(0.02096 -1.59))}{1-(0.7 \times 8\times 10^{-3})}\\\\= \frac{1.12 + (8\times 10^{-3}(-1.56904))}{1-(0.0056)}\\\\= \frac{1.12 + (-0.01255232)}{0.9944}\\\\= \frac{-1.10744768}{0.9944}\\\\= -1.11368431\\\\[/tex]
[tex]k_{ic} = \sigma \sqrt{\pi a} \ y_b[/tex]
[tex]=1400 \times \sqrt{\pi \times 1 \times 10^{-3} } \times -1.11368431\\\\=1400 \times 0.00177200451 \times -1.11368431\\\\=87.3906 \ MPa \sqrt{m}[/tex]
A _________ is interesting only if the statistics computed from transactions covered by the rule are different than those computed from transactions not covered by the rule.
Answer: Quantitative association rule.
Explanation:
The quantitative rules of association apply to the basic type of rules of association which exists as X and Y, with X and Y consisting of a collection of numerical and/or categorical attributes. Unlike general association laws, where both the left and right sides of the law should have categorical (nominal or discrete) attributes, a numerical attribute must be included in at least one attribute of the quantitative association rule (left or right).