Answer:
d. normal if the population is normally distributed
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
Sample size less than 30, so only will be normal if the population is normally distribution, and thus the correct answer is given by option d.
solve for the solution of each linear equation.
1. 3x+1=4
2. 7x-6=0
3. 4x-5=19
4. 9x+6=8
5. 8x-7=15
Answer:
no.1 answer 0
Step-by-step explanation:
3x + 1= 4
or; 3x = 4 - 1
or; x = 3 ÷ 3
x = 0
The figure below is a rhombus.
w = [? ]°
Answer:
Step-by-step explanation:
What is equivalent to 3(5x-4)
Answer:
15x - 12
Step-by-step explanation:
3(5x-4)
We can find an equivalent expression by distributing the 3 to what's inside of the parenthesis (5x and -4)
3(5x-4)
* Distribute *
3 * 5x = 15x
3 * -4 = -12
An equivalent expression would be 15x -12
Use the discriminant to determine how many and what kind of solutions the quadratic equation 2x^2 - 4x = -2 has.
Answer:
We can use three solution and they are
(1)completing the square
(2)quadratic formula
(3) factorisation method
The quadratic equation 2x^2 - 4x = -2 has two values .
What is quadratic equation ?According to our definition, a quadratic equation is one with degree 2, implying that its maximum exponent is 2. A quadratic has the standard form y = ax2 + bx + c, where a, b, and c are all numbers and a cannot be zero. All of these are examples of quadratic equations: y = x^2 + 3x + 1.Kind of solutions -(1)completing the square
(2)quadratic formula
(3) factorization method
Given,
quadratic equation 2x^2 - 4x = -2
2x² - 4x + 2 =0
Now solve this equation by factor,
2x² - 4x + 2 = 0
2x² - ( 2+2)x +2 = 0
2x² - 2x -2x + 2 = 0
2x(x- 1 ) -2 ( x -1) = 0
(2x - 2) ( x- 1) =0
2x - 2 = 0 or x - 1 = 0
x = 1 or x = 1
So, this equation has 2 value of x.
Learn more about quadratic equation brainly.com/question/2263981 here
#SPJ2
For which equation is (4, 3) a solution?
y=x+3
y=3 x-4
y= 2 x-5
y= 2 x-1
please say how you got your answer
Answer:
y = 2x - 5
Step-by-step explanation:
We can use trial and error to solve this.
4 = x and 3 = y
y = x + 3: 4 + 3 = 7 ≠ 3 (not what we want)
y = 3x + 4: (3 x 4) - 4 = 8 ≠ 3 (not what we want)
y = 2x - 5: (2 x 4) - 5 = 3 (what we want)
y = 2x - 1: (2 x 4) - 1 = 7 ≠ 3 (not what we want)
The answer is y = 2x - 5
help with algebra pls help
9514 1404 393
Answer:
a. 1.48 seconds
Step-by-step explanation:
You want to find the larger value of t such that h(t) = 10.
-16t^2 +25t +8 = 10
16t^2 -25t +2 = 0 . . . . subtract the left side to get standard form
Using the quadratic formula, we find the values of t to be ...
t = (-(-25) ± √((-25)^2 -4(16)(2)))/(2(16)) = (25±√497)/32
t ≈ 0.08 or 1.48
The ball goes in the hoop about 1.48 seconds after it is thrown.
__
Additional comment
The quadratic formula tells us the solution to ...
ax² +bx +c = 0
is given by ...
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Here, we have a=16, b=-25, c=2. Of course, our variable is t, not x, but the relation is the same.
What is the product of x(x + 1)?
1. 2x + x
2. x2+ 2x
3. 212 + x
4. x2 + x
Answer:
4. x²+x
Step-by-step explanation:
the product of x(x + 1) = (x)(x) + (x)(1)
= x²+x
Find the indicated side of the
right triangle.
45
у
9
45
х
x = [?]
Enter
Answer:
9
Step-by-step explanation:
Which triangle must be a right triangle and why?
O AA'B'C' is right because it is the image of AABC.
O AADC is right because AA' intersects AC at A.
O ABCC' is right because B lies of the line of
reflection.
O ABGC is right because G. CC')
Answer:
it would be the last one.
Step-by-step explanation:
its looking for a right triangle, a right triangle has one 90 degree angle. all of the other triagles have acute angles making them smaller than 90 degrees
Triangle BGC is the right triangle, because BG is perpendicular to CC'.
The line passing through points E, F, and G in the image is now perpendicular to the lines is DF and CG.
So we know that our triangle will be made with some of these lines.
For example, the right triangles in the figure are:
BFD, BGC, B'FD', and B'GC'.
Then, the concluded statement is ΔBGC, because BG ⊥CC.
There says that "Triangle BGC is the Right because BG is perpendicular to CC.
Learn more about right triangle here:
brainly.com/question/2217700
#SPJ7
The volume of a cube is 2,744 m3. What is the side length of the cube?
Answer:
The length is 14 and the area is 196 cm².
The side length of the cube is 14 meters.
We have,
Volume of Cube = 2744 m³
To find the side length of a cube when given its volume, you can use the formula:
Side length = ∛(Volume)
So, substitute this value into the formula to calculate the side length:
Side length = ∛(2,744)
= ∛ 14 x 14 x 14
= 14 m
Therefore, the side length of the cube is 14 meters.
Learn more about Volume of cube here:
https://brainly.com/question/29275443
#SPJ2
Solve 7 pleaseeeeeeeeeeeeeeeee
Answer:
5040
Step-by-step explanation:
I assume you really mean 7!
you understand what "!" means ?
n! = n×(n-1)×(n-2)×(n-3)×...×3×2×1
so,
7! = 7×6×5×4×3×2×1
now all you need is a calculator.
7! = 5040
Can the following two triangles be proven congruent through AAS?
A. Yes, since three pairs of angles are congruent, ∠C≅∠V
∠
C
≅
∠
V
, ∠B≅∠W
∠
B
≅
∠
W
, and ∠A≅∠U
∠
A
≅
∠
U
, the triangles are congruent through AAS.
B.No, since ∠C≅∠V
∠
C
≅
∠
V
, ∠B≅∠W
∠
B
≅
∠
W
, and a pair of included sides are congruent, AC⎯⎯⎯⎯⎯⎯⎯⎯≅UV⎯⎯⎯⎯⎯⎯⎯⎯⎯
A
C
¯
≅
U
V
¯
, the triangles aren’t congruent through AAS.
C.Yes, since two pairs of angles are congruent,∠C≅∠V
∠
C
≅
∠
V
and ∠B≅∠W
∠
B
≅
∠
W
, and a pair of non-included sides are congruent, AC⎯⎯⎯⎯⎯⎯⎯⎯≅UV⎯⎯⎯⎯⎯⎯⎯⎯⎯
AC¯≅UV¯, the triangles are congruent through AAS.
D.No, since only two pairs of angles are congruent, the triangles aren’t congruent through AAS.
Answer:
C. YES
Step-by-step explanation:
If two angles and the non-included side of one triangle are equal to the corresponding angles and side of another triangle, the triangles are congruent.
Would you kindly help me.Im having a hard time understanding and I've been crying a lot trying to understand it
Please help solve
-5<14-4x≤3
Answer:
Interval notation (-5,3]
Identify the dependent and independent variable in y = 12x - 30.
Step-by-step explanation:
guess
Dependent variable: y and Independent variable: x
gauthammath dot com
2. Find the area of a trapezium shaped field with a base of 45m, top is 35m and with a height of 55m applying the formula for trapezium = 0.5x b+axh
Given:
Base=
Top (a) =
Height =
3. Find the area of a Parallelogram shaped field where the base measures 19m and with a h of 37m.
Applying the formula for parallelogram=bxh
Given:
Base=
Height=
pahelp po thanks
Answer:
2. 2200 m²
3. 703 m²
Step-by-step explanation:
2. Given,
Base (b) = 45m
Top (a) = 35m
Height (h) = 55m
Area = (a+b)*h/2
= (45+35)*55/2
= 85*55/2 = 2200 m²
3. Given,
Base (b) = 19m
Height (h) = 37m
Area = b*h
= 19*37
= 703 m²
(The * sign represents the multiplication sign)
Answered by GAUTHMATH
Answer:
2. area = 2200 m²
3. area = 703 m²
Step-by-step explanation:
2. Find the area of a trapezium shaped field with a base of 45m, top is 35m and with a height of 55m applying the
formula for trapezium = 0.5 * (b+a) * h
Given:
Base= 45 m
Top (a) = 35 m
Height = 55 m
area = 0.5 * (b+a) * h
area = 0.5 * (45 m + 35 m) * 55 m
area = 2200 m²
3. Find the area of a Parallelogram shaped field where the base measures 19m and with a h of 37m.
Applying the formula for parallelogram = b * h
Given:
Base= 19 m
Height= 37 m
area = b * h
area = 19 m * 37 m
area = 703 m²
A right rectangular prism has a length of 5 centimeters, a width of 8 centimeters, and a height of 4 centimeters. What is the volume of the prism?
Answer:
volume of prism is 160 cm
the cost of 10 oranges is $6. what is the cost of an orange ?
Answer Choices:
$0.40
$0.60
$4
$6
Answer:
$0.60
Step-by-step explanation:
To find the cost of 1 orange, divide the $6 by 10:
6/10 = 0.6
Hope it helps (●'◡'●)
Express 20% as a decimal number
Answer: 0.2
Step-by-step explanation: 20/100=1/5
and 1/5 equals 1 divided by five so it is 0.2
Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
(a) f (x, y) = x^2 - y^2; x^2 + y^2 = 1
Max of 1 at (plusminus 1, 0), min of - 1 at (0, plusminus l)
(b) f (x, y) = 3x + y; x^2 + y^2 = 10
Max of 10 at (3, 1), min of - 10 at (- 3, - 1)
(c) f (x, y) = xy; 4x^2 + y^2 = 8
Max of 2 at plusminus (1, 2), min of - 2 at plusminus (l, - 2)
Answer:
a) f(x,y) = - 1 minimum at P ( 0 ; -1 )
b) f (x,y) = 10 maximum at P ( 3 , 1 ) and f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) Max f ( x , y ) = 2 for points P ( 1, 2 ) and T ( -1 , -2 )
Min f ( x , y ) = -2 for points Q ( 1 , - 2 ) and R ( -1 , 2 )
Step-by-step explanation:
A) f(x,y) = x² - y² subject to x² + y² = 1 g(x,y) = x² + y²- 1
δf(x,y)/ δx = 2*x δg(x,y)/ δx = 2*x
δf(x,y)/ δy = - 2*y δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ* δg(x,y)/ δx
2*x = λ*2*x
δf(x,y)/ δy = λ* δg(x,y)/ δy
- 2*y = λ*2*y
Then, solving
2*x = λ*2*x x = λ*x λ = 1
- 2*y = λ*2*y y = - 1
x² + y²- 1 = 0 x² + ( -1)² - 1 = 0 x = 0
Point P ( 0 ; -1 ) ; then at that point
f(x,y) = x² - y² f(x,y) = 0 - ( -1)² f(x,y) = - 1 minimum
b) f( x, y ) = 3*x + y g ( x , y ) = x² + y² = 10
δf(x,y)/ δx = 3 δg(x,y)/ δx = 2*x
δf(x,y)/ δy = 1 δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ 3 = 2* λ *x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ 1 = 2*λ * y (2)
x² + y² - 10 = 0 (3)
Solving that system
From ec (1) λ = 3/2*x From ec (2) λ = 1/2*y
Then (3/2*x ) = 1/2*y 3*y = x
x² + y² = 10 ⇒ 9y² + y² = 10 10*y² = 10
y² = 1 y ± 1 and
y = 1 x = 3 P ( 3 , 1 ) y = - 1 x = -3 Q ( - 3 , - 1 )
Value of f( x , y ) at P f (x,y) = 3*x + y f (x,y) = 3*(3) +1
f (x,y) = 10 maximum at P ( 3 , 1 )
Value of f( x , y ) at Q f (x,y) = 3*x + y f (x,y) = 3*(- 3) + ( - 1 )
f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) f( x, y ) = xy g ( x , y ) = 4*x² + y² - 8
δf(x,y)/ δx = y δg(x,y)/ δx = 8*x
δf(x,y)/ δy = x δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ y = λ *8*x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ x = λ *2*y (2)
4*x² + y² - 8 = 0 (3)
Solving the system
From ec (1) λ = y/8*x and From ec (2) λ = x/2*y Then y/8*x = x/2*y
2*y² = 8*x² y² = 4*x²
Plugging that value in ec (3)
4*x² + 4*x² - 8 = 0
8*x² = 8 x² = 1 x ± 1 And y² = 4*x²
Then:
for x = 1 y² = 4 y = ± 2
for x = -1 y² = 4 y = ± 2
Then we get P ( 1 ; 2 ) Q ( 1 ; - 2)
R ( - 1 ; 2 ) T ( -1 ; -2)
Plugging that values in f( x , y ) = xy
P ( 1 ; 2 ) f( x , y ) = 2 R ( - 1 ; 2 ) f( x , y ) = - 2
Q ( 1 ; - 2) f( x , y ) = -2 T ( -1 ; -2 ) f( x , y ) = 2
Max f ( x , y ) = 2 for points P and T
Min f ( x , y ) = -2 for points Q and R
A random sample of size 36 is to be taken from a population that is normally distributed with mean 72 and standard deviation 6. The sample mean of the observations in our sample is to be computed. The sampling distribution of the sample mean is
Answer:
The sampling distribution of the sample mean is approximately normal with mean 72 and standard deviation 1.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Normally distributed with mean 72 and standard deviation 6.
This means that [tex]\mu = 72, \sigma = 6[/tex]
A random sample of size 36
This means that [tex]n = 36, s = \frac{6}{\sqrt{36}} = 1[/tex]
The sampling distribution of the sample mean is
By the Central Limit Theorem, it is approximately normal with mean 72 and standard deviation 1.
Joaquin drew the triangle below.
On a coordinate plane, triangle K L J has points (3, 6), (4, 0) and (negative 5, 0).
Which statement must be true about a figure that is congruent to Joaquin’s triangle?
It has two angles on the x-axis.
It has a side that is 9 units long.
It has a side that lies on the x-axis.
It has an obtuse angle.
Answer:
It has a side that is 9 units long.
Step-by-step explanation:
Answer:
B) It has a side that is 9 units long.
Step-by-step explanation:
Since it does not have two angles on the X-axis, a side that lies on the X-axis, or an obtuse angle the reasonable answer would be B as it is true, and all of the others are false.
evaluate the expression when x= -3 and y=3
y-8x
Answer:
27
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightStep-by-step explanation:
Step 1: Define
Identify
x = -3
y = 3
y - 8x
Step 2: Evaluate
Substitute in variables: 3 - 8(-3)Multiply: 3 + 24Add: 27[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{y - 8x}\\\\\large\textsf{= 3 - 8(-3)}\\\\\large\textsf{8(-3) = \bf -24}\\\\\large\textsf{= 3 - \bf 24}\\\\\large\textsf{= \bf 27}\\\\\boxed{\boxed{\large\textsf{\huge\textsf{Answer: \bf 27}}}}\huge\checkmark\\\\\\\\\large\textsf{Good luck on your assignment and enjoy your day!}\\\\\\\\\\\frak{Amphitrite1040:)}[/tex]
Find the L. C. M in division method of the following
a) 18,27
b) 21,38
Answer:
hope it will be helpful to you.....
Complete this sentence: The longest side of a triangle is always opposite the
• A. angle with the smallest measure
O B. angle with the greatest measure
O C. shortest side
D. second-longest side
Answer:
B. angle with the greatest measure
opposite the largest angle
Please help
A stamp collection consists of 10 albums each containing 42 pages. How many stamps are in the total collection if 40 stamps fit on a page?
(1) 92
(2) 820
(3) 1,680
(4) 2,080
(5) 16,800
Step-by-step explanation:
Total number of albums = 10 albums[tex] \; [/tex]Number of pages in each album = 42 pages Stamps fit on 1 page = 40 stampsAs total number of pages in each album is 42 pages, so
➝ Total number of pages in 10 albums = (42 × 10) pages
➝ Total number of pages in 10 albums = 420 pages
Now, as the number of stamps fit on 1 page is 40 stamps, so
➝ Stamps fit on 420 pages = (420 × 40) stamps
➝ Stamps fit on 420 pages = 16,800 stamps
Therefore, 16,800 stamps are in the total collection.
Find the measure of XY
Answer:
70
Step-by-step explanation:
the answer is 35*2=70
Answer:
70
yhsdhjbfjdfjdfhdfh
A roll of carpet that contains 250 yd of carpet will cover how many rooms if each room requires 7 3/4 yards of carpet?
Answer: 32 room
Step-by-step explanation:
[tex]7\frac{3}{4} =\frac{4(7)+3}{4} =\frac{28+3}{4} =\frac{31}{4}=7.75[/tex]
If 1 room = 7.75 yd of carpet ⇒ x rooms = 250 yd of carpet
Use proportions & cross-multiply to solve:
[tex]\frac{1}{7.75} =\frac{x}{250}\\7.75x=250\\x=\frac{250}{7.75} =32.258[/tex]
So 250 yd of carpet can cover about 32 rooms.
Which of the following are not polynomials?
Answer:
A, C and D are not polynomials
Step-by-step explanation:
A because the variable has a negative power.
C because the variable is in the denominator
D because the variable has a root.
When a variable has a root, it's power is 1/2 which does not count as an ideal polynomial. You might be wondering then that why E is a polynomial?
E is a polynomial because because the root is not on the variable but on the constant.
B and E are polynomials while A,C and D are not.
Please mark me as brainliest.
Solve the inequality. |X+19|<7
Answer:
x<-12
Step-by-step explanation: hope this helps!