Answer: D. 48.75
Explanation: just took the test
Answer:
D
Explanation:
I got this question right on my test.
How many grams of potassium carbonate are needed to make 300ml of a 4.5M solution?
Answer:
186.3g
Explanation:
4.5moles of K₂CO₃ is in 1000ml
? moles of K₂CO₃ is in 300 ml
(4.5 × 300)/ 1000 = 1.35 moles of K₂CO₃
1 mole of K₂CO₃ = (39 × 2) + 12 + (16 × 3) = 78 + 12 + 48 = 138g
1.35 moles of K₂CO₃ = ?
= (1.35 × 138)/1 = 186.3g
What unit should you think of when using coefficients?
Answer:
Far as I know coefficients are unitless. sorry if this don't help ;)
Which of the following is NOT true regarding sexual reproduction?
It requires only one parent.
It requires only one parent.
Offspring show genetic variability.
It produces few offspring.
Answer:
I believe it would need more then one parent so therefore the wrong answer would be It requires only one parent
Explanation:
What is true of an earthquake that causes major damage to buildings in an area?
It has a high magnitude.
It has a high frequency.
It has a low frequency.
It has a low magnitude.
The correct option is :
=》It has a high magnitude.
the damage caused by an earthquake is proportional to its magnitude, as much the magnitude is, that much damage will be caused by it.
The term used to indicate and earthquake that causes major damage to buildings in an area is called a high magnitude earthquake. Hence, option a is correct.
What is high magnitude earthquake?The most typical way to gauge an earthquake's size is by its magnitude. No matter where you are or how violent the shaking is, it is the same number since it represents the size of the earthquake's source.
The USGS no longer uses the outmoded Richter scale to determine the magnitude of major, teleseismic earthquakes. Several magnitude scales measure various aspects of the earthquake, but the Richter scale measures the biggest wobble (amplitude) on the recording.
Currently, the USGS uses the Moment Magnitude scale to report earthquake magnitudes, however many different magnitudes can be calculated for comparison and research. Therefore, option a is correct.
Find more on earthquakes:
https://brainly.com/question/29500066
#SPJ3
Please help me on 6 and 8 thanks
Answer:
6.) 3, 12, 1, and 4 8.) 4, 1, and 3
Explanation:
By multiplying subscripts inside and outside of the parentheses you can count the number of atoms that are present. I recently answered a question for you and I did the math wrong I am going to go back and comment so you know which one and I will correct my errors. Sorry for the inconvenience!
the number of atoms in number 6:
N: 3
H: 12
P: 1
O: 4
the number of atoms for number 8:
Ca: 4
C: 1
O: 3
hope I clarified my mistake and helped you! :)
A reaction occurs in which carbon combines with sulfur to form carbon
disulfide. Is this a chemical reaction or a nuclear reaction, and how do you
know?
A. This is a nuclear reaction, because mass was conserved.
B. This is a chemical reaction, because only the electrons were
rearranged.
C. This is a nuclear reaction, because there was a change in the
atoms' nuclei.
D. This is a chemical reaction, because mass was not conserved.
The reaction in which carbon combines with sulfur to form carbon
disulfide. Is
B. This is a chemical reaction, because only the electrons were rearranged.What is a chemical reaction?In a chemical reaction, bonds between molecules of the reactant are broken and new bonds between molecules of the product are established to create a new substance.
Chemical reactions occur all around us, including in our body's digestion of food and the creation of the sunlight's light. Understanding physical and chemical changes is crucial before starting any chemical reactions.
Sulfur and carbon combine to form carbon disulfide in an endothermic reaction that absorbs 92 kJ/mol of heat.
Learn more about carbon disulphide at:
https://brainly.com/question/16157463
#SPJ1
Which of the following is an advantage of asexual reproduction compared to sexual reproduction?
Both will produce genetically identical offspring from the parent.
Sexual reproduction will increase genetic variability within a species.
Asexual reproduction requires less energy and will produce more offspring over time.
Sexual reproduction has minimal changes of mutations compared to asexual reproduction.
Explanation:
sexual reproduction has minimal changes of mutations compared to asexual reproduction
Answer:
sexual reproduction has minimal changes of mutations compared to asexual reproduction
I hope this helps
Consider the balanced equation Zn + 2HCl ZnCl2 + H2 How many
moles of ZnCl2 will be produced if 2 moles of HCl are used?
Answer:
1 mole of ZnCl₂
Explanation:
Just from the stoichiometric equation/ balanced equation:
Zn(s) + 2HCl(aq) → ZnCl₂(s) + H₂(g)
1 mole 2 moles 1 mole 1 mole
Therefore: 2 moles of 2HCl produce 1 mole of ZnCl₂
HELPP ASAP I WILL MARK BRAINIST
Answer:
I'm thinking ethier D or A
Explanation:
Bears stop coming to a river ecosystem where they have been eating many fish each day. The fish the bears eat normally eat smaller fish, which eat plants along the river bottom.
What happens to the ecosystem?
Both the larger and the smaller fish populations grow quickly but then die out because the plant life is insufficient for them all to eat.
The larger fish population will drop first, and the smaller fish population will grow quickly. The plants will die off because too many of the smaller fish are eating them.
The larger fish population explodes at first, and the smaller fish population begins to drop. Eventually, the river runs out of smaller fish so larger fish die out, and the plant population grows.
The smaller fish population begins to eat more plants and to grow. The larger fish have more food to eat so their population is able to grow, too.
Answer:
The larger fish population explodes at first, and the smaller fish population begins to drop. Eventually, the river runs out of smaller fish so larger fish die out, and the plant population grows.
Explanation:
At 47c a gas has a pressure of 140kpa. The gas is cooled until the pressure decreases to 105kpa. If the volume remains constant, what will the final temperature be in kelvin’s? In degrees Celsius
Answer:
The final temperature is equal to 240 K or -33.15°C
Explanation:
Given that,
Initial temperature of the gas, T₁ = 47°C = 320 K
Initial pressure, P₁ = 140 kpa
Final pressure, P₂ = 105 kpa
We need to find the final temperature if the volume remains constant. The relation between temperature and pressure is given by :
[tex]P\propto T[/tex]
or
[tex]\dfrac{P_1}{P_2}=\dfrac{T_1}{T_2}\\\\T_2=\dfrac{P_2T_1}{P_1}\\\\T_2=\dfrac{105\times 320}{140}\\\\T_2=240\ K\\\\T_2=-33.15^{\circ} C[/tex]
So, the final temperature is equal to 240 K or -33.15°C.
To achieve the highest return during recrystallization of a given solid, one must: Group of answer choices Add the minimum amount of boiling solvent necessary to dissolve the solid to be crystallized. Add an excess amount of cold solvent necessary to dissolve the solid to be crystallized. Add the minimum amount of cold solvent necessary to dissolve the solid to be crystallized. Add an excess amount of boiling solvent necessary to dissolve the solid to be crystallized.
Answer:
Option A
Explanation:
Addition of too much of solvent will make the solution dilute due to which the crystals will not form. Hence option D is incorrect
On the other hand adding a minimum amount of boiling solvent will give a saturated solution for recrystallization. Hence, option A is incorrect
Addition of cold solvent will lower the rate of formation of crystals. Hence, both option B and C are incorrect
What happens to the entropy when a solution is made?
A. The entropy increases.
B. The entropy decreases.
C. The entropy goes to zero.
D. The entropy is unaffected.
Answer:
The entropy increases
Explanation:
Just took the quiz
Which of the following is a characteristic shared by all living things?
A. They have tissues and organs,
B. They take in oxygen.
C. They make more individuals of the same kind.
D. They move.
During energy conversions, some energy is always lost as _____.
heat
electricity
chemical energy
light
Answer:
electricity
Explanation:
I know this because I am currently learning about this and remember doing it
5.0 g of copper was heated from 20°C to 80°C. How much energy was used to heat Cu?
Answer:
100 J of energy are needed to heat the copper from 20∘C to 80∘C .
Here are the atomic masses of hypothetical elements:
X = 13.25 amu
Y = 69.23 amu
Z = 109.34 amu
3.8 moles of X2Y5Z3 is equivalent to how many grams?
Enter your answer to zero decimal places (round to the ones place). Do
not include the units of "g", just the numerical answer.
Answer:
2663 g
Explanation:
We'll begin by calculating the molar mass Of X₂Y₅Z₃. This can be obtained as follow:
Molar mass of X₂Y₅Z₃ = (13.25×2) + (69.23×5) + (109.34×3)
= 26.5 + 346.15 + 328.02
= 700.67 g/mol
Finally, we shall determine the mass of 3.8 moles of X₂Y₅Z₃. This can be obtained as follow:
Molar mass of X₂Y₅Z₃ = 700.67 g/mol
Mole of X₂Y₅Z₃ = 3.8 moles
Mass of X₂Y₅Z₃ =?
Mass = mole × molar mass
Mass of X₂Y₅Z₃ = 3.8 × 700.67
Mass of X₂Y₅Z₃ = 2663 g
Therefore, the of 3.8 moles of X₂Y₅Z₃ is
2663 g
How many grams are there in 1.8055 x 10^25 molecules of sodium sulfate? Hint: Convert to moles first
Answer:
4258.82 g of Na₂SO₄
Explanation:
From the question given above, the following data were obtained;
Number of molecules of Na₂SO₄ = 1.8055x10²⁵ molecules.
Number of mole of Na₂SO₄ =?
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole
Therefore,
6.02×10²³ molecules = 1 mole of Na₂SO₄
Next, we shall determine the mass of 1 mole of Na₂SO₄. This can be obtained as follow:
1 mole of Na₂SO₄ = (23×2) + 32 + (16×4)
= 46 + 32 + 64
= 142 g
Thus,
6.02×10²³ molecules = 142 g of Na₂SO₄
Finally, we shall determine the mass of Na₂SO₄ that contains 1.8055x10²⁵ molecules. This can be obtained as follow:
6.02×10²³ molecules = 142 g of Na₂SO₄
Therefore,
1.8055x10²⁵ molecules
= (1.8055x10²⁵ × 142) / 6.02×10²³
= 4258.82 g of Na₂SO₄
Thus, 4258.82 g of Na₂SO₄ contains 1.8055x10²⁵ molecules
PLZ HELP *NO LINKS*
1) How many moles of gaseous arsine (AsH3) occupy 0.372 L at STP?
In sig fig 4
2) What is the density of gaseous arsine?
In sig fig 4
Thanks!
Answer: (1). There are 0.0165 moles of gaseous arsine (AsH3) occupy 0.372 L at STP.
(2). The density of gaseous arsine is 3.45 g/L.
Explanation:
1). At STP the pressure is 1 atm and temperature is 273.15 K. So, using the ideal gas equation number of moles are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.
[tex]PV = nRT\\1 atm \times 0.372 L = n \times 0.0821 L atm/mol K \times 273.15 K\\n = 0.0165 mol[/tex]
2). As number of moles are also equal to mass of a substance divided by its molar mass.
So, number of moles of Arsine [tex](AsH_{3})[/tex] (molar mass = 77.95 g/mol) is as follows.
[tex]No. of moles = \frac{mass}{molar mass}\\0.0165 mol = \frac{mass}{77.95 g/mol}\\mass = 1.286 g[/tex]
Density is the mass of substance divided by its volume. Hence, density of arsine is calculated as follows.
[tex]Density = \frac{mass}{volume}\\= \frac{1.286 g}{0.372 L}\\= 3.45 g/L[/tex]
Thus, we can conclude that 0.0165 moles of gaseous arsine (AsH3) occupy 0.372 L at STP and the density of gaseous arsine is 3.45 g/L.
a) How do you prepare %3 (w/v) Na2CO3 solution from Na2CO3⸱2H2O? (15p) Na2CO3 MW=106 g/mol
Answer:
4.02g of Na2CO3⸱2H2O must be added completing the volume of the solution to 100mL
Explanation:
A 3%(w/v) solution contains 3g of solute (In this case, Na2CO3) in 100mL of solution.
Assuming we require 100mL of solution we must add 3g of Na2CO3. The reactant that is available is its dihydrate, with molar mass:
106g/mol + 2*MW H2O
106g/mol + 2*18g/mol = 142g/mol
That means the mass of Na2CO3.2H2O that must be added to prepare the solution is:
3g Na2CO3 * (142g/mol Na2CO3.2H2O / 106g/mol Na2CO3) =
4.02g of Na2CO3⸱2H2O must be added completing the volume of the solution to 100mL
8. Which of the following elemental gases would have properties closest to an ideal gas?
a. hydrogen
argon
b. helium
d. fluorine
Answer:
Helium
Explanation:
Please tell me if it was right
15.
A tank containing 173 grams of methane, CH (9), registers 15.1 atmospheres at 298 Kelvin. What is the volume of the tank (assuming the entire volume is available to the gas)?
A 3,410L
B. 213
C.O 175L
D. 280.
Chemistry 4/28 5454
Copyright © 2021 Illuminate Education, Inc. All Rig
Answer: The volume of tank is 17.5 L.
Explanation:
Given: Mass of methane = 173 g
Pressure = 15.1 atm
Temperature = 298 K
Molar mass of methane is 16.04 g/mol.
Therefore, moles of methane are calculated as follows.
[tex]No. of moles = \frac{mass}{molar mass}\\= \frac{173 g}{16.04 g/mol}\\= 10.78 mol[/tex]
Now, ideal gas equation is used to calculate the volume as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.
[tex]PV = nRT\\15.1 atm \times V = 10.78 mol \times 0.0821 L atm/mol K \times 298 K\\V = \frac{10.78 mol \times 0.0821 L atm/mol K \times 298 K}{15.1 atm}\\= 17.5 L[/tex]
Thus, we can conclude that volume of the tank is 17.5 L.
What's you're favorite year?
Answer:
2020 cause of the lockdown
Explanation:
If a substance has a density of 0.123 g/mL, 10.0 dL would weigh in g?
Answer:
123 g
Explanation:
First, we convert 10.0 dL into mL, keeping in mind that:
1 dL = 100 mL; then10.0 dL * 100 = 1000 mLNow we can multiply the density by the volume in order to calculate the mass:
Density = mass / volumeDensity * volume = mass0.123 g/mL * 1000 mL = 123 g10.0 dL of a substance with a density of 0.123 g/mL would weigh 123 grams.
What volume will 28 grams of nitrogen gas occupy at 27 Celsius and a
pressure of 785 mm Hg?
Answer: [tex]2.49\ m^3[/tex]
Explanation:
Given
Mass of nitrogen present [tex]m=28\ g[/tex]
Temperature [tex]T=27^{\circ}C\equiv 300\ K[/tex]
Pressure [tex]P=785\ mm\ \text{of}\ Hg\ \text{or}\ 1.032\ atm[/tex]
The molar mass of Nitrogen [tex]M=28\ g/mol[/tex]
No of moles of nitrogen present
[tex]n=\dfrac{m}{M}\\\\n=\dfrac{28}{28}\\\\n=1[/tex]
Using [tex]PV=nRT[/tex]
[tex]\Rightarrow 1.032\times V=1\times 8.314\times 300\\\\\Rightarrow V=\dfrac{2494.2}{1.032}\\\\\Rightarrow V=2494.2\ L\ \text{or}\ 2.49\ m^3[/tex]
Oil is
so it will
dissolve in water.
Answer:
liquid, and of course
Explanation:
How many grams of N2 is needed to produce 2000 grams NH3?
Answer:
1644 g
Explanation:
Step 1: Write the balanced equation
N₂ + 3 H₂ ⇒ 2 NH₃
Step 2: Calculate the moles corresponding to 2000 g of NH₃
The molar mass of NH₃ is 17.03 g/mol.
2000 g × 1 mol/17.03 g = 117.4 mol
Step 3: Calculate the moles of N₂ needed to produce 117.4 moles of NH₃
The molar ratio of N₂ to NH₃ is 1:2. The moles of N₂ needed are 1/2 × 117.4 mol = 58.70 mol
Step 4: Calculate the mass corresponding to 58.70 moles of N₂
The molar mass of N₂ is 28.01 g/mol.
58.70 mol × 28.01 g/mol = 1644 g
Jerry is trying to classify cells by their physical characteristics. He discovers a multicellular organism containing cells that have a nucleus and a cell wall as well as the ability to conduct photosynthesis. Into which of the three domains would this organism most likely fit? A. Archaea B. bacteria C. Eukarya D. Viral
Domains eukarya would this organism most likely fit.
The domain eukarya comprised of eukaryotes or organisms whose cells contain true nucleus.
What is a domain?It is the largest of all groups in the classification of life. There are three domains:-
Archaea domainBacteria domainEukarya domainWhat is Eukarya?It is the domain of organism called eukaryotes. These are the organism who have a well defined nucleus and membrane bound organelles.
Hence, C) option is correct.
To know more about domain here
https://brainly.com/question/26344149
#SPJ2
The Swedish chemist Karl Wilhellm was the first to produce chlorine in the lab
2NaCl + 2H2SO4 + MnO2 -----> Na2SO4 + MnSO4 + H2O + Cl2
If Dr. Wilhellm started with 50.0 g of each reactant, which reactant is the limiting reactant?
Answer:
Explanation:
Remark
Interesting que8stion. You have to figure out how many mols are present in each reactant. Since all periodic tables are different, I'm going to use rounded numbers. If it is too close, I will go further.
NaCl
Na = 23
Cl = 35.5
1 mol = 58.5 grams
given = 50.0 grams
Mols for the reaction = 50/58.5 = 0.855
H2SO4
H2 = 2*1 2
S = 1 * 32 32
O4 = 4*16 64
1 mol = 98 grams
mols present = 50/98 = 0.510
MnO2
Mn = 1 * 55 = 55
O2 = 2*16 = 32
1 mol = 87 grams
mols available = 50/87 = 0.5747
Discussion
Na Cl and H2SO4 both require 2 moles for every mol of Cl2 produces.
H2SO4 has 0.51 mols available for a reaction
NaCl has 0.855 moles available for a reaction
MnO2 has 0.575 moles available for a reaction.
Given those numbers 0.510 mols of H2SO4 will only produce 0.255 mols of chlorine and the rest will be reduced in a similar manner. H2SO4 is the limiting reagent (reactant).
In other words only 0.510 moles of NaCl will be used and 0.855 - 0.510 moles will be left over on the reactants side.
only 0.575 moles of MnO2 will be used and 0.065 moles will be left over.
The oddity in the result shows up because the balance numbers in the equation give a ratio of 2 to 1 for H2SO4 and NaCl The 2 belongs to the reactants and the 1 for the chlorine.
131.39 g/mol C2HCl3
find the molecular formulas
Answer:
Find the mass of 1 mole.
mass of
1
mole of
131.39
g
m
o
l
C
2
H
C
I
⋅
3
=
37.04000067
g
Explanation:
hope it helps make brainlliest ty