A simple pendulum takes 2.00 s to make one compete swing. If we now triple the length, how long will it take for one complete swing

Answers

Answer 1

Answer:

3.464 seconds.

Explanation:

We know that we can write the period (the time for a complete swing) of a pendulum as:

[tex]T = 2*\pi*\sqrt{\frac{L}{g} }[/tex]

Where:

[tex]\pi = 3.14[/tex]

L is the length of the pendulum

g is the gravitational acceleration:

g = 9.8m/s^2

We know that the original period is of 2.00 s, then:

T = 2.00s

We can solve that for L, the original length:

[tex]2.00s = 2*3.14*\sqrt{\frac{L}{9.8m/s^2} }\\\\\frac{2s}{2*3.14} = \sqrt{\frac{L}{9.8m/s^2}}\\\\(\frac{2s}{2*3.14})^2*9.8m/s^2 = L = 0.994m[/tex]

So if we triple the length of the pendulum, we will have:

L' = 3*0.994m = 2.982m

The new period will be:

[tex]T = 2*3.14*\sqrt{\frac{2.982m}{9.8 m/s^2} } = 3.464s[/tex]

The new period will be 3.464 seconds.


Related Questions

What best describes a societal law

Answers

Answer:

Societal laws are based on the behavior and conduct made by society or government.

hope it helps.stay safe healthy and happy.

A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction

Answers

Answer:

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Explanation:

By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:

[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)

[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.

[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.

[tex]f_{s}[/tex] - Static friction force, in newtons.

[tex]f_{k}[/tex] - Kinetic friction force, in newtons.

[tex]m[/tex] - Mass, in kilograms.

[tex]g[/tex] - Gravitational constant, in meters per square second.

If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:

[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{s} = 0.273[/tex]

[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{k} = 0.181[/tex]

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

how do you calculate voltage drop

Answers

Answer:

Multiply current in amperes by the length of the circuit in feet to get ampere-feet. Circuit length is the distance from the point of origin to the load end of the circuit.

Divide by 100.

Multiply by proper voltage drop value in tables. The result is voltage drop.

Explanation:

A 100-W light bulb is left on for 20.0 hours. Over this period of time, how much energy did the bulb use?

Answers

Answer:

Power = Energy/time

Energy = Power xtime.

Time= 20hrs

Power = 100Watt =0.1Kw

Energy = 0.1 x 20 = 2Kwhr.

This Answer is in Kilowatt-hour ...

If the one given to you is in Joules

You'd have to Change your time to seconds

Then Multiply it by the power of 100Watts.

Suppose the pucks start spinning after the collision, whereas they were not before. Will this affect your momentum conservation results

Answers

Answer:

No, it will not affect the results.

Explanation:

For elastic collisions in an isolated system, when a collision occurs, it means that the systems objects total momentum will be conserved under the condition that there will be no net external forces that act upon the objects.

What that means is that if the pucks start spinning after the collision, we are not told that there was any net external force acting on the puck and thus momentum will be conserved because momentum before collision will be equal to the momentum after the collision.

uppose that 3 J of work is needed to stretch a spring from its natural length of 32 cm to a length of 49 cm. (a) How much work (in J) is needed to stretch the spring from 37 cm to 45 cm

Answers

Answer:

0.113 J

Explanation:

Applying,

w = ke²/2................. Equation 1

Where w = workdone in stretching the spring, k = spring constant, e = extension

make k the subject of the equation

k = 2w/e²................ Equation 2

From the question,

Given: w = 3 J, e = 49-32 = 17 cm = 0.17 m

Substitute these values into equation 2

k = (2×3)/0.17²

k = 6/0.17

k = 35.29 N/m

(a) if the spring from 37 cm to 45 cm,

Then,

w = ke²/2

Given: e = 45-37 = 8 cm = 0.08

w = 35.29(0.08²)/2

w = 0.113 J

Two spheres are rolling without slipping on a horizontal floor. They are made of different materials, but each has mass 5.00 kg and radius 0.120 m. For each the translational speed of the center of mass is 4.00 m/s. Sphere A is a uniform solid sphere and sphere B is a thin-walled, hollow sphere. Part B How much work, in joules, must be done on the solid sphere to bring it to rest? Express your answer in joules. VO AE4D ? J WA Request Answer Submit Part C How much work, in joules, must be done on the hollow sphere to bring it to rest? Express your answer in joules. Wa Request

Answers

Answer:

Explanation:

Moment of inertia of solid sphere = 2/5 m R²

m is mass and R is radius of sphere.

Putting the values

Moment of inertia of solid sphere I₁

Moment of inertia of hollow  sphere I₂

Kinetic energy of solid sphere ( both linear and rotational )

= 1/2 ( m v² + I₁ ω²)                [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/5 m R² ω²)

= 1/2 ( m v² + 2/5 m v²)

=1/2 x 7 / 5 m v²

= 0.7 x 5 x 4² = 56 J .

This will be equal to work to be done to stop it.

Kinetic energy of hollow sphere ( both linear and rotational )

= 1/2 ( m v² + I₂ ω²)  [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/3 m R² ω²)

= 1/2 ( m v² + 2/3 m v²)

=1/2 x 5 / 3 m v²

= 0.833 x 5 x 4² = 66.64 J .

This will be equal to work to be done to stop it.

The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr. ​

Answers

Answer:

Correct option not indicated

Explanation:

There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).

The formula to calculate a centripetal force (F) is

F = mv²/r

Where m is mass, v is velocity and r is radius

where

While the formula to calculate a centrifugal force (F) is

F = mω²r

where m is mass, ω is angular velocity and r is radius of the circular path.

From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.

NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Answers

Answer:

The correct answer is "[tex]4.49\times 10^{10} \ joules[/tex]".

Explanation:

According to the question,

The work will be:

⇒ [tex]Work=-\frac{kQq}{R}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (18-30)\times 3\times 0.2}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (-12)\times 3\times 0.2}[/tex]

              [tex]=\frac{0.3978}{\varepsilon }[/tex]

              [tex]=4.49\times 10^{10} \ joules[/tex]

Thus the above is the correct answer.    

We have that the workdone  is mathematically given as

W=4.49*10e10 J

From the question we are told

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Workdone

Generally the equation for the workdone   is mathematically given as

W=-kQq/R

Therefore

0.3978/ε0 =-1/(4πε0*(18-30)*3*0.2

Hence

W=4.49*10e10 J

For more information on Charge visit

https://brainly.com/question/9383604

A wave moves in a rope with a certain wavelength. A second wave is made to move in the same rope with twice the wavelength of the first wave. The frequency of the second wave is _______________ the frequency of the first wave.

Answers

Answer:

The frequency of the second wave is half of the frequency of first one.

Explanation:

The wavelength of the second wave is double is the first wave.

As we know that the frequency is inversely proportional to the wavelength of the velocity is same.

velocity = frequency x wavelength

So, the ratio of frequency of second wave to the first wave is

[tex]\frac{f_2}{f_1} =\frac{\lambda _1}{\lambda _2}\\\\\frac{f_2}{f_1} =\frac{\lambda _1}{2\lambda _1}\\\\\frac{f_2}{f_1} =\frac{1}{2}\\\\[/tex]

The frequency of the second wave is half of the frequency of first one.

The outer surface of a spacecraft in space has an emissivity of 0.44 and a solar absorptivity of 0.3. If solar radiation is incident on the spacecraft at a rate of 950 W/m2, determine the surface temperature of the spacecraft when the radiation emitted equals the solar energy absorbed.

Answers

Answer:

[tex]T=326.928K[/tex]

Explanation:

From the question we are told that:

Emissivity [tex]e=0.44[/tex]

Absorptivity [tex]\alpha =0.3[/tex]

Rate of solar Radiation [tex]R=0.3[/tex]

Generally the equation for Surface absorbed energy is mathematically given by

 [tex]E=\alpha R[/tex]

 [tex]E=0.3*950[/tex]

 [tex]E=285W/m^2[/tex]

Generally the equation for Emitted Radiation is mathematically given by

 [tex]\mu=e(\sigmaT^4)[/tex]

Where

T=Temperature

 [tex]\sigma=5.67*10^8Wm^{-2}K_{-4}[/tex]

Therefore

 [tex]\alpha*E=e \sigma T^4[/tex]

 [tex]0.3*(950)=0.44(5.67*10^-8)T^4[/tex]

 [tex]T=326.928K[/tex]

A 1.40-kg block is on a frictionless, 30 ∘ inclined plane. The block is attached to a spring (k = 40.0 N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.60 m/s .
How far does it drop before coming to rest? (Assume the spring is unlimited in how far it can stretch.)
Express your answer using two significant figures.

Answers

Answer:

0.5

Explanation:

because the block is attached to the pulley of the string

1.- Que distancia recorrió una carga de 2,5x10-6 coul, generando así un campo eléctrico de 55new/coul.​

Answers

Answer:

r = 20.22 m

Explanation:

Given that,

Charge,[tex]q=2.5\times 10^{-6}\ C[/tex]

Electric field, [tex]E=55\ N/C[/tex]

We need to find the distance. We know that, the electric field a distance r is as follows :

[tex]E=\dfrac{kq}{r^2}\\\\r=\sqrt{\dfrac{kq}{E}}\\\\r=\sqrt{\dfrac{9\times 10^9\times 2.5\times 10^{-6}}{55}}\\\\r=20.22\ m[/tex]

So, the required distance is 20.22 m.

An electron in a hydrogen atom is in a p state. Which of the following statements is true?


a.
The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).



b.
The electron has an energy of -13.6 eV.


c.
The electron has a total angular momentum of ħ.


d.
The electron has a z-component of angular momentum equal to sqrt(2)* ħ.

Answers

Answer:

The electron’s wavefunction has at least one node (i.e., at least one place in space where it goes to zero).

Explanation:

We know that the p-orbitals have nodes. A node is a region where the probability of finding an electron goes down to zero.

P orbitals are oriented along the x,y,z Cartesian axes and are known to have angular nodes along the axes.

Hence, if an electron in a hydrogen atom is in a p state, the electron’s wavefunction has at least one node

Help me with my physics, please

Answers

The right answer would be

-20t+ 80

PLZ help asap :-/
............................ ​

Answers

Explanation:

[16]

[tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]

Here,

[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2Ω

We have to find the equivalent resistance of the circuit.

Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,

[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]

Reciprocating both sides,

[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]

Henceforth, Option A is correct.

_________________________________

[17]

[tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,

[tex] \longrightarrow [/tex] V = IR

[tex] \longrightarrow [/tex] 3 = I × 3.33

[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I

[tex] \longrightarrow [/tex] 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________

[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]

ACCORDING TO NEWTON'S THIRD LAW EVERY ACTION HAS EQUAL AND OPPOSITE REACTION BUT THEN WHY DON'T WE FLY WHEN WE FART??​

Answers

Answer:

Your fart only has so much force, not nearly enough to launch you into oblivion. Your fart and you still exert a force onto each other, so I guess, hypothetically, you could fly if you really, really try hard enough. Just make sure you don't try too hard and prolapse as a result :)

d. On the afternoon of January 15, 1919, an unusually warm day in Boston, a 17.7-m-high, 27.4-m-diameter cylindrical metal tank used for storing molasses ruptured. Molasses flooded into the streets in a 5-m-deep stream, killing pedestrians and horses and knocking down buildings. The molasses had a density of 1600 kg>m3 . If the tank was full before the accident, what was the total outward force the molasses exerted on its sides

Answers

Answer:

F = 1.638 x 10⁸ N = 163.8 MN

Explanation:

The total force exerted by the molasses is given as:

F = PA

where,

F = Force exerted by the molasses = ?

P = Pressure = ρgh

ρ = density of molasses = 1600 kg/m³

g = acceleration due to gravity = 9.81 m/s²

h = height of tank = 17.7 m

A = cross-sectional area of tank = πr²

r = radius of tank = 27.4 m/2 = 13.7 m

Therefore,

[tex]F = \rho ghA = \rho gh(\pi r^2)\\\\F = (1600\ kg/m^3)(9.81\ m/s^2)(17.7\ m)(\pi)(13.7\ m)^2[/tex]

F = 1.638 x 10⁸ N = 163.8 MN

No esporte coletivo, um dos principais fatores desenvolvidos é o desenvolvimento social. Qual desses não faz parte das virtudes ensinadas no esporte?

Companheirismo
Humildade
Ser justo (Fair Play)
Vencer independente do que precise ser feito

Answers

Answer:

fair palybtgshsisuehdh

During a practice shot put throw, the 7.9-kg shot left world champion C. J. Hunter's hand at speed 16 m/s. While making the throw, his hand pushed the shot a distance of 1.4 m. Assume the acceleration was constant during the throw.

Required:
a. Determine the acceleration of the shot.
b. Determine the time it takes to accelerate the shot.
c, Determine the horizontal component of the force exerted on the shot by hand.

Answers

Answer:

a)   a = 91.4 m / s²,  b)    t = 0.175 s, c)  

Explanation:

a) This is a kinematics exercise

           v² = vox ² + 2a (x-xo)

           a = v² - 0/2 (x-0)

           

let's calculate

          a = 16² / 2 1.4

          a = 91.4 m / s²

b) the shooting time

          v = vox + a t

          t = v-vox / a

          t = 16 / 91.4

          t = 0.175 s

c) let's use Newton's second law

          F = ma

          F = 7.9 91.4

          F = 733 N

It takes 130 J of work to compress a certain spring 0.10m. (a) What is the force constant of this spring? (b) To compress the spring an additional 0.10 m, does it take 130 J, more than 130 J or less than 130 J? Verify your answer with a calculation.

Answers

Explanation:

Given that,

Work done to stretch the spring, W = 130 J

Distance, x = 0.1 m

(a) We know that work done in stretching the spring is as follows :

[tex]W=\dfrac{1}{2}kx^2\\\\k=\dfrac{2W}{x^2}\\\\k=\dfrac{2\times 130}{(0.1)^2}\\\\k=26000\ N/m[/tex]

(b) If additional distance is 0.1 m i.e. x = 0.1 + 0.1 = 0.2 m

So,

[tex]W=\dfrac{1}{2}kx^2\\\\W=\dfrac{1}{2}\times 26000\times 0.2^2\\\\W=520\ J[/tex]

So, the new work is more than 130 J.

a. Give an example of the conversion of light energy to electrical energy.

b. Give an example of chemical energy converting to heat energy.

c. Give an example of mechanical energy converting to heat energy.

Answers

Explanation:

a) photovoltaic cell is a semiconductor device and it converts light energy to electrical energy

b) burning of coal converts chemical energy to heat energy

c) rubbing of both hands against each other converts mechanical to heat energy

Answer:

a. solar cells

b.coal,wood,petroleum

c.rubbing ours palms

a vessel with mass 10kg intially moving withthe velocicity 12m s along the x axis explodes into three exactly identical pieces Just after the explosion one piece moves with speed 10 m s along the x axis and asecond piece moves with speed 10 m s along the y axis What iis the magnitude of the component of velocity of the third piece along the y axiss

Answers

Answer:

Explanation:

Apply law of conservation of momentum along y-axis.

Initially there was no momentum along y-axis. So there will be nil momentum along y-axis again finally.

Let the mass of each piece after breaking be m .

Momentum of piece moving along positive y-axis

= m x 10 = 10m .

Let the component of velocity of third piece along y-axis be v .

Its momentum along the same direction = m v .

Total momentum along y -axis = 10 m + m v

According to law of conservation of momentum

10 m + mv = 0

v = - 10 m/s .

Component of velocity of the third piece along y-axis will be - 10 m/s .

In other words it will be along negative y-axis with speed of 10 m/s.

a girl is moving with a uniform velocity of 1.5 m/s then mathematically find her acceleration​

Answers

Answer:

0

Explanation:

a = dv/dt

if v is constant than the slope of the v graph will be 0, so dv/dt is 0

a= 0

Assume that I = E/(R + r), prove that 1/1 = R/E + r/E​

Answers

[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \frac{1}{I} = \frac{R}{E} + \frac{r}{E} }}}}}}[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]

[tex]I = \frac{ E}{ R + r} \\[/tex]

[tex] ➺\:\frac{I}{1} = \frac{E}{R + r} \\[/tex]

Since [tex]\frac{a}{b} = \frac{c}{d} [/tex] can be written as [tex]ad = bc[/tex], we have

[tex]➺ \: I \: (R + r) = E \times 1[/tex]

[tex]➺ \: \frac{1}{I} = \frac{R + r}{E} \\ [/tex]

[tex]➺ \: \frac{1}{I} = \frac{R}{E} + \frac{r}{E} \\ [/tex]

[tex]\boxed{ Hence\:proved. }[/tex]

[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35ヅ}}}}}[/tex]

Name the electrolyte in the chemical method of generating electricity​

Answers

Some of such commonly used compounds are Sodium Chloride, Nitric Acid, Sulphuric Acid, Sodium Acetate, Chloric acid, etc. The first battery was invented by Italian physicist Alessandro Volta in the year 1799 by generating continuous electric current using voltaic piles.

A wheel rotates about a fixed axis with an initial angular velocity of 13 rad/s. During a 8-s interval the angular velocity increases to 57 rad/s. Assume that the angular acceleration was constant during this time interval. How many revolutions does the wheel turn through during this time interval

Answers

Answer:

The number of revolutions is 44.6.

Explanation:

We can find the revolutions of the wheel with the following equation:

[tex]\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}[/tex]

Where:

[tex]\omega_{0}[/tex]: is the initial angular velocity = 13 rad/s              

t: is the time = 8 s

α: is the angular acceleration

We can find the angular acceleration with the initial and final angular velocities:

[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]

Where:

[tex] \omega_{f} [/tex]: is the final angular velocity = 57 rad/s

[tex] \alpha = \frac{\omega_{f} - \omega_{0}}{t} = \frac{57 rad/s - 13 rad/s}{8 s} = 5.5 rad/s^{2} [/tex]

Hence, the number of revolutions is:

[tex] \theta = \omega_{0}t + \frac{1}{2}\alpha t^{2} = 13 rad/s*8 s + \frac{1}{2}*5.5 rad/s^{2}*(8 s)^{2} = 280 rad*\frac{1 rev}{2\pi rad} = 44.6 rev [/tex]

Therefore, the number of revolutions is 44.6.

       

I hope it helps you!

A body of mass 2kg is released from from a point 100m above the ground level. calculate kinetic energy 80m from the point of released.​

Answers

Answer:

1568J

Explanation:

Since the problem states 80 m from the point of drop, the height relative to the ground will be 100-80=20m.

Use conservation of Energy

ΔUg+ΔKE=0

ΔUg= mgΔh=2*9.8*(20-100)=-1568J

ΔKE-1568J=0

ΔKE=1568J

since KEi= 0 since the object is at rest 100m up, the kinetic energy 20meters above the ground is 1568J

~~~~~NEED HELP ASAP~~~~~
A point on a rotating wheel (thin loop) having a constant angular velocityy of 300 rev/min, the wheel has a radius of 1.5m and a mass of 30kg. (I = mr^2)


a.) Determine the linear regression

b.) At this given angular velocity, what is the rotational kinetic energy?

Answers

Answer:

Centripetal Acceleration 18.75 m/s^2, Rotational Kinetic Energy 843.75 J

Explanation:

a Linear acceleration (we cant find tangential acceleration with the givens so we will find centripetal)

a= ω^2*r

ω= 300rev/min

convert into rev/s

300/60= 5rev/s

a= 18.75m/s^2

b) use Krot= 1/2 Iω^2

plug in gives

1/2(30*2.25)(25)= 843.75 J

two identical eggs are dropped from the same height. The first eggs lands on a dish and breaks, while the second lands on a pillow and does not break. Which quantities are the same in both situations

Answers

Answer:

The height is the same

Explanation:

Because they were at the same height but they fell at different velocities

Other Questions
For a confidence level of 88%, find the critical value for a normally distributed variable. The sample mean is normally distributed if the population standard deviation is known. Find the x and y intercept for the equation: = 4 One cause of the Panic of 1819 was Select one: a. decreased foreign demand for American agricultural goods. Explain TWO reasons why some Grenadians were unhappy 2 with Galry's government f(x)=2x+3/4x+5find f(-9) yAbelRead the excerpt from The Hot Zone by RichardPreston, then use the drop-down menus to answer thequestionsWhat is the topic of the passage?What is the central idea of the passage?Half of this biocontainment operation was going to benews containment, C. J. Peter's comments to TheWashington Post were designed to create an impressionthat the situation was under control, safe, and not all thatinteresting, C. J. was understating the gravity of thesituation. But he could be very smooth when he wanted,and he used his friendliest voice with the reporters,assuring them over the telephone that there really was noproblem, just kind of a routine technical situation,Somehow the reporters concluded that the sick monkeyshad been "destroyed as a precaution" when in fact thenightmare, and the reason for troops, was that theanimals hadn't been destroyed,- The Hot Zone,Richard PrestonWhich detail supports the central idea?DanteIntro HELP ASAP PLS Select the correct answer.A light bulb's brightness is reduced when placed behind a screen. The amount of visible light produced by the light bulb decreases by 25% witheach additional layer that is added to the screen. With no screen, the light bulb produces 750 lumens. The lumen is a unit for measuring the totalquantity of visible light emitted by a source,Select the correct equation that can be used to represent the lumens, L, after x screen layers are added. How do the rights of individual students compare with the rights of the school to maintain a safe environment? What expectation of privacy should exist in public schools? Mei's average score on the first six holes in a miniature golf game was 6. her average score on the next 12 holes was 3. what was her average score on all 18 holes? PLEASE HELP!!! Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question. A number line going from negative 9 to positive 1. In to build a fire how does the man know that he shouldnt travel alone when its 50 below 0 Please help me in this question A is 5 times B, and B is 7 less than 2 times C. Which of the following statements describes therelationship betweeen A & C?(a) A is 7 less than 7 times c(b) A is 7 less than 10 times C(C) A is 14 less than 7 times C(d) A is 35 less than 7 times C(e) A is 35 less than 10 times C. I need help solving this! For the reaction C + 2H2 CH4, how many moles of hydrogen are needed to make 146.6 grams of methane, CH4 ?Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:ElementMolar MassHydrogen1Carbon12 Soraya is being cyberbullied by a group of girls on social media. They have made several posts directly mentioning her and calling her hurtful names, along with making fun of her appearance and her cultural background. Which of the following would be the most appropriate way for Soraya to handle the situation? A. Confront the girls at school and tell them she is ready to defend herself physically if they continueB. Delete the social media accounts where she is being cyberbullied but take screenshots to show someone she trusts C. Respond to the girls on her social media accounts with argumentative and emotional comments D. Withdraw from friends and family until they notice something is wrong and help her with the situation His year 16500 people visited a memorial site. This was an increase of 20% from the previous year. How many visitors were there in the previous year? Heeeeeeeeeeeellllllllllppppppp We want to know if money affects happiness. We surveyed 20 people one week before they were notified of winning a large publishers clearing house sweepstakes and then again one month after they recieved their prize. What test would we use to compare their previous scores with their current scores Depreciation, in accounting, is a process that results in: Multiple Choice an accurate measurement of the economic usefulness of an asset. depreciable assets being reported in the balance sheet at their fair value. accumulating cash for the replacement of the asset. There are two beakers of water on the table. We can compare the average kinetic energy of the water molecules in the two beakers by measuring theirA temperatures.B volumes.C densities.D masses.