A small ball of uniform density equal to 1/2 the density of water is dropped into a pool from a height of 5m above the surface. Calculate the maximum depth the ball reaches before it is returned due to its bouyancy. (Omit the air and water drag forces).

Answers

Answer 1

Answer:

1.67 m

Explanation:

The potential energy change of the small ball ΔU equals the work done by the buoyant force, W

ΔU = -W

Now ΔU = mgΔh where m = mass of small ball = ρV where ρ = density of small ball and V = volume of small ball. Δh = h - h' where h = final depth of small ball and h' = initial height of small ball = 5 m. Δh = h - 5

ΔU = mgΔh

ΔU = ρVgΔh

Now, W = ρ'VgΔh'   where ρ = density of water and V = volume of water displaced = volume of small ball. Δh' = h - h' where h = final depth of small ball and h' = initial depth of small ball at water surface = 0 m. Δh' = h - h' = h - 0 = h

So, ΔU = -W

ρVgΔh = -ρ'VgΔh'

ρVg(h - 5) = -ρ'Vgh

ρ(h - 5) = -ρ'h

Since the density of the small ball equals 1/2 the density of water,

ρ = ρ'/2

ρ(h - 5) = -ρ'h

(ρ'/2)(h - 5) = -ρ'h

ρ'(h - 5)/2 = -ρ'h

(h - 5)/2 = -h

h - 5 = -2h

h + 2h = 5

3h = 5

h = 5/3

h = 1.67 m

So, the maximum depth the ball reaches is 1.67 m.


Related Questions

A 100-W light bulb is left on for 20.0 hours. Over this period of time, how much energy did the bulb use?

Answers

Answer:

Power = Energy/time

Energy = Power xtime.

Time= 20hrs

Power = 100Watt =0.1Kw

Energy = 0.1 x 20 = 2Kwhr.

This Answer is in Kilowatt-hour ...

If the one given to you is in Joules

You'd have to Change your time to seconds

Then Multiply it by the power of 100Watts.

1.- Que distancia recorrió una carga de 2,5x10-6 coul, generando así un campo eléctrico de 55new/coul.​

Answers

Answer:

r = 20.22 m

Explanation:

Given that,

Charge,[tex]q=2.5\times 10^{-6}\ C[/tex]

Electric field, [tex]E=55\ N/C[/tex]

We need to find the distance. We know that, the electric field a distance r is as follows :

[tex]E=\dfrac{kq}{r^2}\\\\r=\sqrt{\dfrac{kq}{E}}\\\\r=\sqrt{\dfrac{9\times 10^9\times 2.5\times 10^{-6}}{55}}\\\\r=20.22\ m[/tex]

So, the required distance is 20.22 m.

PLZ help asap :-/
............................ ​

Answers

Explanation:

[16]

[tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]

Here,

[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2Ω

We have to find the equivalent resistance of the circuit.

Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,

[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]

Reciprocating both sides,

[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]

Henceforth, Option A is correct.

_________________________________

[17]

[tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,

[tex] \longrightarrow [/tex] V = IR

[tex] \longrightarrow [/tex] 3 = I × 3.33

[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I

[tex] \longrightarrow [/tex] 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________

[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Answers

Answer:

The correct answer is "[tex]4.49\times 10^{10} \ joules[/tex]".

Explanation:

According to the question,

The work will be:

⇒ [tex]Work=-\frac{kQq}{R}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (18-30)\times 3\times 0.2}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (-12)\times 3\times 0.2}[/tex]

              [tex]=\frac{0.3978}{\varepsilon }[/tex]

              [tex]=4.49\times 10^{10} \ joules[/tex]

Thus the above is the correct answer.    

We have that the workdone  is mathematically given as

W=4.49*10e10 J

From the question we are told

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Workdone

Generally the equation for the workdone   is mathematically given as

W=-kQq/R

Therefore

0.3978/ε0 =-1/(4πε0*(18-30)*3*0.2

Hence

W=4.49*10e10 J

For more information on Charge visit

https://brainly.com/question/9383604

what is time taken by radio wave to go and return back from communication satellite to earth??​

Answers

Answer:

Radio waves are used to carry satellite signals. These waves travel at 300,000 km/s (the speed of light). This means that a signal sent to a satellite 38,000 km away takes 0.13 s to reach the satellite and another 0.13 s for the return signal to be received back on Earth.

Explanation:

hope it help

A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction

Answers

Answer:

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Explanation:

By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:

[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)

[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.

[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.

[tex]f_{s}[/tex] - Static friction force, in newtons.

[tex]f_{k}[/tex] - Kinetic friction force, in newtons.

[tex]m[/tex] - Mass, in kilograms.

[tex]g[/tex] - Gravitational constant, in meters per square second.

If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:

[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{s} = 0.273[/tex]

[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{k} = 0.181[/tex]

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

ACCORDING TO NEWTON'S THIRD LAW EVERY ACTION HAS EQUAL AND OPPOSITE REACTION BUT THEN WHY DON'T WE FLY WHEN WE FART??​

Answers

Answer:

Your fart only has so much force, not nearly enough to launch you into oblivion. Your fart and you still exert a force onto each other, so I guess, hypothetically, you could fly if you really, really try hard enough. Just make sure you don't try too hard and prolapse as a result :)

The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr. ​

Answers

Answer:

Correct option not indicated

Explanation:

There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).

The formula to calculate a centripetal force (F) is

F = mv²/r

Where m is mass, v is velocity and r is radius

where

While the formula to calculate a centrifugal force (F) is

F = mω²r

where m is mass, ω is angular velocity and r is radius of the circular path.

From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.

NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.

A wave moves in a rope with a certain wavelength. A second wave is made to move in the same rope with twice the wavelength of the first wave. The frequency of the second wave is _______________ the frequency of the first wave.

Answers

Answer:

The frequency of the second wave is half of the frequency of first one.

Explanation:

The wavelength of the second wave is double is the first wave.

As we know that the frequency is inversely proportional to the wavelength of the velocity is same.

velocity = frequency x wavelength

So, the ratio of frequency of second wave to the first wave is

[tex]\frac{f_2}{f_1} =\frac{\lambda _1}{\lambda _2}\\\\\frac{f_2}{f_1} =\frac{\lambda _1}{2\lambda _1}\\\\\frac{f_2}{f_1} =\frac{1}{2}\\\\[/tex]

The frequency of the second wave is half of the frequency of first one.

Two spheres are rolling without slipping on a horizontal floor. They are made of different materials, but each has mass 5.00 kg and radius 0.120 m. For each the translational speed of the center of mass is 4.00 m/s. Sphere A is a uniform solid sphere and sphere B is a thin-walled, hollow sphere. Part B How much work, in joules, must be done on the solid sphere to bring it to rest? Express your answer in joules. VO AE4D ? J WA Request Answer Submit Part C How much work, in joules, must be done on the hollow sphere to bring it to rest? Express your answer in joules. Wa Request

Answers

Answer:

Explanation:

Moment of inertia of solid sphere = 2/5 m R²

m is mass and R is radius of sphere.

Putting the values

Moment of inertia of solid sphere I₁

Moment of inertia of hollow  sphere I₂

Kinetic energy of solid sphere ( both linear and rotational )

= 1/2 ( m v² + I₁ ω²)                [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/5 m R² ω²)

= 1/2 ( m v² + 2/5 m v²)

=1/2 x 7 / 5 m v²

= 0.7 x 5 x 4² = 56 J .

This will be equal to work to be done to stop it.

Kinetic energy of hollow sphere ( both linear and rotational )

= 1/2 ( m v² + I₂ ω²)  [ ω is angular velocity of rotation ]

= 1/2 ( m v² + 2/3 m R² ω²)

= 1/2 ( m v² + 2/3 m v²)

=1/2 x 5 / 3 m v²

= 0.833 x 5 x 4² = 66.64 J .

This will be equal to work to be done to stop it.

A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km

Answers

Answer:

20 seconds

Explanation:

We are given 2 givens in the first statement

v0=0 and a=5

And we are trying to find time needed to cover 1km or 1000m.

So we use

x-x0=v0t+1/2at²

Plug in givens

1000=0+2.5t²

solve for t

t²=400

t=20s

Other Questions
A source emits sound at a fixed constant frequency f. If you run towards the source, the frequency you hear is A and B are two similar solids... There are 200 blue balls and 10 red balls in an urn. Suppose that 10 balls are taken random;ly from the urn and let X denote the number of red balls selected.a) The distribution of the random variable X is___.i) Binomial. ii) Hypergeometric.iii) Poisson.iv) Normal.v) Exponential.vi) Uniform b) Find P(all 10 balls are red).c) Which distribution from those listed in part (a) can be used as an approximation to the distribution of X? With this approximation find P(X = 10). Do government statisticians calculate GDP by simply adding up the total sales of all business firms in one year? Explain. Si se analizan muestras de Al2O3 en diversos laboratorios se encuentra que todas tienen 52,94% de aluminio (Al) y 47,06% de oxgeno (O). Este dato experimental corresponde a lo expresado por la ley de:A) La ley de las proporciones definidasB) La ley de las proporciones mltiples C) La ley de la conservacin de la masaD) La ley de la conservacin de la energa Help please. I'm stuck Calculate the moles of H3PO4 that reacted (8). Consult the coefficients in the balance chemical reaction to obtain the mole ratio. Show your calculation here. Xinhong Company is considering replacing one of its manufacturing machines. The machine has a book value of $45,000 and a remaining useful life of 5 years, at which time its salvage value will be zero. It has a current market value of $55,000. Variable manufacturing costs are $33,400 per year for this machine. Information on two alternative replacement machines follows. Alternative A Alternative BCost $ 119,000 $ 112,000 Variable manufacturing costs per year 23,000 10,200 Calculate the total change in net income if Alternative A, B is adopted. Should Xinhong keep or replace its manufacturing machine? If the machine should be replaced, which alternative new machine should Xinhong purchase? 2m^2-5m-3=0 by factorization Compute ????????, where ????=????2????+5????, ????=2????+????+3????. (Write your solution using the standard basis vectors ????, ????, and ????. Use symbolic notation and fractions where needed.) The number of chocolate chips in a bag of chocolate chip cookies is approximately normally distributed with mean of 1262 and a standard deviation of 118. Determine the 26th percentile for the number of chocolate chips in a bag. (b) Determine the number of chocolate chips in a bag that make up the middle 95% of bags. (c) What is the interquartile range of the number of chocolate chips in a bag of chocolate chip cookies? Plot point C in GeoGebra to verify that it indeed lies on AB. You can enter the coordinates in the Input window to plot the point . Also , verify the distances you calculated in question 3 using GeoGebra . Take a screenshot showing the distances displayed by GeoGebra , and paste it below . An aqueous solution contains 0.29 M of benzoic acid (HA) and 0.16 M of sodium benzoate (A-). If the pH of this solution was measured to be 4.63, calculate the pKa of benzoic acid g At a certain store, a CD costs $12. If the cost of CDs were graphed as the output, compared to the number ofCDs purchased as input, which of the following would not be true of the graph?A. The set of points would all lie on the same line.B. The set of points would include the origin.C. The set of points would rise from left to right.D. The set of points would not graph a function.Please select the best answer from the choices providedABCD What is the value of k? Bindy, an 18-year-old high school graduate, and Luciana, a 40-year-old college graduate, just purchased identical hot new sports cars. Acme Insurance charges a higher rate to insure Bindy than Luciana. This practice is an example of: Identify the type of error in the sentence. If the sentence contains no error, select C. Satisfaction, enjoyment, and feeling victorious are the results of doing your best. misplaced modifier dangling modifier lack of parallel structure incorrect adverb clause placement C 5) On each birthday Rosa gets as many roses as she is old in years. She still has all the dried flowers and there are now 120 of them. How old is she? A) 10 B) 12 C) 14 D) 15 E) 20 Nathan is 1.55 meters tall. At 1 p.m., he measures the length of a tree's shadow to be 38.15 meters. He stands 32.9 meters away from the tree, so that the tip of his shadow meets the tip of the tree's shadow. Find the height of the tree to the nearest hundredth of a meter . An electron moving in the y direction, at right angles to a magnetic field, experiences a magnetic force in the -x direction. The direction of the magnetic field is in the