Answer:
[tex]\Huge \boxed{\mathrm{61.22 \ m}}[/tex]
Step-by-step explanation:
A stone is thrown downward straightly with the velocity of 20 m/s and it reaches the ground at the velocity of 40 m/s. What will be the height of building? (Question)
The initial velocity ⇒ 20 m/s
The final velocity ⇒ 40 m/s
We can apply a formula to solve for the height of the building.
[tex](V_f)2 - (V_i)^2 =2gh[/tex]
[tex]V_f = \sf final \ velocity \ (m/s)[/tex]
[tex]V_i = \sf initial \ velocity \ (m /s)[/tex]
[tex]g = \sf acceleration \ due \ to \ gravity \ (m/s^2 )[/tex]
[tex]h = \sf height \ (m)[/tex]
Plugging in the values.
Acceleration due to gravity is 9.8 m/s².
[tex](40)^2 - (20)^2 =2(9.8)h[/tex]
Solve for [tex]h[/tex].
[tex]1600 - 400 =19.6h[/tex]
[tex]1200 =19.6h[/tex]
[tex]\displaystyle h=\frac{1200}{19.6}[/tex]
[tex]h= 61.22449[/tex]
The height of the building is 61.22 meters.
What does the law of cosines reduce to when dealing with a right angle
Answer:
It is reduced to the equation of the Theorem of Pythagoras.
Step-by-step explanation:
Any triangle can be modelled by this formula under the Law of Cosine:
[tex]b = \sqrt{a^{2}+c^{2}-2\cdot a\cdot c\cdot \cos B}[/tex]
Where:
[tex]a[/tex], [tex]b[/tex], [tex]c[/tex] - Side lengths, dimensionless.
[tex]B[/tex] - Angle opposed to the side [tex]b[/tex], measured in sexagesimal degrees.
Now, let suppose that angle B is a right angle (90º), so that b is a hypotenuse and a and c are legs. Hence:
[tex]\cos B = 0[/tex]
And the equation is reduced to the form of the Theorem of Pythagoras, that is to say:
[tex]b = \sqrt{a^{2}+c^{2}}[/tex]
simplify the equation. (5xE2 - 3x) - (5xE2 - 3x+1)
Answer:
[tex]\huge \boxed{\mathrm{-1}}[/tex]
Step-by-step explanation:
[tex](5xe^2 - 3x) - (5xe^2 - 3x+1)[/tex]
Distribute negative sign.
[tex]5xe^2 - 3x- 5xe^2 +3x-1[/tex]
Combine like terms.
[tex]0xe^2 +0x-1[/tex]
[tex]0-1=-1[/tex]
Simplify the following expression.
Answer:
3x+11y-3
Step-by-step explanation:
Hey! So here is what you do to solve the problem-
Combine like terms:
(x) 5x-2x=3x
(y) 3y+8y=11y
(#) 7-10 =-3
So....
3x+11y-3 is your answer!
Hope this helps!:)
A ship travels due north for 100 miles from point C to point A. From point A the ship travels to point B at 60° east of north. From point B, the ship returns to point C heading 45° west of south. What approximate distance did the ship travel from point A to point B? How far does it travel in total?
Answer:
AandB=80miles
Total=240miles
Step-by-step explanation:
Draw the figure first indicating the figures then find the distance each degrees then find the total
The distance ship travels from A to B is 273.2 miles and total distance covered by ship is 707.82 miles.
What is laws of sines?The law of sines specifies how many sides there are in a triangle and how their individual sine angles are equal. The sine law, sine rule, and sine formula are additional names for the sine law.
The side or unknown angle of an oblique triangle is found using the law of sine. Any triangle that is not a right triangle is referred to as an oblique triangle. At least two angles and their corresponding side measurements should be used at once for the sine law to function.
Given distance from C to A = 100 miles north
From B to A ship travels 60° east of north,
and From B to C 45° west of south,
the figure for problem is attached,
from figure we can calculate the angles of A, B and C
so ∠A makes supplementary with 60°
∠A + 60° = 180°
∠A = 120°
for ∠B we need to draw an imaginary perpendicular on the line extending from A, we get
∠B + 45° + 30° = 90° (30° is angle of imaginary right triangle)
∠B = 90 - 75 = 15°
and ∠C can be found by,
∠A + ∠B + ∠C = 180°
∠C = 180 - 15 - 120
∠C = 45°
now use sine formula for triangles,
sinA/a = sinB/b = sinC/c
where A, B and C are angles of triangle and a, b and c are length of opposite side of angle A, B and C respectively.
a = BC, b = AC, and c = AB
so
sinA/BC = sinB/AC = sinC/AB
we have AC = 100 miles
substitute the values
sinC/AB = sinB/AC
sin(45)/AB = sin(15)/100
AB = 100/(√2sin(15))
AB = 100/0.3659
AB = 273.298 miles
and sinA/BC = sinB/AC
BC = AC sinA/sinB
BC = 100(sin 120/sin15)
BC = 100(0.866/0.2588)
BC = 100 x 3.3462
BC = 334.62 miles
total distance = AB + BC + AC
total distance = 334.62 + 273.2 + 100
total distance = 707.82 miles
Hence the distance from A to B is 273.2 miles and total distance is 707.82 miles.
Learn more about laws of sines;
https://brainly.com/question/17289163
#SPJ2
kinda confused buttttt anyone know this?
Answer:
Hey there!
The overlapping part is the product.
Thus, the product is 1/8.
Hope this helps :)
Manipulate the radius and height of the cone, setting different values for each. Record the radius, height, and exact volume of the cone (in terms of π). The first one has been done for you. Also calculate the decimal value of the volume, and verify that it matches the volume displayed by the tool. (You might see some discrepancies in the tool due to rounding of decimals.)
Answer:
The decimal value of the volume already given= 1885.2 unit³
For radius 11 unit height 12 unit
Volume= 484π unit³
Volume= 1520.73 unit ³
For radius 4 unit height 6 unit
Volume= 32π unit³
Volume= 100.544 unit³
For radius 20 unit height 15 unit
Volume= 2000π unit³
Volume= 6284 unit³
Step-by-step explanation:
The decimal value of the volume already given= 600π
The decimal value of the volume already given= 600*3.142
The decimal value of the volume already given= 1885.2 unit³
For radius 11 unit height 12 unit
Volume= πr²h/3
Volume= 11²*12/3 *π
Volume= 484π unit³
Volume= 1520.73 unit ³
For radius 4 unit height 6 unit
Volume = πr²h/3
Volume= 4²*6/3(π)
Volume= 32π unit³
Volume= 100.544 unit³
For radius 20 unit height 15 unit
Volume= πr²h/3
Volume= 20²*15/3(π)
Volume= 2000π unit³
Volume= 6284 unit³
Here's the right answer.
I will give brainliest to the right answer!! Find the vertex and the length of the latus rectum. x= 1/2 (y - 5)² + 7
Answer:
(7, 5)2Step-by-step explanation:
When the quadratic is written in vertex form:
x = a(y -k)^2 +h
the vertex is (x, y) = (h, k), and the length of the latus rectum is 1/a.
For your given equation, ...
x = (1/2)(y -5)^2 +7
you have a=1/2, k = 5, h = 7, so ...
the vertex is (7, 5)
the length of the latus rectum is 1/(1/2) = 2
A man traveled to his country home, a distance of 150 miles and then back. His average rate of speed going was 50 miles an hour and his average return speed was 30 miles per hour. His average rate of speed for the entire trip was Need help will mark brainlist
Answer:
37.5 mi/h
Step-by-step explanation:
time = distance / speed
On the trip 'going', the time was (150 mi)/(50 mi/h) = 3 h.
On the return trip, the time was (150 mi)/(30 mi/h) = 5 h.
__
speed = distance / time
The average speed for the whole trip was ...
speed = (150 mi +150 mi)/(3 h +5 h) = (300 mi)/(8 h) = 37.5 mi/h
His average rate of speed was 37.5 miles per hour.
Jonas needs a cell phone. He has a choice between two companies with the following monthly billing policies. Each company’s monthly billing policy has an initial operating fee and charge per text message. Sprint charges $29.95 monthly plus .15 cents per text, AT&T charges $4.95 monthly plus .39 cents per text. Create equations for the two cell phone plans.
Answer:
Since both companies have a different plan, two equations are created to determine which company Jonas should choose with respect to the number of messages sent.
Step-by-step explanation:
- Sprint = $ 29.95 * X (0.15)
- AT & T = $ 4.95 * X (0.39)
One dollar equals 100 cents, so 0.15 cents equals $ 0.0015 dollars.
- Sprint = $ 29.95 * X (0.0015)
- AT & T = $ 4.95 * X (0.0039)
Si Jonas envía 500 mensajes de texto el valor mensual de cada empresa sería de:
- Sprint = $ 29.95 * 500 (0.0015) = 22.46 dollar per month.
- AT & T = $ 4.95 * 500 (0.0039) = 9.65 dollar per month.
The company Jonas should choose is AT&T.
AT&T also charges a little more per number of text messages, but since the phone's value is so low it would take thousands of text messages to compare to Sprint's monthly value.
To test the belief that sons are taller than their fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their fathers? Use the alphaequals0.10 level of significance. Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers.
Height of Father Height of Son
72.4 77.5
70.6 74.1
73.1 75.6
69.9 71.7
69.4 70.5
69.4 69.9
68.1 68.2
68.9 68.2
70.5 69.3
69.4 67.7
69.5 67
67.2 63.7
70.4 65.5
Which conditions must be met by the sample for this test? Select all that apply.
A. The sample size is no more than 5% of the population size.
B. The differences are normally distributed or the sample size is large.
C. The sample size must be large.
D. The sampling method results in a dependent sample.
E. The sampling method results in an independent sample.
Write the hypotheses for the test. Upper
H 0 :
H 1 :
Calculate the test statistic. t 0=?
(Round to two decimal places as needed.)
Calculate the P-value. P-value=?
(Round to three decimal places as needed.) Should the null hypothesis be rejected?
▼ Do not reject or Reject Upper H 0 because the P-value is ▼ less than or greater than the level of significance. There ▼ is or is not sufficient evidence to conclude that sons ▼ are the same height or are shorter than or are taller than or are not the same height as their fathers at the 0.10 level of significance. Click to select your answer(s).
Answer:
1) B. The differences are normally distributed or the sample size is large
C. The sample size mus be large
E. The sampling method results in an independent sample
2) The null hypothesis H₀: [tex]\bar x_1[/tex] = [tex]\bar x_2[/tex]
The alternative hypothesis Hₐ: [tex]\bar x_1[/tex] < [tex]\bar x_2[/tex]
Test statistic, t = -0.00693
p- value = 0.498
Do not reject Upper H₀ because, the P-value is greater than the level of significance. There is sufficient evidence to conclude that sons are the same height as their fathers at 0.10 level of significance
Step-by-step explanation:
1) B. The differences are normally distributed or the sample size is large
C. The sample size mus be large
E. The sampling method results in an independent sample
2) The null hypothesis H₀: [tex]\bar x_1[/tex] = [tex]\bar x_2[/tex]
The alternative hypothesis Hₐ: [tex]\bar x_1[/tex] < [tex]\bar x_2[/tex]
The test statistic for t test is;
[tex]t=\dfrac{(\bar{x}_1-\bar{x}_2)}{\sqrt{\dfrac{s_{1}^{2} }{n_{1}}-\dfrac{s _{2}^{2}}{n_{2}}}}[/tex]
The mean
Height of Father, h₁, Height of Son h₂
72.4, 77.5
70.6, 74.1
73.1, 75.6
69.9, 71.7
69.4, 70.5
69.4, 69.9
68.1, 68.2
68.9, 68.2
70.5, 69.3
69.4, 67.7
69.5, 67
67.2, 63.7
70.4, 65.5
[tex]\bar x_1[/tex] = 69.6
s₁ = 1.58
[tex]\bar x_2[/tex] = 69.9
s₂ = 3.97
n₁ = 13
n₂ = 13
[tex]t=\dfrac{(69.908-69.915)}{\sqrt{\dfrac{3.97^{2}}{13}-\dfrac{1.58^{2} }{13}}}[/tex]
(We reversed the values in the square root of the denominator therefore, the sign reversal)
t = -0.00693
p- value = 0.498 by graphing calculator function
P-value > α Therefore, we do not reject the null hypothesis
Do not reject Upper H₀ because, the P-value is greater than the level of significance. There is sufficient evidence to conclude that sons are the same height as their fathers at 0.10 lvel of significance
john always wears a shirt, pants, socks, and shoes. he owns 12 pairs of socks, 3 pairs of shoes, 5 pairs of pants, and 5 shirts. how many different outfits can john make? PLEASE ANSWER
Answer:
900 outfits
Step-by-step explanation:
You just have to multiply them all together :)
Translate the following phrase into an algebraic expression using the variable m. Do not simplify,
the cost of renting a car for one day and driving m miles if the rate is $39 per day plus 45 cents per mile
Answer:
y = 0.45X + 39
Solve for x. 23x +2=15x+48x+6
Answer:
[tex]x = - \frac{1}{10} [/tex]Step-by-step explanation:
23x +2 = 15x+48x+6
To solve for x group like terms
That's
Send the constants to the right side of the equation and those with variables to the left side
We have
23x - 15x - 48x = 6 - 2
Simplify
- 40x = 4
Divide both sides by -40
[tex] \frac{ - 40x}{ - 40} = \frac{4}{ - 40} [/tex]We have the final answer as
[tex]x = - \frac{1}{10} [/tex]Hope this helps you
A triangle and the coordinates of its vertices is shown in the coordinate plane below. Enter the area of this triangle in square units, rounded to the nearest tenth. square units
Answer:
22 units²
Step-by-step explanation:
1/2b*h=area
You can either count the units or use the distance formula.
[tex]d = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]
b = 4 units
h = 11 units
area = (1/2*4)*11 = 22 units²
What are the lower quartile, upper quartile, and median for this box and
whisker plot?
A) LQ = 22 UQ = 10 Median = 18.5
B) LQ = 10 UQ = 22 Median = 18
C) LQ = 10 UQ = 22 Median = 18.5
D) LQ = 10 UQ = 22 Median = 19
Answer:
C
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
The lower quartile range is shown by the bottom of the box which is at 10.
The median is shown in the middle line, which is closer to 18 than 18.5.
The upper quartile range in the end of the box, which is at 22!
(You can also look at the picture attached if that helps.)
A
man paid 15600
for a new
car. He
was given a discount of
7%. Find the marked price
of the car
hope it helps.I was reading the same chapter
ASAP PLEASE GIVE CORRECT ANSWER
In a rectangular coordinate system, what is the number of units in the distance from the origin to the point $(-15, 8)$? Enter your answer
distance of a point [tex](x,y)[/tex] from origin is $\sqrt{x^2+y^2}$
so distance is $\sqrt{(-15)^2+(8)^2}=\sqrt{225+64}=\sqrt{289}=17$
Answer:
Distance=17 units
Step-by-step explanation:
Coordinates of the origin: (0, 0)
Coordinates of the point in question: (-15, 8)
Distance formula for any two points [tex](x_1,y_1), (x_2,y_2)[/tex] on the plane:
[tex]distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\distance=\sqrt{(-15-0)^2+(8-0)^2}\\distance=\sqrt{(15)^2+(8)^2}\\distance=\sqrt{225+64} \\distance=\sqrt{289} \\distance=17[/tex]
in exponential growth functions, the base of the exponent must be greater than 1. How would the function change if the base exponent were 1? How would the function change if the base of the exponent were between 0 and 1?
Answer:
GREAT QUESTION!!
Step-by-step explanation:
Bases of exponential functions CANNOT be 1.
It the base was between 0 and 1, .25 for example, then it would be exponential decay, because as x would increase y would decrease.
Just search up exponential decay to see what it looks like, or type in y=.25^x in google search bar.
if this helped, Please give brainly, I need it! Thank you!
Answer:
If the base of the exponent were 1, the function would remain constant. The graph would be a horizontal line. If the base of the exponent were less than 1, but greater than 0, the function would be decreasing.
Step-by-step explanation:
If the base were 1, the function would be constant.
If the base were 1, the graph would be a horizontal line.
If the base were between 0 and 1, the function would be decreasing.
Solve for x and draw a number line. 3x−91>−87 AND 17x−16>18
Answer:
I hope this will help!
Step-by-step explanation:
How to work out the medium in maths
Answer:
To find the median you cross off the first few numbers and the last few until you get to the middle then when you get the middle number that will be your median
Step-by-step explanation:
Answer:
Below.
Step-by-step explanation:
It's the middle value of a list of numbers arranged in order.
For example the median of the list 1 2 3 4 5 is 3.
If there are an even number of values, the median is the mean of the middle two. For example:
1 3 4 5 7 9:
The middle 2 numbers are 4 and 5 so
the median is (4 + 5) / 2 = 4.5
Dena uses 7.4 pints of white paint and blue paint to paint her bedroom walls. 2/5 of this amount is white paint, and the rest is blue paint. How many pints of blue paint did she use yo paint her bedroom walls
Answer:
4.44 pints
Step-by-step explanation:
7.4 times 3/5
Sandy’s older sister was given $2,400 and was told to keep the balance of the money after sharing with her siblings. Give Sandy exactly $350. Write Sandy’s portion
Sandy got 350 out of 2400.
Her portion is 350/2400 which can be reduced to:
35/240 = 7/48
The portion is 7/48
HELP HELP HELP Sally can paint a room in 4 hours. Joe can paint a room in 6 hours. How
long will it take if they paint the room together? I’m not sure if it’s 1.4
Answer:
2 hrs, 24 min
Step-by-step explanation:
Sally: in one hour, she can paint 1/4 of the room.
Joe: in one our, he can paint 1/6 of the room
Hour one: 1/4+1/6=3/12+2/12=5/12
1÷5/12=1*12/5=12/5
12/5= 2 & 2/5 hours, or 2.4 hours, or 2 hrs 24 minutes
Answer: 2.4 hours
Step-by-step explanation:
1/4 1/6
LCM
3/12+2/12=5/12 repricical 12/5 =2.4
Pick out the set of numbers that is not Pythagorean triple
9 40 46
16 30 34
10 24 26
50 120 130
Answer:
[tex]\huge\boxed{9,40,46}[/tex]
Step-by-step explanation:
Let's check it using Pythagorean Theorem:
[tex]c^2 = a^2 + b^2[/tex]
Where c is the longest sides, a and b are rest of the 2 sides
1) 9 , 40 , 46
=> [tex]c^2 = a^2 + b^2[/tex]
=> [tex]46^2 = 9^2 + 40^2[/tex]
=> 2116 = 81 + 1600
=> 2116 ≠ 1681
So, this is not a Pythagorean Triplet
2) 16, 30 and 34
=> [tex]c^2 = a^2 + b^2[/tex]
=> [tex]34^2 = 16^2 + 30^2[/tex]
=> 1156 = 256 + 900
=> 1156 = 1156
No need to check more as we've found the one which is not a Pythagorean Triplet.
Answer:
[tex] \boxed{ \huge{ \boxed{ \sf{ \blue{9 , \: 40 \:, 46 \: }}}}}[/tex]Option A is the correct option.
Step-by-step explanation:
1. Let h , p and b are the hypotenuse , perpendicular and base of a right - angled triangle respectively.
From Pythagoras theorem,
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
Here, we know that the hypotenuse is always greater than perpendicular and base,
h = 46 , p = 40 , b = 9
⇒[tex] \sf{ {46}^{2} = {40}^{2} + {9}^{2} }[/tex]
⇒[tex]2116 = 1600 + 81[/tex]
⇒[tex] \sf{2116 ≠ 1681}[/tex]
Thus , the relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is not satisfied by h = 46 , p = 40 , b = 9
So, The set of numbers 9 , 40 , 46 is not Pythagorean triple.
------------------------------------------------------
2. 16 , 30 , 34
h = 34 , p = 30 , b = 16
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
⇒[tex] \sf{ {34}^{2} = {30}^{2} + {16}^{2} }[/tex]
⇒[tex] \sf{1156 = 900 + 256}[/tex]
⇒[tex] \sf{1156 = 1156}[/tex]
The relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is satisfied by the particular values of h , p and b i.e h = 34 , p = 30 , b = 16
So, the set of numbers 16 , 30 , 34 is a Pythagorean triple.
------------------------------------------------------
3. 10, 24 , 26
h = 26 , p = 24 , b = 10
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
⇒[tex] \sf{ {26}^{2} = {24}^{2} + {10}^{2} }[/tex]
⇒[tex] \sf{676 = 576 + 100}[/tex]
⇒[tex] \sf{676 = 676}[/tex]
The relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is satisfied by the particular values of h , p and h i.e h = 26 , p = 24 , b = 10
So, the set of numbers 10, 24 , 26 is the Pythagorean triple.
-----------------------------------------------------
4. 50 , 120 , 130
h = 130 , p = 120 , b = 50
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
⇒[tex] \sf{ {130}^{2} = {120}^{2} + {50}^{2} }[/tex]
⇒[tex] \sf{16900 = 14400 + 2500}[/tex]
⇒[tex] \sf{16900 = 16900}[/tex]
The relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is satisfied by the particular values of h , p and b i.e h = 130 , p = 120 , b = 50
So, the set of numbers 50, 120 , 130 is the Pythagorean triple.
-----------------------------------------------------
In this way, to satisfy the Pythagoras Theorem , the hypotenuse ( h ) , perpendicular ( p ) and the base ( b ) of a right - angles triangle should have the particular values in order. These values of h , p and b are called Pythagorean triple.
Hope I helped!
Best regards!!
Calculate JK if LJ = 14, JM = 48, and LM = 50
Answer:
JK = 6.86
Step-by-step explanation:
The parameters given are;
LJ = 14
JM = 48
LM = 50
[tex]tan(\angle JML )= \dfrac{Opposite \ leg \ length}{Adjacent \ leg \ length} = \dfrac{LK}{JM} = \dfrac{14}{48} = \dfrac{7}{24}[/tex]
[tex]tan \left( \dfrac{7}{24} \right)= 16.26 ^{\circ }[/tex]
∠JML = 16.26°
Given that ∠JML is bisected by KM, we apply the angle bisector theorem which states that a ray that bisects an interior angle of a triangle bisects the opposite (bisected angle facing side) in the proportion of the ration of the other two sides of the triangle.
From the angle bisector theorem, we have;
LM/JM = LK/JK
50/48 = LK/JK................(1)
LK + KJ = 14.....................(2)
From equation (1), we have;
LK = 25/24×JK
25/24×KJ + JK = 14
JK×(25/24 + 1) = 14
JK × 49/24 = 14
JK = 14×24/49 = 48/7. = 6.86.
JK = 6.86
10. Write a word problem for this equation:
n ($25) = $125
Answer:
The word problem is "How many $25 are there in $125?"
Step-by-step explanation:
Given
[tex]n(\$25) = \$125[/tex]
Required
Write a word problem for the expression
We start by solving the given equation
[tex]n(\$25) = \$125[/tex]
Divide both sides by $25
[tex]\frac{n(\$25)}{\$25} = \frac{\$125}{\$25}[/tex]
[tex]n = \frac{\$125}{\$25}[/tex]
[tex]n = 5[/tex]
This implies that there are 5, $25 in $125
Hence; The word problem is "How many $25 are there in $125?"
A trader buys tea for $1200 and sells it for $1500. Per sack of tea he makes a profit of $50. How many sacks of tea did he have?
Answer:
6 sacks
Step-by-step explanation:
Buying Price = $1200
Selling Price = $1500
Total profit = Selling price - Buying Price
= $1500 - $1200
= $300
Given that the profit on each sack of tea is $50
Number of Sacks of Tea = Total Profit ÷ profit per sack
= $300 ÷ 50
= 6 sacks
The number of sacks of tea he has is 6.
The first step is to determine the total profit earned by the trader. Profit is the selling price less the cost price.
Profit = selling price - cost price
$1500 - $1200 = $300
The second step is to divide the total profit by the profit made per sack of tea.
Number of sacks = $300 / $50 = 6
To learn more about division, please check: https://brainly.com/question/194007
Describe how to solve an absolute value equation
*will give brainliest*
Answer:
Step 1: Isolate the absolute value expression.
Step2: Set the quantity inside the absolute value notation equal to + and - the quantity on the other side of the equation.
Step 3: Solve for the unknown in both equations.
Step 4: Check your answer analytically or graphically.
Step-by-step explanation:
Answer:
Rewrite the absolute value equation as two separate equations, one positive and the other negative
Solve each equation separately
After solving, substitute your answers back into original equation to verify that you solutions are valid
Write out the final solution or graph it as needed
Step-by-step explanation:
Is a 118 supplementary or complementary?pls ASAP!!
Answer:
[tex]\huge\boxed{Supplementary \ Angle}[/tex]
Step-by-step explanation:
118 is a supplementary angle. It is not a complementary angle because complementary angles add up to 90 and 118 is greater than 90 degrees. So, 118 is a supplementary angle and it is an angle adding up to 180 degrees with any other angle measuring 62 degrees.
Answer:Supplementary
Step-by-step explanation:You should remember that complementary refers to any number from 0-90 and supplementary refers to any number from 90 onwards..
Hereby giving the answer as ''Supplementary''
One type of fabric costs $31.25 for 5 square yards. Another type of fabric costs $71.50 for 11
square yards. Is the relationship between the number of square yards and the cost
proportional between the two types of fabric?
Answer:
as ratio of two type of fabric is different .
hence, the relationship between the number of square yards and the cost
is not proportional between the two types of fabric
Step-by-step explanation:
For a relation to be proportional
a:b = c:d
in other form
a/b = c/d
______________________________________________
Ratio for first type of fabric
cost of fabric/ area of fabric = 31.25/5 = 6.25
Ratio for other type of fabric
cost of fabric/ area of fabric = 71.50/11 = 6.5
as ratio of two type of fabric is different .
hence, the relationship between the number of square yards and the cost
is not proportional between the two types of fabric