A study claimed residents in a suburb town spend at most 1.9 hours per weekday commuting to and from their jobs. A researcher believed commute times were now different and wants to test this claim by sampling 14 adults. Sample statistics for these 14 adults are: X = 2.2 $=0.7 Can the researcher support the claim that mean commuting time is more than 1.9 hours ? Test using a =.01.

Answers

Answer 1

Answer:

There is no sufficient evidence to support the claim that mean commuting time is more than 1.9 hours

Step-by-step explanation:

From the question we are told that

   The  population mean is  [tex]\mu = 1.9 \ hr[/tex]

   The  sample mean is  [tex]\= x = 2.2[/tex]

    The standard deviation is  [tex]\sigma = 0.7[/tex]

     The  sample size is  [tex]n = 14[/tex]

      The level of significance is  [tex]\alpha = 0.01[/tex]

The null hypothesis is  [tex]H_o : \mu = 1.9 \ hr[/tex]

The  alternative hypothesis is [tex]H_a : \mu > 1.9 \ hr[/tex]

 Generally the test statistics is mathematically represented as

               [tex]t = \frac{\= x - \mu }{ \frac{\sigma}{ \sqrt{n} } }[/tex]

              [tex]t = \frac{ 2.2 - 1.9 }{ \frac{0.7 }{ \sqrt{14} } }[/tex]

             [tex]t = 1.6036[/tex]

The  p-value is obtained from the z-table,  the value is  

           [tex]p-value = P(t > 1.6036) = 0.054401[/tex]

Looking at the value of  [tex]p-value \ and \ \alpha[/tex]  we see that  [tex]p-value > \alpha[/tex]

So we fail reject the null hypothesis

    Hence we can conclude that there is no sufficient evidence to support the claim that mean commuting time is more than 1.9 hours


Related Questions

a Find the amount compounded annually on Rs 25,000 for 2 years if the rates of
interest for two years ore 10 % and 12 % respectively,​

Answers

Answer:

Amount = Rs. 30250 when Rate = 10%

Amount = Rs. 31360 when Rate = 12%

Step-by-step explanation:

Given

[tex]Principal, P = Rs.\ 25,000[/tex]

[tex]Time, t = 2\ years[/tex]

[tex]Rate; R_1 = 10\%[/tex]

[tex]Rate; R_2 = 12\%[/tex]

Number of times (n) = Annually

[tex]n = 1[/tex]

Required

Determine the Amount for both Rates

Amount (A) is calculated by:

[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]

When Rate = 10%, we have:

Substitute 25,000 for P; 2 for t; 1 for n and 10% for r

[tex]A = 25000 * (1 + \frac{10\%}{1})^{1 * 2}[/tex]

[tex]A = 25000 * (1 + \frac{10\%}{1})^{2}[/tex]

[tex]A = 25000 * (1 + 10\%)^{2}[/tex]

Convert 10% to decimal

[tex]A = 25000 * (1 + 0.10)^{2}[/tex]

[tex]A = 25000 * (1.10)^{2}[/tex]

[tex]A = 25000 * 1.21[/tex]

[tex]A = 30250[/tex]

Hence;

Amount = Rs. 30250 when Rate = 10%

When Rate = 12%, we have:

Substitute 25,000 for P; 2 for t; 1 for n and 10% for r

[tex]A = 25000 * (1 + \frac{12\%}{1})^{1 * 2}[/tex]

[tex]A = 25000 * (1 + \frac{12\%}{1})^{2}[/tex]

[tex]A = 25000 * (1 + 12\%)^{2}[/tex]

Convert 12% to decimal

[tex]A = 25000 * (1 + 0.12)^{2}[/tex]

[tex]A = 25000 * (1.12)^{2}[/tex]

[tex]A = 25000 * 1.2544[/tex]

[tex]A = 31360[/tex]

Hence;

Amount = Rs. 31360 when Rate = 12%

Determine the value(s) for which the rational expression 2x^2/6x is undefined. If there's more than one value, list them separated by a comma, e.g. x=2,3.

Answers

Answer:

0

Step-by-step explanation:

Hello, dividing by 0 is not defined. so

[tex]\dfrac{2x^2}{6x}[/tex]

is defined for x different from 0

This being said, we can simplify by 2x

[tex]\dfrac{2x^2}{6x}=\dfrac{2x*x}{3*2x}=\dfrac{1}{3}x[/tex]

and this last expression is defined for any real number x.

Thank you

Given the following diagram, find the required measures. Given: l | | m m 1 = 120° m 3 = 40° m 2 = 20 60 120

Answers

Step-by-step explanation:

your required answer is 60°.

Hello,

Here, in the figure;

angle 1= 120°

To find : m. of angle 2.

now,

angle 1 + angle 2= 180° { being linear pair}

or, 120° +angle 2 = 180°

or, angle 2= 180°-120°

Therefore, the measure of angle 2 is 60°.

Hope it helps you.....

PLEASE HELP SOON! A 2011 study by the National Safety Council estimated that there are nearly 5.7 million traffic accidents year. At least 28% of them involved distracted drivers using a cell phones or texting. The data showed that 11% of drivers at any time are using cell phones. Car insurance companies base their policy rates on accident data that shows drivers have collisions approximately once every 19 years. That's a 5.26% chance per per year. Given.
A - Let dc= event that a randomly selected driver is using a cell phone. what is P(DC)? B - Let ta = event that a randomly selected driver has a traffic accident. what is P(ta) C - how can you determine if cell phone use while driving and traffic accidents are related? D - Give that the driver has an accident, what is the probability that the driver was distracted by a cell phone? Write this event with the correct conditional notation.

Answers

Answer:

(A) 0.11

(B) 0.0526

(C) Related

(D) 0.28

Step-by-step explanation:

The data provided is:

DC = event that a randomly selected driver is using a cell phone

TA = event that a randomly selected driver has a traffic accident

(A)

From the provided data:

P (DC) = 0.11

(B)

From the provided data:

P (TA) = 0.0526

(C)

To determine whether the events DC and TA are dependent, we need to show that:

[tex]P(DC\cap TA)\neq P(DC)\times P(TA)[/tex]

The value of P (DC ∩ TA) is,

[tex]P(DC\cap TA)=P(DC|TA)\time P(TA)[/tex]

                     [tex]=0.28\times 0.0526\\=0.014728[/tex]

Now compute the value of P (DC) × P (TA) as follows:

[tex]P (DC) \times P (TA)=0.11\times 0.0526=0.005786[/tex]

So, [tex]P(DC\cap TA)\neq P(DC)\times P(TA)[/tex]

Thus, cell phone use while driving and traffic accidents are related.

(D)

The probability that the driver was distracted by a cell phone given that the driver has an accident is:

P (DC | TA) = 0.28

Two brothers, Tom and Allen, each inherit $39000. Tom invests his inheritance in a savings account with an annual return of 2.9%, while Allen invests his inheritance in a CD paying 5.7% annually. How much more money than Tom does Allen have after 1 year?

Answers

Answer:

Tom:

initial money = $ 39000

% increased per annum = 2.9%

money gained per annum = 39000 * 2.9/100 = $1131

Allen:

initial money = $ 39000

% increased per annum = 5.7 %

money gained per annum = 39000 * 5.7/100 = $2223

Allen has $ (2223 - 1131) = $ 1192 more than Tom

PLZ HELPPPPPP. 25 POINTS.

A store sells books for $12 each. In the proportional relationship between x, the number of books purchased, and y, the cost per books in dollars" to "y, the total cost of the books in dollars, the constant of proportionality is 12. Which equation shows the relationship between x and y?

A. y=12/x

B. y=12x

C. y=12+x

D. y=12−x

Answers

Answer:

b

Step-by-step explanation:

because its right dummy

A linear regression analysis uses two distinct types of data. The first are variables that are at least nominal level.
a) true
b) false

Answers

Answer:

The answer is

A. True

Step-by-step explanation:

In linear regression, Linear models make a prediction using a linear function of the input features, with one being

For regression, the general prediction formula for a linear model looks as follows:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

Here, x[0] to x[p] denotes the features (in this example, the number of features is p)

of a single data point, w and b are parameters of the model that are learned, and ŷ is

the prediction the model makes. For a dataset with a single feature, this is

ŷ = w[0] * x[0] + b

which you might remember from high school mathematics as the equation for a line.

Here, w[0] is the slope and b is the y-axis offset. For more features, w contains the

slopes along each feature axis. Alternatively, you can think of the predicted response

as being a weighted sum of the input features, with weights (which can be negative)

given by the entries of w.

write a letter to your friend in Ghana stating your experience in your presentation school in nigeria​

Answers

Answer:

hi Ghana how are you doing I am fine here. I really miss u and my friends in the old.U know what in Nigeria this school is really awesome and fantastic we have a swimming pool here and we can go to trip and we can have many things here I really loved this school.

at starting I was not have any friends and know I have many friends. But I really miss u this is what about our . Come to my house I can show you my school it is very near to my house .

Ur friend

writ ur name

Please answer this correctly without making mistakes

Answers

Answer:

The answer is 68 6/11

Step-by-step explanation:

If you enter the number into a calculator it shows you the exact decimal, therefore you can identify the answer.

Answer:

It is 68 6/11

Step-by-step explanation:

First I made all of the improper fractions into whole numbers and fractions and just saw which one was in the middle .

Finding Side Lengths in a Right Triangle

What is the value of s?

15 units

С

5

B

15

S

D

Answers

Answer:

maybe it's 10.because c is 10,b is 10,and so as s.

hence s is 10 also.

Which expression is equivalent to 73 ⋅ 7−5? 72 77 1 over 7 to the 2nd power 1 over 7 to the 7th power

Answers

Answer:

  1/7^2

Step-by-step explanation:

The applicable rules of exponents are ...

  (a^b)(a^c) = a^(b+c)

  a^-b = 1/a^b

__

Then your expression simplifies to ...

  [tex]7^3\cdot 7^{-5}=7^{3-5}=7^{-2}=\boxed{\dfrac{1}{7^2}}[/tex]

Answer:

The answer is 1/7^2

Step-by-step explanation:

I took the test lol

Find the particular solution of the differential equation that satisfies the initial condition. f '(x) = −8x, f(1) = −3

Answers

Step-by-step explanation:

f(x) = integral (-8x) dx = -4x^2 + C

f(1) = -3 = -4 + C

C = 1

f(x) = -4x^2 + 1

The particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3 is: f(x) = -4x² + 1.

Here, we have,

To find the particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3,

we can integrate the equation and use the initial condition to determine the constant of integration.

First, integrate both sides of the equation with respect to x:

∫ f'(x) dx = ∫ -8x dx

Integrating, we get:

f(x) = -4x² + C

Now, we can use the initial condition f(1) = -3 to find the value of the constant C.

Substituting x = 1 and f(x) = -3 into the equation, we have:

-3 = -4(1)² + C

-3 = -4 + C

C = -3 + 4

C = 1

Therefore, the particular solution of the differential equation f'(x) = -8x that satisfies the initial condition f(1) = -3 is:

f(x) = -4x² + 1

To learn more on equation click:

brainly.com/question/24169758

#SPJ2

36 minus 20 minus 32 times 1/4

Answers

Answer:

6

Step-by-step explanation:

36 - 20 - 32 x 1/4

=> 36 - 20 - 32/4

=> 36 - 20 - 8

=> 36 - 28

=> 6

2,17,82,257,626,1297 next one please ?​

Answers

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule [tex]n^4+1[/tex]. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the n-th term in this sequence by [tex]a_n[/tex], and denote the given sequence by [tex]\{a_n\}_{n\ge1}[/tex].

Let [tex]b_n[/tex] denote the n-th term in the sequence of forward differences of [tex]\{a_n\}[/tex], defined by

[tex]b_n=a_{n+1}-a_n[/tex]

for n ≥ 1. That is, [tex]\{b_n\}[/tex] is the sequence with

[tex]b_1=a_2-a_1=17-2=15[/tex]

[tex]b_2=a_3-a_2=82-17=65[/tex]

[tex]b_3=a_4-a_3=175[/tex]

[tex]b_4=a_5-a_4=369[/tex]

[tex]b_5=a_6-a_5=671[/tex]

and so on.

Next, let [tex]c_n[/tex] denote the n-th term of the differences of [tex]\{b_n\}[/tex], i.e. for n ≥ 1,

[tex]c_n=b_{n+1}-b_n[/tex]

so that

[tex]c_1=b_2-b_1=65-15=50[/tex]

[tex]c_2=110[/tex]

[tex]c_3=194[/tex]

[tex]c_4=302[/tex]

etc.

Again: let [tex]d_n[/tex] denote the n-th difference of [tex]\{c_n\}[/tex]:

[tex]d_n=c_{n+1}-c_n[/tex]

[tex]d_1=c_2-c_1=60[/tex]

[tex]d_2=84[/tex]

[tex]d_3=108[/tex]

etc.

One more time: let [tex]e_n[/tex] denote the n-th difference of [tex]\{d_n\}[/tex]:

[tex]e_n=d_{n+1}-d_n[/tex]

[tex]e_1=d_2-d_1=24[/tex]

[tex]e_2=24[/tex]

etc.

The fact that these last differences are constant is a good sign that [tex]e_n=24[/tex] for all n ≥ 1. Assuming this, we would see that [tex]\{d_n\}[/tex] is an arithmetic sequence given recursively by

[tex]\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}[/tex]

and we can easily find the explicit rule:

[tex]d_2=d_1+24[/tex]

[tex]d_3=d_2+24=d_1+24\cdot2[/tex]

[tex]d_4=d_3+24=d_1+24\cdot3[/tex]

and so on, up to

[tex]d_n=d_1+24(n-1)[/tex]

[tex]d_n=24n+36[/tex]

Use the same strategy to find a closed form for [tex]\{c_n\}[/tex], then for [tex]\{b_n\}[/tex], and finally [tex]\{a_n\}[/tex].

[tex]\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}[/tex]

[tex]c_2=c_1+24\cdot1+36[/tex]

[tex]c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2[/tex]

[tex]c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3[/tex]

and so on, up to

[tex]c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)[/tex]

Recall the formula for the sum of consecutive integers:

[tex]1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2[/tex]

[tex]\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)[/tex]

[tex]\implies c_n=12n^2+24n+14[/tex]

[tex]\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}[/tex]

[tex]b_2=b_1+12\cdot1^2+24\cdot1+14[/tex]

[tex]b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2[/tex]

[tex]b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3[/tex]

and so on, up to

[tex]b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)[/tex]

Recall the formula for the sum of squares of consecutive integers:

[tex]1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6[/tex]

[tex]\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)[/tex]

[tex]\implies b_n=4n^3+6n^2+4n+1[/tex]

[tex]\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}[/tex]

[tex]a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1[/tex]

[tex]a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2[/tex]

[tex]a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3[/tex]

[tex]\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1[/tex]

[tex]\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4[/tex]

[tex]\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)[/tex]

[tex]\implies a_n=n^4+1[/tex]

The Venn diagram shows 3 type numbers odd even in prime

Answers

what are the numbers

If the occurrence of one event does not influence the outcome of another event, then two events are:
A. conditional
B. disjoint
C. independent
D. interdependent

Answers

Answer:

C. Independent

Step-by-step explanation:

Independent events are events that have no impact on each other.

So, if the occurrence of an event doesn't influence the outcome of another, this means that they are independent because they do not impact each other.

This must mean C is correct because the two events have to be independent.

I will mark u brainleiest if u help me and 5 stars

Answers

Answer:

[tex]\boxed{50}[/tex]

Step-by-step explanation:

Because the initial temperature is 40 degrees and it increases by 10, add the two values together to get the final temperature.

40 + 10 = 50

Therefore, the final answer is 50 degrees.

Answer:

50

Step-by-step explanation:

If it starts at 40 degrees and increases 10 degrees, it is going to be 50 degrees.  Increases means adding, so it is asking you to add 10 to 40 which is 50.  If it asks decreases in the future you will have to subtract.

For a closed rectangular box, with a square base x by x cm and height h cm, find the dimensions giving the minimum surface area, given that the volume is 18 cm3.

Answers

Answer:

∛18 * ∛18 * 18/(∛18)²

Step-by-step explanation:

Let the surface area of the box be expressed as S = 2(LB+BH+LH) where

L is the length of the box = x

B is the breadth of the box = x

H is the height of the box = h

Substituting this variables into the formula, we will have;

S = 2(x(x)+xh+xh)

S = 2x²+2xh+2xh

S = 2x² + 4xh and the Volume V = x²h

If V = x²h; h = V/x²

Substituting h = V/x² into the surface area will give;

S = 2x² + 4x(V/x²)

Since the volume V = 18cm³

S = 2x² + 4x(18/x²)

S =  2x² + 72/x

Differentiating the function with respect to x to get the minimal point, we will have;

dS/dx = 4x - 72/x²

at dS/dx = 0

4x - 72/x² = 0

- 72/x² = -4x

72 = 4x³

x³ = 72/4

x³  = 18

[tex]x = \sqrt[3]{18}[/tex]

Critical point is at [tex]x = \sqrt[3]{18}[/tex]

If x²h = 18

(∛18)²h =18

h = 18/(∛18)²

Hence the dimension is  ∛18 * ∛18 * 18/(∛18)²

If (x - 2) and (x + 1) are factors of
x + px? + qx + 1, what is the sum of p and q?

Answers

Answer:

p + q = -3

Step-by-step explanation:

First we need to take the original equation, and factor it to a form that's easier to get two binomial factors from (i.e., let's get a quadratic):

x^3 + px^2 + qx + 1

= x (x^2 + px + q) + 1

Now that we have factored out the x, we have a quadratic trinomial which we know can be broken down into two linear binomials.  The problem gives us two linear binomials, so let's take a look.

(x - 2) (x + 1) = (x^2 + px + q)

x^2 - 2x + x -2 = x^2 + px + q

Now let's solve.

x^2 - x - 2 = x^2 + px + q

-x - 2 = px + q

From here, we can easily see that p = -1 (the coefficient of x) and q = -2.

Hence, p + q = -1 + -2 = -3.

Cheers.

WILL GIVE BRAINLYEST AND 30 POINTS Which of the followeing can be qritten as a fraction of integers? CHECK ALL THAT APPLY 25 square root of 14 -1.25 square root 16 pi 0.6

Answers

Answer:

25 CAN be written as a fraction.

=> 250/10 = 25

Square root of 14 is 3.74165738677

It is NOT POSSIBLE TO WRITE THIS FULL NUMBER AS A FRACTION,  but if we simplify the decimal like: 3.74, THEN WE CAN WRITE THIS AS A FRACTION

=> 374/100

-1.25 CAN be written as a fraction.

=> -5/4 = -1.25

Square root of 16 CAN also be written as a fraction.

=> sqr root of 16 = 4.

4 can be written as a fraction.

=> 4 = 8/2

Pi = 3.14.........

It is NOT POSSIBLE TO WRITE THE FULL 'PI' AS A FRACTION, but if we simplify 'pi' to just 3.14, THEN WE CAN WRITE IT AS A FRACTION

=> 314/100

.6 CAN be written as a fraction.

=> 6/10 = .6

A survey of undergraduates revealed the follwoing information: WOMEN MENsample mean weight 124.7 183.3sample standard deviation of weight 23.32 25.41sample proportion Roman Catholic 0.40 0.32Sample mean GPA 3.34 3.24Sample standard deviation of GPA 0.35 0.44Sample size 20 25Assume the populations are normally distributed. Suppose you want to determine whether the proportion of SCU women who are Roman Catholic is greater than the proportion of SCU men that are Roman Catholic.a. What are the null and alternative hypothesis to run this test?b. What is the calculated value of the test statistic?c. What is the p-value of the calculated test statistic?d. What is the conclusion of the hypothesis test, at 5% the significance level?

Answers

Answer:

the answers are below:

Step-by-step explanation:

a. null hypothesis:

H0: Pw - Pm = 0 (so Pw = Pm)

alternate hypothesis:

H1: Pw - Pm > 0 (so Pw > Pm)

where Pw is the proportion of women

Pm is the proportion of men

b.) proportion of women = o.40

proportion of men =  0.32

sample size of women = 20

sample size of men = 25

[tex]z = 0.4 - 0.32/ \sqrt{((0.4 *0.6)/20) * (0.32 * 0.68)/25)}[/tex]

[tex]z = 0.56[/tex]

c.) p value =

p(z>0.56)

= 0.7123

= 1 - 0.7123

= o.2877 which can be approximated to be 0.288

d. alpha value was set at 0.05

the p value is greater than alpha.

therefore it is not statistically significant.

we conclude that the proportion of roman catholic women is not greater than men.

You have a jar containing 55 coins, consisting entirely of nickels and quarters, worth a
total of $7.15. How many quarters are in the jar?

Answers

Answer: 22 quarters

Step-by-step explanation:

Let N be the number of nickels.

Then the number of quarters is (55-N)

The nickels  contribute 5N cents to the total.

The quarters contribute 25*(55-N) cents to the total.

5N + 25*(55-N) = 715

5N + 1375 - 25N = 715

-20N = 715 - 1375 = -660

[tex]N=\frac{-660}{-20}[/tex]

[tex]=33[/tex]

[tex]55-33=22[/tex]

So there is 22 quarters inside the jar.

Check to see if my answer is correct-

33*5 + 22*25 = 715 cents

If the discriminant of a quadratic equation is equal to -8 , which statement describes the roots?

Answers

Answer: There are no real number roots (the two roots are complex or imaginary)

The discriminant D = b^2 - 4ac tells us the nature of the roots for any quadratic in the form ax^2+bx+c = 0

There are three cases

If D < 0, then there are no real number roots and the roots are complex numbers.If D = 0, then we have one real number root. The root is repeated twice so it's considered a double root. This root is rational if a,b,c are rational.If D > 0, then we get two different real number roots. Each root is rational if D is a perfect square and a,b,c are rational.

Which angle of rotation is determined by the matrix below?{1/2 -sqrt3/2 sqrt3/2 1/2] 30° 60° 120° 300°

Answers

Answer:

  60°

Step-by-step explanation:

You have the rotation matrix ...

  [tex]\left[\begin{array}{cc}\cos{\theta}&-\sin{\theta}\\\sin{\theta}&\cos{\theta}\end{array}\right]=\left[\begin{array}{cc}\dfrac{1}{2}&-\dfrac{\sqrt{3}}{2}\\\dfrac{\sqrt{3}}{2}&\dfrac{1}{2}\end{array}\right][/tex]

This tells you the angle of rotation is ...

  [tex]\tan{\theta}=\dfrac{\sin{\theta}}{\cos{\theta}}=\dfrac{\left(\dfrac{\sqrt{3}}{2}\right)}{\left(\dfrac{1}{2}\right)}=\sqrt{3}\\\\\theta=\arctan{\sqrt{3}}=60^{\circ}[/tex]

The angle of rotation is 60°.

Answer:

B----- 60

Step-by-step explanation:

Prove that the statement (ab)^n=a^n * b^n is true using mathematical induction.

Answers

Answer:

see below

Step-by-step explanation:

      (ab)^n=a^n * b^n

We need to show that it is true for n=1

assuming that it is true for n = k;

(ab)^n=a^n * b^n

( ab) ^1 = a^1 * b^1

ab = a * b

ab = ab

Then we need to show that it is true for n = ( k+1)

or (ab)^(k+1)=a^( k+1) * b^( k+1)

Starting with

  (ab)^k=a^k * b^k    given

Multiply each side by ab

ab *  (ab)^k= ab *a^k * b^k

   ( ab) ^ ( k+1) = a^ ( k+1) b^ (k+1)

Therefore, the rule is true for every natural number n

Hello, n being an integer, we need to prove that one statement depending on n is true, let's note it S(n).

The mathematical induction involves two steps:

Step 1 - We need to prove S(1), meaning that the statement is true for n = 1

Step 2 - for k integer > 1, we assume S(k) and we need to prove that S(k+1) is true.

Imagine that you are a painter and you need to paint all the trees on one side of a road. You have several colours that you can use but you are asked to follow two rules:

Rule 1 - You need to paint the first tree in white.

Rule 2 - If one tree is white you have to paint the next one in white too.

What colour do you think all the trees will be painted?

Do you see why this is very important to prove the two steps as well ?

Let's do it in this example.

Step 1 - for n = 1, let's prove that S(1) is true, meaning  [tex](ab)^1=a\cdot b =a^1\cdot b^1[/tex]

So the statement is true for n = 1

Step 2 - Let's assume that this is true for k, and we have to prove that this is true for k+1

So we assume S(k), meaning that [tex](ab)^k=a^k\cdot b^k[/tex]

and what about S(k+1), meaning [tex](ab)^{k+1}=a^{k+1}\cdot b^{k+1}[/tex] ?

We will use the fact that this is true for k,

[tex](ab)^{k+1}=(ab)\cdot (ab)^k =(ab) \cdot a^k \cdot b^k[/tex]

We can write it because the statement at k is true and then we can conclude.

[tex](ab)^{k+1}=(ab)\cdot (ab)^k =(ab) \cdot a^k \cdot b^k=a^{k+1}\cdot b^{k+1}[/tex]

In conclusion, we have just proved that S(n) is true for any n integer greater or equal to 1, meaning [tex](ab)^{n}=a^{n}\cdot b^{n}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

what are the next terms in the number pattern -11, -8, -5, -2, 1

Answers

Answer:

4, 7, 10, 13

Step-by-step explanation:

Hey there!

Well in the given pattern,

-11, -8, -5, -2, 1

we can conclude that the pattern is +3 every time.

-11 + 3 = -8

-8 + 3 = -5

-5 + 3 = -2

-2 + 3 = 1

And so on

4, 7, 10, 13

Hope this helps :)

Write the polar form of a complex number in standard form for [tex]8[cos(\frac{\pi}{2}) + isin(\frac{\pi}{2})][/tex]

Answers

Answer:

Solution : 8i

Step-by-step explanation:

We can use the trivial identities cos(π / 2) = 0, and sin(π / 2) = 1 to solve this problem. Let's substitute,

[tex]8\left[cos\left(\frac{\pi }{2}\right)+isin\left(\frac{\pi \:}{2}\right)\right][/tex] = [tex]8\left(0+1i\right)[/tex]

And of course 1i = i, so we have the expression 8(0 + i ). Distributing the " 8, " 8( 0 ) = 0, and 8(i) = 8i, making the fourth answer the correct solution.

The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20. Determine the probability that Tim will takes less than 150 minutes to install a satellite dish.

Answers

Answer: 0.8749

Step-by-step explanation:

Given, The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20.

Let x be the time taken by Tim to install a satellite dish.

Then, the probability that Tim will takes less than 150 minutes to install a satellite dish.

[tex]P(x<150)=P(\dfrac{x-\text{Mean}}{\text{Standard deviation}}<\dfrac{150-127}{20})\\\\=P(z<1.15)\ \ \ [z=\dfrac{x-\text{Mean}}{\text{Standard deviation}}]\\\\=0.8749\ [\text{By z-table}][/tex]

hence, the required probability is 0.8749.

find x, if sq.root(x) +2y^2 = 15 and sq.root(4x) - 4y^2=6

Answers

Answer:

Example: solve √(2x−5) − √(x−1) = 1

isolate one of the square roots:√(2x−5) = 1 + √(x−1) square both sides:2x−5 = (1 + √(x−1))2 ...

expand right hand side:2x−5 = 1 + 2√(x−1) + (x−1) ...

isolate the square root:√(x−1) = (x−5)/2. ...

Expand right hand side:x−1 = (x2 − 10x + 25)/4. ...

Multiply by 4 to remove division:4x−4 = x2 − 10x + 25.

Answer:

Step-by-step explanation:

ewrerewrwrwerrwer

name all the pairs of angles which are vertical angles , alternate interior angles , alternate exterior angles , co interior angles , co exterior angles , and corresponding angles from the given figure . (co interior - interior angles on the same side of transversal)

Answers

Answer:

Step-by-step explanation:

Since m and k are the parallel lines and a transverse 'l' is intersecting these lines at two different points.

- Opposite angles at the point of intersection of parallel lines and the transverse will be the vertical angles.

∠1 ≅ ∠3, ∠2 ≅ ∠4, ∠5 ≅ ∠8 and ∠6 ≅ ∠7 [Vertical angles]

- Pair of angles between parallel lines 'k' and 'm' but on the opposite side of the transversal are the alternate interior angles.

∠4 ≅ ∠6 and ∠3 ≅ ∠5 [Alternate interior angles]

- Angles having the same relative positions at the point of intersection are the corresponding angles.

∠2 ≅ ∠6, ∠3 ≅ ∠8, ∠4 ≅ ∠7 and ∠1 ≅ ∠5 [Corresponding angles]

- Co interior angles are the angles between the parallel lines located on the same side of the transversal.

∠4 and ∠5, ∠3 and ∠6 [Co interior angles]

- Co exterior angles are the angles on the same side of the transverse but outside the parallel lines.

∠2 and ∠8, ∠1 and ∠7 [Co exterior angles]

Other Questions
evaluate the expression 4x^2-6x+7 if x = 5 Please SolveF/Z=T for Z 15 points! I will give Brainliest and heart! Answer ASAP but with DETAIL, I need step - by - step, clear words, correct grammar. A pair of equations is shown below: y = 3x 5 y = 6x 8 Part A: Explain how you will solve the pair of equations by substitution or elimination. Show all the steps and write the solution. (5 points) Part B: If the two equations are graphed, at what point will the lines representing the two equations intersect? Explain your answer. (5 points) That's life for you. All the happiness you gather to yourself,it will sweep away like it's nothing. If you ask me I don'tthink there are any such things as curses. I think there isonly life. That's enough."What is the literary element of the passage ? Explain the difficulties in finding and reaching markets for almonds, dates and other fruit grown in Pakistan. 1/4(8x-4)=need help please answer Alguien me ayuda es de Razonamiento Verbal Akram owns a small farm. He employs 80 workers in the field and has recently hired a manager to help him manage the farm. The income of the business varies greatly during the year. The farm makes a small profit but Akram is ambitious. He wants to take over a neighbours farm and increase the range of crops he sells. He thinks that he needs long-term finance and plans to take out bank loan to pay for the takeover. He has already borrowed money to buy a new tractor. A friend has advised him to form a company and sell shares What is the volume of the cone below? A. 432 units 3B. 1447 units 3C. 1087 units 3D. 2167 units 3 You are going to your first school dance! You bring $20,and sodas cost $2. How many sodas can you buy?Please write and solve an equation (for x sodas), andexplain how you set it up. The world on the turtles back Answer the following questions properly (complete sentences and direct citations/quotations where necessary) find a specific place in the story where something (characterization or mood, for example) changes suddenly. summarize that shift. Charlotte ordered dinner to be delivered to her house. The dinner cost d dollars before any tax or discounts were applied. She had a coupon for a 10% discount on the cost after an 8% tax was applied. She added a 16% tip to the total before any tax or discounts were applied. Which expressions could represent the total amount Charlotte paid Which graph shows the polar coordinates (-3,-) plotted Classify What type of number is 1.00 repeating if a moving object changes direction, its ____ would NOT necessarilyIf a moving object changes its direction, itschange.A) speedB) velocityC) acceleration What effect did the Han Dynastys conquering of Korea have on the religion in the region? A) It introduced Confucianism and Buddhism. B) It introduced Confucianism and Shintism. C) It introduced Buddhism and Shintism. D) It introduced Shintism and Christianity Both Fred and Ed have a bag of candy containing a lemon drop, a cherry drop, and a lollipop. Each takes out a piece and eats it. What are the possible pairs of candies eaten? A. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-cherry, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lollipop, lollipop-lemon B. Cherry-lemon, lemon-lollipop, lollipop-cherry, lollipop-lollipop, lemon-lemon C. Lemon-cherry, lemon-cherry, lemon-cherry, lemon-lollipop, lemon-lollipop, lemon-lollipop, cherry-lollipop, cherry-lollipop, cherry-lollipop D. Lemon-lemon, cherry-lemon, lollipop-lollipop, lemon-lollipop, cherry-cherry, lemon-lollipop, lollipop-cherry, cherry-lemon, lollipop-lemon Calculate the wavelength of light that has its third minimum at an angle of 30.0 when falling on double slits separated by 3.00 m. Some stove tops are smooth ceramic for easy cleaning. If the ceramic is 0.630 cm thick and heat conduction occurs through an area of 1.45 102 m2 at a rate of 500 J/s, what is the temperature difference across it (in C)? Ceramic has the same thermal conductivity as glass and concrete brick. Evaluate integral _C x ds, where C is a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6) b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)