Answer:
0.2611
Step-by-step explanation:
Given the following information :
Normal distribution:
Mean (m) length of time per call = 3.5 minutes
Standard deviation (sd) = 0.7 minutes
Probability that length of calls last between 3.5 and 4.0 minutes :
P(3.5 < x < 4):
Find z- score of 3.5:
z = (x - m) / sd
x = 3.5
z = (3.5 - 3.5) / 0.7 = 0
x = 4
z = (4.0 - 3.5) / 0.7 = 0.5 / 0.7 = 0.71
P(3.5 < x < 4) = P( 0 < z < 0.714)
From the z - distribution table :
0 = 0.500
0.71 = very close to 0.7611
(0.7611 - 0.5000) = 0.2611
P(3.5 < x < 4) = P( 0 < z < 0.714) = 0.2611
The 4th term of an exponential sequence is 108 and the common ratio is 3. Calculate the value of the eighth term of the sequence.
Answer:
The eighth term is 8748Step-by-step explanation:
Since the sequence is a geometric sequence
For an nth term in a geometric sequence
[tex]A (n) = a ({r})^{n - 1} [/tex]
where
a is the first term
r is the common ratio
n is the number of terms
To find the eighth term we must first find the first term
4th term = 108
common ratio = 3
That's
[tex]A(4) = a ({r})^{4 - 1} [/tex]
[tex]108 = a ({3})^{3} [/tex]
[tex]27a = 108[/tex]
Divide both sides by 27
a = 4The first term is 4For the eighth term
[tex]A(8) = 4 ({3})^{8 - 1} [/tex]
[tex]A(8) = 4({3})^{7} [/tex]
The final answer is
A(8) = 8748The eighth term is 8748Hope this helps you
I need help fast please
Answer:
Difference : 4th option
Step-by-step explanation:
The first thing we want to do here is to factor the expression x² + 3x + 2. This will help us if it is similar to the factored expression " ( x + 2 )( x + 1 ). " The denominators will be the same, and hence we can combine the fractions.
x² + 3x + 2 - Break the expression into groups,
( x² + x ) + ( 2x + 2 ) - Factor x from x² + x and 2 from 2x + 2,
x( x + 1 ) + 2( x + 2 ) - Group,
( x + 2 )( x + 1 )
This is the same as the denominator of the other fraction, and therefore we can combine the fractions.
x - 1 / ( x + 2 )( x + 1 )
As you can see this is not any of the options present, as we have not expanded ( x + 2 )( x + 1 ). Remember previously that ( x + 2 )( x + 1 ) = x² + 3x + 2. Hence our solution is x - 1 / x² + 3x + 2, or option d.
Your mother has left you in charge of the annual family yard sale. Before she leaves you to your entrepreneurial abilities, she explains that she has made the job easy for you: everything costs either $1.50 or $3.50. She asks you to keep track of how many of each type of item is sold, and you make a list, but it gets lost sometime throughout the day. Just before she’s supposed to get home, you realize that all you know is that there were 150 items to start with (your mom counted) and you have 41 items left. Also, you know that you made $227.50. Write a system of equations that you could solve to figure out how many of each type of item you sold.
A) x + y = 109
(1.5)x + 227.50 = (3.5)y
B) x + y = 109
(3.5)x + 227.50 = (1.5)y
C) x + y = 41
(1.5)x + 227.50 = (3.5)y
D) x + y = 109
(1.5)x + (3.5)y = 227.50
E) x + y = 150
(1.5)x + (3.5)y = 227.50
F) x + y = $3.50
(1.5)x + (3.5)y = 227.50
Answer:
[tex]D)\ x + y = 109\\(1.5)x + (3.5)y = 227.50[/tex]
Step-by-step explanation:
Let the items sold with price $1.5 = [tex]x[/tex]
Let the items sold with price $3.5 = [tex]y[/tex]
Initially, total number of items = 150
Items left at the end of the day = 41
So, number of items sold throughout the day = Total number of items - Number of items left
Number of Items sold = 150 - 41 = 109
So, the first equation can be written as:
[tex]\bold{x+y = 109} ....... (1)[/tex]
Now, let us calculate the sales done by each item.
Sales from item with price $1.5 = Number of items sold [tex]\times[/tex] price of each item
= (1.5)[tex]x[/tex]
Sales from item with price $3.5 = Number of items sold [tex]\times[/tex] price of each item
= (3.5)[tex]y[/tex]
Total sales = [tex]\bold{(1.5)x+(3.5)y = 227.50} ....... (2)[/tex]
So, the correct answer is:
[tex]D)\ x + y = 109\\(1.5)x + (3.5)y = 227.50[/tex]
21. Evaluate f(x) = 3x + 8 for x = 1.
Answer:
f(1) = 11
Step-by-step explanation:
f(x) = 3x + 8
Let x=1
f(1) = 3(1) +8
= 3+8
= 11
Use the discriminant to determine the number of real solutions to the equation. −8m^2+2m=0
Answer:
discriminant is b²-4ac
= 2²-4(-8)(0)
= 0
one solution
hope this helps :)
Which equation does the graph of the systems of equations solve? 2 linear graphs. They intersect at 1,4
Answer:
See below.
Step-by-step explanation:
There is an infinite n umber of systems of equations that has (1, 4) as its solution. Are you given choices? Try x = 1 and y = 4 in each equation of the choices. The set of two equations that are true when those values of x and y are used is the answer.
Someone pls help me . Will mark brainliest !!
Answer:
3, 10, 1080
Step-by-step explanation:
A coefficient, is the number that is multiplying a variable, such as x. A constant is any other number, not multiplying a variable.
For part one, the number multiplying the variable x is 3, so 3 is the coefficient.
For part two, the only number not multiplying a variable is the 10, so that is the constant.
To find how many miles she drove, we first need to subtract the first 30 dollars from the final payment.
300-30=270
We than need to divide 270 by .25, because that is how much it costed per mile.
270/.25=1080
Answer:
In the first question shown, the answer is 3
In the second question shown, the answer is 10
In the third question shown, the answer is 1080 miles
Step-by-step explanation:
First question - 3 is the number before x, making it the coefficient
Second question - 10 is the only number without a variable, making it a constant
Third question - .25 * 1080 = 270. 270 + 30 = 300.
Given the equations of a straight line f(x) (in slope-intercept form) and a parabola g(x) (in standard form), describe how to determine the number of intersection points, without finding the coordinates of such points. Do not give an example.
Answer:
Step-by-step explanation:
Hello, when you try to find the intersection point(s) you need to solve a system like this one
[tex]\begin{cases} y&= m * x + p }\\ y &= a*x^2 +b*x+c }\end{cases}[/tex]
So, you come up with a polynomial equation like.
[tex]ax^2+bx+c=mx+p\\\\ax^2+(b-m)x+c-p=0[/tex]
And then, we can estimate the discriminant.
[tex]\Delta=(b-m)^2-4*a*(c-p)[/tex]
If [tex]\Delta<0[/tex] there is no real solution, no intersection point.
If [tex]\Delta=0[/tex] there is one intersection point.
If [tex]\Delta>0[/tex] there are two real solutions, so two intersection points.
Hope this helps.
An entomologist is studying the reproduction of ants. If an ant colony started with 50 ants, and each day, their population increases by 10%, how many ants will be in the colony 5 days later? *
Step-by-step explanation: Ants are one of the most abundant insects on our planet and the reasons are their eusocial, complex societal behaviors and their ability to survive in many and various ecosystems. Like most other animal societies, reproduction is one of the core reasons why ants are so prevalent.
Acrobat Ant
Reproduction for ants is a complex phenomenon that involves finding, selecting and successfully fertilizing females to ensure that the eggs laid are able to survive and molt through the successive stages of the ant’s life cycle – larvae, pupae and adults.
Answer:
81
Step-by-step explanation:
Start: 50
After 1 day: 50 * 1.1
After 2 days: 50 * 1.1 * 1.1 = 50 * 1.1^2
After 3 days: 50 * 1.1^2 * 1.1 = 50 * 1.1^3
...
After 5 days: 50 * 1.1^5 = 80.53
Answer: 81
witch numbers are domain -3 ,-2 ,-3 ,0 ,-1 ,2 ,1 ,2
Correct Presentation of Question
Which numbers are domain? (-3,-2) (3,0)(-1,2)(1,2)
Answer:
Domain = {-3,-3,-1,1}
Step-by-step explanation:
Given
(-3,-2) (3,0)(-1,2)(1,2)
Required
Determine which numbers are domain
A function is always represented as thus (x,y) in this format (domain, range);
Tabulate the given data
x || y
-3 || -2
3 || 0
-1 || 2
1 || 2
The values under the x column are the domain;
Hence, the domain are {-3,-3,-1,1}
Resolve 36x2 – 81y2 into factors
Answer:
(6x + 9y)(6x - 9y)
Step-by-step explanation:
We can use the difference of squares which states that a² - b² = (a + b)(a - b), in this case, a = 6x and b = 9y so the answer is (6x + 9y)(6x - 9y).
According to Hooke's Law, the force needed to stretch a spring varies directly to the amount the spring is stretched. If 50 pounds of force stretches a spring five inches, how much will the spring be stretched by a force of 180 pounds? inches
The length a spring stretches when subjected to the given load is required.
The spring is stretched by 18 inches.
Hooke's lawF = Force
k = Spring constant
x = Stretched length
[tex]F=50\ \text{lbf}[/tex]
[tex]x=5\ \text{inch}[/tex]
Hooke's law is given by
[tex]F=kx\\\Rightarrow 50=k5\\\Rightarrow k=\dfrac{50}{5}\\\Rightarrow k=10\ \text{lbf/inch}[/tex]
[tex]F=180\ \text{lbf}[/tex]
For the required spring
[tex]F=kx\\\Rightarrow x=\dfrac{F}{k}\\\Rightarrow x=\dfrac{180}{10}\\\Rightarrow x=18\ \text{inches}[/tex]
Learn more about Hooke's law:
https://brainly.com/question/2648431
Which value of x makes the following matrix equation true?
Answer:
[tex]\large \boxed{{x=-3}}[/tex]
Step-by-step explanation:
[tex]{\mathrm{view \ attachment}}[/tex]
Will give Brainliest, Please show work.
Answer:
Hi, there!!
Hope you mean the answers in the solution.
Hope it helps...
Answer:
Step-by-step explanation:
7)
JKLM is a isosceles trapezium.
KL // JM
∠K + ∠J = 180 {Co interior angles}
50 +∠J = 180
∠J = 180 - 50
∠J = 130
As it is isosceles, non parallel sides KJ = LM &
∠L = ∠K
∠L = 50
∠M = ∠J
∠M = 130
8)JKLM is a isosceles trapezium.
KL // JM
∠K + ∠J = 180 {Co interior angles}
100 +∠J = 180
∠J = 180 - 100
∠J = 80
As it is isosceles, non parallel sides KJ = LM &
∠L = ∠K
∠L = 100
∠M = ∠J
∠M = 80
simplify 3^2/3 x 3^4/5
Answer: [tex]243/5[/tex]
[tex]3^2/3(3^4)/5\\=9/3(3^4)/5\\=3(3^4)/5\\=(3)(81)/5\\=243/5[/tex]
how many unique 10 digit numbers can be formed if the number 2 is in the first place and repetition is allowed?
Answer:
362880 ways
Step-by-step explanation:
Given
10 digits
Required
Number of 10 digits that can be formed if no repetition and 2 must always start;
Since digit 2 must always start and no repetition is allowed, then there are 9 digits left
Digit 2 can only take 1 position
9 digits can be arranged without repetition in 9! ways;
Calculating 9!
[tex]9! = 9 * 8 *7 * 6 * 5 * 4 * 3 * 2 * 1[/tex]
[tex]9! = 362880[/tex]
Number of arrangement = 1 * 362880
Number of arrangement = 362880 ways
Shaquira is baking cookies to put in packages for a fundraiser. Shaquira has made 86 8686 chocolate chip cookies and 42 4242 sugar cookies. Shaquira wants to create identical packages of cookies to sell, and she must use all of the cookies. What is the greatest number of identical packages that Shaquira can make?
Answer: 2
Step-by-step explanation:
Given: Shaquira has made 86 chocolate chip cookies and 42 sugar cookies.
Shaquira wants to create identical packages of cookies to sell, and she must use all of the cookies.
Now, the greatest number of identical packages that Shaquira can make= GCD of 86 and 42
Prime factorization of 86 and 42:
86 = 2 ×43
42 = 2 × 3 × 7
GCD of 86 and 42 = 2 [GCD = greatest common factor]
Hence, the greatest number of identical packages that Shaquira can make =2
The probability that a company will launch the product A and B are 0.45 and 0.60 respectively, in main while, probability that both products launched, is 0.35. What is the probability that Neither will of these products launch? (04) At least one product will be launched ?
Answer:
1) 0.3 ; 0.7
Step-by-step explanation:
Given the following :
Probability that product A launch : P(A) = 0.45
Probability that product B launch : P(B) = 0.60
Probability that both product launch : P(AnB) = 0.35
P(A alone) = p(A) - p(AnB)
P(A alone) = 0.45 - 0.35 = 0.1
P(B alone) = p(B) - p(AnB)
P(B alone) = 0.60 - 0.35 = 0.25
Probability that neither product will launch :
1 - [p(A alone) + p(B alone) + p(AnB)]
1 - [0.1 + 0.25 + 0.35]
1 - 0.7 = 0.3
Probability that at least one product will launch :
P(A alone) + p(B alone) + p(AnB)
0.1 + 0.25 + 0.35 = 0.7
The cost of a pizza at the local pizza shop has a base price of $12 for a cheese pizza, plus $2 for each additional topping? What is the value of the slope?
Answer:
$2.
Step-by-step explanation:
This is because the base price is $12, which means the constant is 12. The toppings are the only things you can add to the pizza, so the price of each additional topping is the slope of the pizza's cost. The slope is 2 dollars.
Hope this helps!
Answer:
2
Step-by-step explanation:
If we were to write a linear equation in slope-intercept form (y = mx + b where m = slope and b = y-intercept) of this situation, it would be y = 2x + 12 where y is the price and x is the number of toppings. This is because the price for every topping is 2x but the base price doesn't change, therefore it's a constant so it would be + 12. In this case, since m = slope, the slope is 2.
What is 20 to 7 minus 1 hour 40 mins Will award brainliest
6:40 or 6 hour 40 minutes,
if you go back(subtract) 1 hour and 40 minutes
i.e. 6hours 40 minutes- 1 hour 40 minutes
subtract minutes from minutes and hours from hours,
5:00
note that here the minutes value is not negative so it was not a problem, what If it was 6:40-1:50?
Find each rate and unit rate.
420 miles in 7 hours
Answer:
60 miles per hour.
Step-by-step explanation:
420 miles in 7 hours is the same thing as (420 / 7) = 60 miles per hour.
Hope this helps!
Answer:
60 miles / hour
Step-by-step explanation:
The unit rate will be the number of miles in 1 hour. Therefore, we must divide the miles by the hours.
miles/hours
We know it is 420 miles in 7 hours.
420 miles / 7 hours
Divide 420 by 7
420/7=60
60 miles/ hour
The unit rate is 60 miles per hour.
What the relation of 1/c=1/c1+1/c2 hence find c
[tex]\frac 1c=\frac1{c_1}+\frac1{c_2} [/tex]
$\frac1c=\frac{c_1+c_2}{c_1c_2}$
$\implies c=\frac{c_1c_2}{c_1+c_2}$
Please answer question now
Answer:
3x3÷2= 4.5cm^2
The formula is 1/2×base×slanted height
Step-by-step explanation:
Answer:
150 in²Step-by-step explanation:
V = ¹/₃•(¹/₂•10•9)•10 = ¹/₃•45•10 = 15•10 = 150 in²
Use inverse operations to solve each equation. Explain each step and identify the property used to reach step. 19 = h/3 - 8
==================================================
Explanation:
19 = h/3 - 8
19+8 = h/3 - 8+8 .... see note 1
27 = h/3
h/3 = 27
3*(h/3) = 3*27 .... see note 2
h = 81
----------
note 1: We add 8 to both sides to undo the "minus 8". This is the addition property of equality. Addition is the inverse of subtraction. note 2: We use the multiplication property of equality. This is where we can multiply both sides by the same number and keep the equation the same (basically balancing both sides). Multiplication is the opposite of division.Find the vertex of f(x)= x^2+ 6x + 36
Pls help soon
Answer:
vertex(-3,27)
Step-by-step explanation:
f(x)= x^2+ 6x + 36 ( a=1,b=6,c=36)
V(h,k)
h=-b/2a=-6/2=-3
k=f(-3)=3²+6(-3)+36
f(-3)=9-18+36=27
vertex(-3,27)
(10 points) Can someone graph this :) Thanks :P
Answer:
Hey there!
Your answer is:
Hope this helps :)
Which of the following best describes the graph shown below?
16
A1
1
14
O A This is the graph of a linear function
B. This is the graph of a one-to-one function
C. This is the graph of a function, but it is not one to one
D. This is not the graph of a function
The vertical line test helps us see that we have a function. Note how it is not possible to draw a single straight line through more than one point on the curve. Any x input leads to exactly one y output. This graph passes the vertical line test. Therefore it is a function.
The function is not one-to-one because the graph fails the horizontal line test. Here it is possible to draw a single straight horizontal line through more than one point on the curve. The horizontal line through y = 2 is one example of many where the graph fails the horizontal line test, meaning the function is not one-to-one.
The term "one-to-one" means that each y value only pairs up with one x value. Here we have something like y = 2 pair up with multiple x values at the same time. This concept is useful when it comes to determining inverse functions.
3/4a−16=2/3a+14 PLEASE I NEED THIS QUICK and if you explain the steps that would be geat:) Thank youuuuuuu
Answer:
360
Step-by-step explanation:
3/4a - 16 = 2/3a + 14 ⇒ collect like terms 3/4a - 2/3a = 14 + 16 ⇒ bring the fractions to same denominator9/12a - 8/12a = 30 ⇒ simplify fraction1/12a = 30 ⇒ multiply both sides by 12a = 30*12a = 360 ⇒ answerThe equation of line WX is 2x + y = −5. What is the equation of a line perpendicular to line WX in slope-intercept form that contains point (−1, −2)?
Answer: [tex]y=\dfrac12x-\dfrac{3}{4}[/tex]
Step-by-step explanation:
Given, The equation of line WX is 2x + y = −5.
It can be written as [tex]y=-2x-5[/tex] comparing it with slope-intercept form y=mx+c, where m is slope and c is y-intercept, we have
slope of WX = -2
Product of slopes of two perpendicular lines is -1.
So, (slope of WX) × (slope of perpendicular to WX)=-1
[tex]-2\times\text{slope of WX}=-1\\\\\Rightarrow\ \text{slope of WX}=\dfrac{1}{2}[/tex]
Equation of a line passes through (a,b) and has slope m:
[tex]y-b=m(x-a)[/tex]
Equation of a line perpendicular to WX contains point (−1, −2) and has slope [tex]=\dfrac12[/tex]
[tex]y-(-2)=\dfrac{1}{2}(x-(-1))\\\\\Rightarrow\ y+2=\dfrac12(x+1)\\\\\Rightarrow\ y+2=\dfrac12x+\dfrac12\\\\\Rightarrow\ y=\dfrac12x+\dfrac12-2\\\\\Rightarrow\ y=\dfrac12x-\dfrac{3}{4}[/tex]
Equation of a line perpendicular to line WX in slope-intercept form that contains point (−1, −2) [tex]:y=\dfrac12x-\dfrac{3}{4}[/tex]
Becky's ship is 43 miles west all the harbor.
Clyde's yacht is a5 miles north from Beery. How
far is Clyde from the Harbor? Show your work.
С
x= Harbor
25
B.
43
Answer:
Clyde is 49.74 away from the harbor
Step-by-step explanation:
Here in this question, we are interested in knowing the distance of Clyde from the harbor.
The key to answering this question is having a correct diagrammatic representation. Please check attachment for this.
We can see we have the formation of a right angled triangle with the distance between Clyde’s ship and the harbor the hypotenuse.
To calculate the distance between the two, we shall employ the use of Pythagoras’ theorem which states that the square of the hypotenuse is equal the sum of the squares of the two other sides.
Let’s call the distance we want to calculate h.
Mathematically;
h^2 = 25^2 + 43^2
h^2 = 625 + 1849
h^2 = 2474
h = √2474
h = 49.74 miles