(a) Expand the given expression as
[tex]\dfrac{3s-10}{s^2+25}=3\cdot\dfrac s{s^2+25}-2\cdot\dfrac5{s^2+25}[/tex]
You should recognize the Laplace transform of sine and cosine:
[tex]L[\cos(at)]=\dfrac s{s^2+a^2}[/tex]
[tex]L[\sin(at)]=\dfrac a{s^2+a^2}[/tex]
So we have
[tex]L^{-1}\left[\dfrac{3s-10}{s^2+25}\right]=3\cos(5t)-2\sin(5t)[/tex]
(b) Take the Laplace transform of both sides:
[tex]y'(t)+3y(t)=e^{6t}\implies (sY(s)-y(0))+3Y(s)=\dfrac1{s-6}[/tex]
Solve for [tex]Y(s)[/tex]:
[tex](s+3)Y(s)-2=\dfrac1{s-6}\implies Y(s)=\dfrac{2s-11}{(s-6)(s+3)}[/tex]
Decompose the right side into partial fractions:
[tex]\dfrac{2s-11}{(s-6)(s+3)}=\dfrac{\theta_1}{s-6}+\dfrac{\theta_2}{s+3}[/tex]
[tex]2s-11=\theta_1(s+3)+\theta_2(s-6)[/tex]
[tex]2s-11=(\theta_1+\theta_2)s+(3\theta_1-6\theta_2)[/tex]
[tex]\begin{cases}\theta_1+\theta_2=2\\3\theta_1-6\theta_2=-11\end{cases}\implies\theta_1=\dfrac19,\theta_2=\dfrac{17}9[/tex]
So we have
[tex]Y(s)=\dfrac19\cdot\dfrac1{s-6}+\dfrac{17}9\cdot\dfrac1{s+3}[/tex]
and taking the inverse transforms of both sides gives
[tex]y(t)=\dfrac19e^{6t}+\dfrac{17}9e^{-3t}[/tex]
I NEED HELP WITH THESE 4 ASAP
Answer:
I'm confused by this. What do they mean by prove?
Step-by-step explanation:
Write the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients. 1/(x-1)(x 9)
Answer:
[tex]\frac{A}{(x-1)} + \frac{B}{(x-9)}[/tex]
Step-by-step explanation:
Given the expression [tex]\dfrac{1}{(x-1)(x-9)}[/tex], we are to write the expression as a partial fraction. Writing as a partial fraction means rewriting the expression a s a sum of two or more expression.
Before we will do this we will need to check the nature of the function at the denominator whether it is linear, quadratic or a repeated function. According to the question, the denominator at the denominator is a linear function and since it is a linear function, we can separate both linear function without restriction as shown;
[tex]\dfrac{1}{(x-1)(x-9)} = \frac{A}{(x-1)} + \frac{B}{(x-9)}[/tex] where A and B are the unknown constant which are numerical values.
if the perimeter of Milo's rectangular backyard Is 16 feet. which of the following could be the dimensions of the yard? circle all that apply. explain your choice
Answer:
the answer is a and d
Step-by-step explanation:
6 + 6 + 2 +2 = 16
3 + 3 + 5 + 5 = 16
to find perimeter, double each factor and add :)
The cost in dollars y of producing x computer
desks is given by y = 20x + 3000
х
100
200
300
a. Complete the table
y
b. Find the number of computer desks that can be produced for $4300. (HintFind x when y = 4300)
a. Complete the table.
х
100
200
300
y
b. For $4300, computer desks can be produced.
Answer:
Step-by-step explanation:
a. table
x = 100,y = 20*100+3000 = 2000+3000 = 5000
x = 200,y = 20*200+3000 = 4000+3000 = 7000
x = 300,y = 20*300+3000 = 6000+3000 = 9000
b:
y = 4300
4300 = 20x+3000
20x = 4300-3000
20x = 1300
x = 1300/20
x = 65
so 65 computer desks can be produced.
Factor the trinomial below. x^2 + 5x – 24 A. (x – 8)(x + 3) B. (x – 4)(x + 6) C. (x – 3)(x + 8) D. (x – 6)(x + 4)
Answer:
The answer is option CStep-by-step explanation:
x² + 5x - 24
To factorize first write 5x as a difference so that when subtracted will give you 5 and when multiplied will give you - 24
That's
x² + 8x - 3x - 24
Factorize x out
That's
x( x + 8) - 3(x + 8)
Factor x + 8 out
We have the final answer as
(x + 8)(x - 3)Hope this helps you
Answer:(x-3)(x+8)
Step-by-step explanation:
5. During a national debate on changes to health care, a cable news service performs an opinion poll of 500 small business owners. It shows that 65% of small-business owners do not approve of health care changes. Develop a 95% confidence interval for the proportion opposing health care changes. Use 4 decimal places.
Answer:
The 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).
Step-by-step explanation:
The (1 - α)% confidence interval for the population proportion is:
[tex]CI=\hat p\pm z_{\alpha/2}\cdot\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The information provided is:
[tex]\hat p=0.65\\n=500\\\text{Confidence level}=95\%[/tex]
The critical value of z for 95% confidence level is:
[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]
*Use a z-table.
Compute the 95% confidence interval for the proportion opposing health care changes as follows:
[tex]CI=\hat p\pm z_{\alpha/2}\cdot\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
[tex]=0.65\pm 1.96\sqrt{\frac{0.65(1-0.65)}{500}}\\\\=0.65\pm 0.04181\\\\=(0.60819, 0.69181)\\\\\approx (0.6082, 0.6918)[/tex]
Thus, the 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).
Please help with this
Answer:
A. 120
Step-by-step explanation:
The rest of the answers are acute.
120 is the only one that matches the type of angle <V is.
Always pay attention to the type of angle it is.
can someone help me please
Answer:
[tex] {x}^{4} = 2880[/tex]
Step-by-step explanation:
[tex] {y}^{2} = 20 \: (eq . \: 1)[/tex]
[tex] {x}^{2} = {(2 \sqrt{3y)} }^{2} = 12y [/tex]
Putting value of eq. 1 in the following:
[tex] {x}^{4 } = {(12y)}^{2} = 144{y}^{2} = 144 \times 20 = 2880[/tex]
Find the sum (x^3+5x^2+3x-7)+(8x-6^2+6)
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
Answer:
x^3 - x^2 + 11x - 1
-x^3 - 8x^2 + 5x + 7
Step-by-step explanation:
Find the sum
(x^3+5x^2+3x-7)+(8x-6x^2+6)
=x^3+5x^2+3x-7+8x-6x^+6
Collect like terms
=x^3 +5x^2-6x^2+3x+8x-7+6
Add the like terms
= x^3 - x^2 + 11x - 1
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
(7x-3x^2+2)-(x^3+5x^2+2x-5)
= 7x-3x^2+2-x^3-5x^2-2x+5
Collect like terms
= -x^3-3x^2-5x^2+7x-2x+2+5
Add the like terms
= -x^3 - 8x^2 + 5x + 7
A player at a fair pays Rs. 100 to roll a dice. The player receives Rs. 50 if the number of dots facing up is equal to 5, Rs. 200 if the number is 6, but nothing otherwise. Find the expected value of the reward Y. What is the expected value of the gain? Find out the standard deviation of Y.
Answer:
The dice has 6 options:
if the outcome is 5, player wins 50
if the outcome is 6, player wins 200
if the outcome is another number, the player does not win anything.
Now, remember that the expected value can be written as:
E = ∑xₙpₙ
where xₙ is the event n, and pₙ is the probability of that event.
for a dice, the probabilty for each number is 1/6
The expected value is:
E = (1/6)*(0 + 0 + 0 + 0 + 50 + 200) = 41.66
The expected gain will be E - 100 (because the player pays 100 in order to play)
Then the expected gain is:
G = 41.66 - 100 = -58.33
The standard deviation can be written as:
s = √( ∑(x - x)^2/n)
where x is the mean, in this case the mean is:
(200 + 50 + 4*0)/6 = 41.66 and n = 6.
s = √( (1/6)*(4*(0 - 41.66)^2 + (50 - 41.66)^2 + (200 - 41.66)^2) ) = 73
So we have a lot of standard deviation on Y.
Question: 2. Musah Stands At The Centre Of A Rectangular Field. He First Takes 50 Steps North, Then 25 Steps West And Finally 50 Steps On A Bearing Of 3150 Sketch Musah's Movement Mark 41 Ii. How Far West Is Musah's Final Point From The Centre? [Mark 41 Iv. How Far North Is Musah's Final Point From The Centre? Mark 41 Describe How You Would Guide A JHS Student
Answer:
60.36 steps West from centre
85.36 steps North from centre
Step-by-step explanation:
Refer to attached
Musah start point and movement is captured in the picture.
1. He moves 50 steps to North, 2. Then 25 steps to West, 3. Then 50 steps on a bearing of 315°. We now North is measured 0°or 360°, so bearing of 315° is same as North-West 45°.
Note. According to Pythagorean theorem, 45° right triangle with hypotenuse of a has legs equal to a/√2.
How far West Is Musah's final point from the centre?
25 + 50/√2 ≈ 60.36 stepsHow far North Is Musah's final point from the centre?
50 + 50/√2 ≈ 85.36 stepsA dice is rolled twice. What is the probability of rolling a 3 followed by a 2?
The two rolls of the number cube are independent events because
the result of 1 roll does not affect the result of the other roll.
To find the probability of two independent events, we first find
the probability of each event, then we multiply the probabilities.
We can find the probability of an event using the following ratio:
number of favorable outcomes/total number of outcomes
Since there is only one way to roll a 3 and there are six
possible outcomes, 1, 2, 3, 4, 5, and 6, the probability of rolling a 3 is 1/6.
Since there is also only one way to roll a 2 and there are
six possible outcomes, the probability of rolling a 2 would be 1/6.
Now we multiply the probabilities.
1/6 x 1/6 is 1/36.
So the probability of rolling a 3 and a 2 is 1/36.
Answer:
1/36
Step-by-step explanation:
Probability of rolling 3 in a dice = 1/6.
Probability of rolling 2 = 1/6
Since, 2 should be followed after 3; we multiply 1/6 and 1/6
1/6 x 1/6 = 1/36.
The distance between two cities on a map is 4 centimeters. If the scale is 0.5 cm:1 km, how many kilometers apart are the actual cities?
Answer:
8 km
Step-by-step explanation:
1 km
4 cm x -------- = 8 km
0.5 cm
The actual cities are 8 km apart from each other at the scale 0.5 cm = 1 km.
What is ratio?Ratio basically compares quantities, that means it shows the value of one quantity with respect to the other quantity.
If a and b are two values, their ratio will be a:b,
Given that,
The distance between two cities on a map = 4 centimeters.
Also, the scale
0.5 cm = 1 km
To find actual distance between cities, use ratio properly,
0.5 cm = 1 km
1 cm = 2 km
4 cm = 8 km
The distance between the actual cities is 8 km.
To learn more about Ratio on :
https://brainly.com/question/13419413
#SPJ2
Your’re in charge of evening entertainment for an important client group You use the company credit card to take their four representatives out to dinner. Two people order the steak entree for 32.50 Two people order the grilled tuna for 28.90 and you order the lasagna for 24.95 When the bill comes you tip 20% what is the amount of tip you leave
Answer:
total amount paid = 32.5 + 28.9 + 24.95 = 86.35
20% of the total amount paid = 0.2 * 86.35 = 17.27
you tip 17.25$
How many fluid ounces are there in 4pints?
Answer: 64 fluid ounces
Step-by-step explanation:
1 pint=16 fl oz
16*4=64
Assume that the following confidence interval for the difference in the mean length of male babies (sample 1) and female babies (sample 2) at birth was constructed using independent simple random samples:0.2 in2.7 in. What does the confidence interval suggest about the difference in length between male babies and female babies?
Answer:
The confidence interval consist of positive values, it implies that the mean length of male babies at birth is more than that of female babies.
Step-by-step explanation:
Consider the hypothesis for testing the difference in the mean length of male babies and female babies at birth:
H₀: There is no significant difference between the mean length of male babies and female babies at birth, i.e. μ₁ - μ₂ = 0.
Hₐ: There is a significant difference between the mean length of male babies and female babies at birth, i.e. μ₁ - μ₂ ≠ 0.
The decision rule based on the confidence interval is:
If the (1 - α)% confidence interval does not consist of the null value, i.e. 0 then the null hypothesis will be rejected.
The confidence interval for the difference in the mean length of male babies and female babies at birth is:
CI = (0.2 in, 2.7 in)
The confidence interval does not consist of the null value, i.e. 0.
Thus, the null hypothesis will be rejected.
Hence, concluding that there is a significant difference between the mean length of male babies and female babies at birth.
Since the confidence interval consist of positive values, it implies that the mean length of male babies at birth is more than that of female babies.
Transform the given parametric equations into rectangular form. Then identify the conic.
Answer:
Solution : Option B
Step-by-Step Explanation:
We have the following system of equations at hand here.
{ x = 5 cot(t), y = - 3csc(t) + 4 }
Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,
x = 5 cot(t) ⇒ x - 5 = cot(t),
y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)
Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations as well. --- Step #2
( y - 4 / - 3 )² = (csc(t))²
- ( x - 5 / 1 )² = (cot(t))²
___________________
(y - 4)² / 9 - x² / 25 = 1
And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.
Which of the following is the solution set of the given equation? (x - 3) - 2(x + 6) = -5 a) {-4} b) {8} c) {-10}
Answer:
x = -10
Step-by-step explanation:
(x - 3) - 2(x + 6) = -5
Distribute
x-3 -2x-12 = -5
Combine like terms
-x -15 = -5
Add 15 to each side
-x-15+15 = -5+15
-x=10
Multiply each side by -1
x= -10
Answer:
c
Step-by-step explanation:
If the bathtub holds a total of 46.2 gallons, how many minutes would it take to fill the entire bathtub? Write an equation in one variable to help you solve the problem. The variable represents the unknown time in minutes.
Answer:
2.8
Step-by-step explanation:
Hey there!
Well to find the amount of minutes needed to fill a 46.2 gallon bathtub we’ll divide.
46.2 / 16.5
= 2.8
2.58 minutes
Hope this helps :)
Solve for x in the diagram below.
30°
80°
2.cº
T =
Hello, there!!!!
Given that,
80°,3x° and 2x°are three angles on a st.line.
we have,
2x°+3x°+80°= 180° {The total sum of angles on a st. line is 180°}.
or, 5x°= 180°-80°
or, 5x°=100°
or, x= 100°/5
Therefore the value of x is 20°.
Hope it helps...
80% of ______ is 1,200?
Answer:
the unknown number is 1500
Step-by-step explanation:
let "a" be the unknown number we finding so from the above question we can deduce that
(80/100)*a=1200
80a=1200*100
80a=120000
a=120000/80
a=1500
x+9=13352643-2x answer get brainliest
Answer:
4450878
Step-by-step explanation:
Look at the chore chart--write a notice and a wonder about the chart. Click on the image to see the chart. Enter ur answer
Answer:
I noticed that to babysit my cousin was the chore that doled out the most, and I wonder why pet my dog is even a chore. Do they not love their pets?
Give an example of when and why one would use a continuity correction factor?
Answer:
An example of when a continuity correction factor can be used is in finding the number of tails in 50 tosses of a coin within a given range .
and continuity correction factor is used when a continuous probability distribution is used on a discrete probability distribution
Step-by-step explanation:
An example of when a continuity correction factor can be used is in finding the number of tails in 50 tosses of a coin within a given range .
continuity correction factor is used when a continuous probability distribution is used on a discrete probability distribution, continuity correction factor creates an adjustment on a discrete distribution while using a continuous distribution
5 STARS IF CORRECT! Can you translate a phrase or sentence into symbols? Explain the answer.
Answer:
See below.
Step-by-step explanation:
It depends on the sentence or phrase. If the sentence includes an operation of numbers or something related to comparing numbers, then maybe it can be translated into symbols. If the sentence or phrase has nothing to do with quantities, or operations or comparison of quantities, then probably it can't.
Examples:
1) The boy went for a walk.
There's nothing to translate into symbols in this case.
2) I had $10 in my bank account, then I deposited n dollars. Now I have $30 in my account.
In this case, I can translate the sentence into an equation.
10 + n = 30
which of the following is equal to 5^-3?
Answer:
5⁻³ = 1/5³ = 1/125
Answer: 1/125
Step-by-step explanation:
Find the probability of winning a lottery with the following rule. Select the winning numbers from 1, 2, . . . ,34 . (In any order. No repeats.)
Complete Question
Find the probability of winning a lottery with the following rule. Select the six winning numbers from 1, 2, . . . ,34 . (In any order. No repeats.)
Answer:
The probability is [tex]P(winning ) = 7.435 *10^{-7}[/tex]
Step-by-step explanation:
From the question we are told that
The total winning numbers n = 34
The total number to select is r = 6
The total outcome of lottery is mathematically represented as
[tex]t_{outcome}) = \left n } \atop {}} \right. C_r[/tex]
[tex]t_{outcome}) = \frac{n! }{(n-r )! r!}[/tex]
substituting values
[tex]t_{outcome}) = \frac{ 34 ! }{(34 - 6 )! 6!}[/tex]
[tex]t_{outcome}) = \frac{ 34 ! }{28 ! 6!}[/tex]
[tex]t_{outcome}) =1344904[/tex]
The number of desired outcome is
[tex]t_{desired} = 1[/tex]
this is because the desired outcome is choosing the six winning number
The probability of winning a lottery is mathematically represented as
[tex]P(winning ) = \frac{t_{desired}}{t_{outcome}}[/tex]
substituting values
[tex]P(winning ) = \frac{1}{1344904 }[/tex]
[tex]P(winning ) = 7.435 *10^{-7}[/tex]
Amir throws a stone off of a bridge into a river. The stone's height (in meters above the water) ttt seconds after Amir throws it is modeled by h(t)=-5t^2+20t+160h(t)=−5t 2 +20t+160h, left parenthesis, t, right parenthesis, equals, minus, 5, t, squared, plus, 20, t, plus, 160 Amir wants to know when the stone will reach its highest point. 1) Rewrite the function in a different form (factored or vertex) where the answer appears as a number in the equation. h(t)=h(t)=h, left parenthesis, t, right parenthesis, equals 2) How many seconds after being thrown did the stone reach its highest point?
Answer:
-5*(t-2)^2+180
Step-by-step explanation:
That's the answer on khan academy.
Also the second question is 2.
Answer:
-5(t-2)^2+180 and 2
Step-by-step explanation:
hi there enjoy ur answer have a great day bye !!! :D oh wait seems sone wants to say something ʕ•ᴥ• (please give brainiest) whisperered the mysterious koala.
1 If a = p^1/3-p^-1/3
prove that: a^3 + 3a = p - 1/p
Hello, please consider the following.
We know that
[tex]a = p^{\frac{1}{3}}-p^{-\frac{1}{3}}\\\\=p^{\frac{1}{3}}-\dfrac{1}{p^{\frac{1}{3}}}[/tex]
And we can write that.
[tex](p-\dfrac{1}{p})^3=(p-\dfrac{1}{p})(p^2-2+\dfrac{1}{p^2})\\\\=p^3-2p+\dfrac{1}{p}-p+\dfrac{2}{p}-\dfrac{1}{p^3}\\\\=p^3-\dfrac{1}{p^3}-3(p-\dfrac{1}{p})[/tex]
It means that, by replacing p by [tex]p^{1/3}[/tex]
[tex](p^{1/3}-\dfrac{1}{p^{1/3}})^3=p-\dfrac{1}{p}-3(p^{1/3}-\dfrac{1}{p^{1/3}})\\\\\\\text{ So }\\\\a^3=p-\dfrac{1}{p}-3a\\\\<=>\boxed{ a^3+3a=p-\dfrac{1}{p} }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Monique makes $11 per hour delivering pizzas. Monique works Monday
through Friday, and on average she earns $20 a day in tips. If Monique
made no less than $450 for one week, find an inequality for the number
of hours she worked
Answer:
x > 39 hours
Step-by-step explanation:
Let x be the number of hours she worked.
11x - is how much she would get paid for working for x hours
11x + 20 > 450
11x > 430
x > 39 hours
Hope that helped!!! k