Answer:
42.7 mm
Step-by-step explanation:
To the nearest tenth of a mm, 42.67 mm would be 42.7 mm.
After estimate of this value rounded to the nearest tenth of a millimeter,
⇒ 42.67 ≈ 42.7
We have to given that,
According to the United States Golf Association, the diameter of a golf ball should not be less than 42.67 millimeters.
Hence, After estimate of this value rounded to the nearest tenth of a millimeter, we get;
⇒ 42.67
As, 7 is grater than 5, so we can add 1 to the tenth place.
⇒ 42.67 ≈ 42.7
Therefore, After estimate of this value rounded to the nearest tenth of a millimeter,
⇒ 42.67 ≈ 42.7
Learn more about the rounding number visit:
brainly.com/question/27207159
#SPJ2
Find the value of x. A: 15 B: 12 C: 10 D: 8
Answer:
[tex]\boxed{\sf C. \ 10}[/tex]
Step-by-step explanation:
[tex]\sf The \ intersecting \ chord \ theorem \ states \ that \ the \ products[/tex]
[tex]\sf of \ the \ lengths \ of \ the \ line \ segments \ on \ each \ chord \ are \ equal.[/tex]
[tex]NH \times HT = MH \times HY[/tex]
[tex](x+20) \times 8=12 \times 20[/tex]
[tex]\sf Expand \ brackets \ and \ multiply.[/tex]
[tex]8x+160=240[/tex]
[tex]\sf Subtract \ 160 \ from \ both \ sides.[/tex]
[tex]8x+160-160=240-160[/tex]
[tex]8x=80[/tex]
[tex]\sf Divide \ both \ sides \ by \ 8.[/tex]
[tex]\displaystyle \frac{8x}{8} =\frac{80}{8}[/tex]
[tex]x=10[/tex]
The value of x is 10.
We have a circle and inside it two chords MY and NT intersect at point H.
We have to find the value of x in the figure.
What is intersecting chord theorem?According to the intersecting chord theorem, when two chords say AB and CD intersect at point O, then
AO x OB = CO x OD
Applying the chord intersecting theorem to the figure in the question, we get -
MH x HY = NH x HT
12 x 20 = (x+20) x 8
240 = 8x + 160
8x = 80
x = 10
Hence the value of x is 10.
To solve more questions on Circles and chords, visit the link below -
https://brainly.com/question/15568573
#SPJ5
Use the order of operations to simplify this expression 1.2x3.5x4.1= What
[tex] 1.2\times3.5\times4.1=[(1+0.2)(3+0.5)](4+0.1)[/tex]
$=[1\times3+1\times0.5+0.2\times3+0.2\times0.5](4+0.1)$
$=(3+0.5+0.6+0.1)(4+0.1)$
$=(4.2)(4+0.1)=(4+0.2)(4+0.1)$
$=4\times4+4\times0.1+0.2\times4+0.2\times0.1$
$=16+0.4+0.8+0.02=17.22$
If xy = 1 what is the arithmetic mean of x and y in terms of y? Please show work as detailed as possible
Answer:
(1+y^2) /2y
Step-by-step explanation:
arithmetic mean is the average of x and y
(x+y)/2
Using the equation
xy = 1
and solving for x
x = 1/y
Replacing x in the first equation
(1/y + y) /2
Multiply by y/y
(1/y + y) /2 * y/y
(1/y + y)*y /2y
(1+y^2) /2y
is this a function {(-2, 6), (-3, 7), (-4, 8), (-3, 10)}
No, that is not a function.
To be a function, each different input (x) needs a different output (y)
In the given function there are two -3’s as inputs and they have different y values, so it can’t be a function.
Answer: no
Step-by-step explanation: To determine if a relation is a function, take a look at the x–coordinate of each ordered pair. If the x–coordinate is different in each ordered pair, then the relation is a function.
Note that the only exception to this would be that if the x-coordinate pairs up with the same y-coordinate in a relation more than once, it's still classified ad a function.
Ask yourself, do any of the ordered pairs
in this relation have the same x-coordinate?
Well by looking at this relation, we can see that two
of the ordered pairs have the same x-coordinate.
In this case, the x-coordinate of 3 appears twice.
So no, this relation is not a function.
For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is
Answer:
8
Step-by-step explanation:
Ham with or without cheese-2 choices
Bologna with or without cheese-2 choices
Bologna with cheese with water or juice-2 choices
Bologna without cheese with juice or water-2 choices
Ham with cheese with juice or water -2 choices
Ham without cheese with juice or water -2 choices
2+2+2+2=8
Kile has 8 choices for lunch
The cost of performance tickets and beverages for a family of four can be modeled using the equation 4x+12=48,where x represents the cost of a. Ticket.how much is one ticket
Answer:
x=9; one ticket is $9
Step-by-step explanation:
4x+12=48
4x=48-12
4x=36
x=36/4
x=9
limit chapter~ anyone can help me with these questions?
please gimme clear explanation :)
Step-by-step explanation:
I(S) = aS / (S + c)
As S approaches infinity, S becomes much larger than c. So S + c is approximately equal to just S.
lim(S→∞) I(S)
= lim(S→∞) aS / (S + c)
= lim(S→∞) aS / S
= lim(S→∞) a
= a
As S approaches infinity, I(S) approaches a.
Find the missing side or angle.
Round to the nearest tenth.
Answer:
b=2.7
Step-by-step explanation:
using sine rule,,,
Step-by-step explanation:
So for this problem, we need the missing angle A. From there, we can use the law of sines to compute length of b.
So the sum of the interior angles of a triangle is 180. With that in mind, we can make an equation to fine the measure of angle A.
53 + 80 + A = 180
133 + A = 180
A = 47
Now that we have the angle of A, we can use the law of sines to fine the length of b.
b / sin(B) = a / sin(A)
b = sin(B) * a / sin(A)
b = sin(80) * 2 / sin(47)
b = 2.693
Now round that to the nearest tenth to get
b = 2.7
Cheers.
Last Sunday, the average temperature was 8\%8%8, percent higher than the average temperature two Sundays ago. The average temperature two Sundays ago was TTT degrees Celsius. Which of the following expressions could represent the average temperature last Sunday?
Work Shown:
T = average Celsius temperature two Sundays ago
8% = 8/100 = 0.08
8% of T = 0.08T
L = average Celsius temperature last sunday
L = 8% higher than T
L = T + (8% of T)
L = T + 0.08T
L = 1.00T + 0.08T
L = (1.00 + 0.08)T
L = 1.08T
The 1.08 refers to the idea that L is 108% of T
Answer:
b and d
Step-by-step explanation:
khan
ASAP Which graph has a correlation coefficient, r, closest to 0.75?
Answer:
C. Graph C
Step-by-step explanation:
In a scatter plot, a positive correlation coefficient suggests that as one variable increases the other increases as well, or as one decreases, the other decreases.
Also, the more clustered the data points are along the line of best fit, the higher the value of the coefficient, whether positive or negative.
Graph C shows a positive correlation because as the variable on the x-axis increases, the variable on the y-axis also increases. The data points are more clustered along the line if best fit, if we draw one. This suggest a positive correlation coefficient (r) as strong as 0.75.
Graph C has a correlation coefficient, r, that is closer to 0.75.
Answer: graph A ‼️
Step-by-step explanation:
A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4
A spinner has 10 equally sized sections, 5 of which are gray and 5 of which are blue. The spinner is spun twice. What is the probability that the first spin lands on gray and the second spin lands on blue? Write your answer as a fraction in the simplest form.
Answer:
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
Step-by-step explanation:
Given
[tex]Sections = 10[/tex]
[tex]n(Gray) = 5[/tex]
[tex]n(Blue) = 5[/tex]
Required
Determine P(Gray and Blue)
Using probability formula;
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
Calculating P(Gray)
[tex]P(Gray) = \frac{n(Gray)}{Sections}[/tex]
[tex]P(Gray) = \frac{5}{10}[/tex]
[tex]P(Gray) = \frac{1}{2}[/tex]
Calculating P(Gray)
[tex]P(Blue) = \frac{n(Blue)}{Sections}[/tex]
[tex]P(Blue) = \frac{5}{10}[/tex]
[tex]P(Blue) = \frac{1}{2}[/tex]
Substitute these values on the given formula
[tex]P(Gray\ and\ Blue) = P(Gray) * P(Blue)[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{2} * \frac{1}{2}[/tex]
[tex]P(Gray\ and\ Blue) = \frac{1}{4}[/tex]
what number must be added to the sequence of 7,13 and 10 to get an average of 13
Answer:
22
Step-by-step explanation:
We can write an equation:
(7+13+10+x)/4=13
x represents the number that needs to be added to get an average of
(7+13+10+x)/4=13
(30+x)/4=13
30+x=52
x=22
The number is 22
Hope this helps! Have a wonderful day :)
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
What is the name of a geometric figure that looks an orange
A. Cube
B. Sphere
C. Cylinder
D. Cone
Answer:
b . sphere
Step-by-step explanation:
In the figure below, angle y and angle x form vertical angles. Angle x forms a straight line with the 50° angle and the 40° angle. A straight line is shown and is marked with three angles. The first angle measures 50 degrees. The second angle measures 60 degrees. The third angle is labeled x. The line between the 40 degree angle and angle x extends below the straight line. The angle formed is labeled angle y. Write and solve an equation to determine the measure of angle y.
Step-by-step explanation:
sorry but u should provide with a diagram for better understanding of ur question
6(x + 2) = 30Solve the following linear equation
Answer:
[tex]\huge \boxed{x=3}[/tex]
Step-by-step explanation:
[tex]6(x+2)=30[/tex]
[tex]\sf Divide \ both \ sides \ by \ 6.[/tex]
[tex]x+2=5[/tex]
[tex]\sf Subtract \ 2 \ from \ both \ sides.[/tex]
[tex]x=3[/tex]
Answer:
3
Step-by-step explanation:
30 = 6(x+2)
30/6 = 5
5 = x+2
5-2 = 3
3=x
This is a pretty simple question and I tried to make it as simple as possible when explaining it.
Find the vector and parametric equations for the line through the point P(0, 0, 5) and orthogonal to the plane −1x+3y−3z=1. Vector Form: r
Answer:
Note that orthogonal to the plane means perpendicular to the plane.
Step-by-step explanation:
-1x+3y-3z=1 can also be written as -1x+3y-3z=0
The direction vector of the plane -1x+3y-3z-1=0 is (-1,3,-3).
Let us find a point on this line for which the vector from this point to (0,0,5) is perpendicular to the given line. The point is x-0,y-0 and z-0 respectively
Therefore, the vector equation is given as:
-1(x-0) + 3(y-0) + -3(z-5) = 0
-x + 3y + (-3z+15) = 0
-x + 3y -3z + 15 = 0
Multiply through by - to get a positive x coordinate to give
x - 3y + 3z - 15 = 0
Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}
Answer:
The answer is 55, -275, 1375, -6875......
Step-by-step explanation:
a
A solid metal cone of base radius a cm and height 2a cm is melted and solid
spheres of radius are made without wastage. How many such spheres can be
made?
volume of a cone
.
.
.
volume of sphere
.
.
number of spheres that can be made......
.
.
hence a hemisphere can be formed
The chief business officer of a construction equipment company arranges a loan of $9,300, at 12 1 /8 % interest for 37.5 months. Find the amount of interest. (Round to the nearest cent)
a. $2,761.21
b. $3,583.83
c. $3,523.83
d. $3,722.47
Answer:
C). $3523.83
Step-by-step explanation:
loan of principles p= $9,300,
at rate R= 12 1 /8 % interest
Rate R = 12.125%
for duration year T = 37.5 months
T= 37.5/12 = 3.125 years
Interest I=PRT/100
Interest I =( 9300*12.125*3.125)/100
Interest I = (352382.8125)/100
Interest I = 3523.83
Interest I= $3523.83
For some postive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770. The value of Z is
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
Find the first term in the sequence when u(subscript)31=197 and d= 10.
Answer:
197 = 10(31-1) + a
197 = 300 + a
-103 = a
Salaries of 42 college graduates who took a statistics course in college have a mean, , of . Assuming a standard deviation, , of $, construct a % confidence interval for estimating the population mean .
Answer:
The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
Step-by-step explanation:
The complete question is:
Salaries of 42 college graduates who took a statistics course in college have a mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard deviation, σ of $10,016 construct a 99% confidence interval for estimating the population mean μ.
Solution:
The (1 - α)% confidence interval for estimating the population mean μ is:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
The critical value of z for 99% confidence interval is:
[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]
Compute the 99% confidence interval for estimating the population mean μ as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
[tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]
Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
Which of the following is equivalent to –2i(6 – 7i)?
Answer:
[tex]\boxed{\sf \bf \ \ -2i(6-7i)=-14-12i \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
[tex]-2i(6-7i)=-12i+14i^2=-14-12i[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:
A
Step-by-step explanation:
Answer = A
6x - 10 = 4(x + 3) x = ? x = 9 x = 10 x = 11 x = 12
Answer:
x=11
Step-by-step explanation:
Answer:
x = 11
Step-by-step explanation:
6x - 10 = 4(x+3)
6x - 10 = 4*x + 4*3
6x - 10 = 4x + 12
6x - 4x = 12 + 10
2x = 22
x = 22/2
x = 11
check:
6*11 - 10 = 4(11+3)
66 - 10 = 4*14 = 56
A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall.
Answer:
a
Step-by-step explanation:
answer is a on edg
Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis
The area is given by the integral
[tex]\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds[/tex]
where C is the curve and [tex]dS[/tex] is the line element,
[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
We have
[tex]x(t)=t+\sqrt 2\implies\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]
[tex]y(t)=\dfrac{t^2}2+\sqrt 2\,t+1\implies\dfrac{\mathrm dy}{\mathrm dt}=t+\sqrt 2[/tex]
[tex]\implies\mathrm ds=\sqrt{1^2+(t+\sqrt2)^2}\,\mathrm dt=\sqrt{t^2+2\sqrt2\,t+3}\,\mathrm dt[/tex]
So the area is
[tex]\displaystyle A=2\pi\int_{-\sqrt2}^{\sqrt2}(t+\sqrt 2)\sqrt{t^2+2\sqrt 2\,t+3}\,\mathrm dt[/tex]
Substitute [tex]u=t^2+2\sqrt2\,t+3[/tex] and [tex]\mathrm du=(2t+2\sqrt 2)\,\mathrm dt[/tex]:
[tex]\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^{3/2}\bigg|_1^9=\frac{52\pi}3[/tex]
HELP ASAP ROCKY!!! will get branliest.
Answer:
work pictured and shown
Answer:
Last one
Step-by-step explanation:
● [ ( 3^2 × 5^0) / 4 ]^2
5^0 is 1 since any number that has a null power is equal to 1.
●[ (3^2 ×1 ) / 4 ]^2
● (9/4)^2
● 81 / 16
help pls:Find all the missing elements
Step-by-step explanation:
Using Sine Rule
[tex] \frac{ \sin(a) }{ |a| } = \frac{ \sin(b) }{ |b| } = \frac{ \sin(c) }{ |c| } [/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(38) }{a} [/tex]
[tex]a = \frac{5( \sin(38))}{ \sin(42) } [/tex]
[tex]a = 4.6[/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(100) }{b} [/tex]
[tex]b= \frac{5( \sin(100))}{ \sin(42) } [/tex]
[tex]b = 7.4[/tex]