1. Find (f(g(2)) for f(x)= 3x² and g(x)= 5 - x.
Answer: 27
Step-by-step explanation:
What is 1 and 7/10
as a decimal?
0.17
1.7
th
0.7
7.1
1.07
A quality-conscious disk manufacturer wishes to know the fraction of disks his company makes which are defective. Step 2 of 2 : Suppose a sample of 1067 floppy disks is drawn. Of these disks, 74 were defective. Using the data, construct the 80% confidence interval for the population proportion of disks which are defective. Round your answers to three decimal places.
Answer:
The 80% confidence interval for the population proportion of disks which are defective is (0.059, 0.079).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
Suppose a sample of 1067 floppy disks is drawn. Of these disks, 74 were defective.
This means that [tex]n = 1067, \pi = \frac{74}{1067} = 0.069[/tex]
80% confidence level
So [tex]\alpha = 0.2[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.2}{2} = 0.9[/tex], so [tex]Z = 1.28[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.069 - 1.28\sqrt{\frac{0.069*0.931}{1067}} = 0.059[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.069 + 1.28\sqrt{\frac{0.069*0.931}{1067}} = 0.079[/tex]
The 80% confidence interval for the population proportion of disks which are defective is (0.059, 0.079).
Can someone seriously help me!!!!!
Answer:
Step-by-step explanation:
This should help I hope
14. On Monday, a work group eats at Ava's café,
where a lunch special is $8 and a dessert is
$2. The total is $108. On Friday, the group
eats at Bo's café, where a lunch special Is
$6 and a dessert is $3. The total is $90. Each
time, the group orders the same number of
lunches and the same number of desserts.
How many lunches and desserts are
ordered?
what the x and y value.
Answer:
no. who eat lunch special = 12
no. who eat dessert = 6
Step-by-step explanation:
Let x = no. who eat lunch special
y = no. who eat dessert
(1) 8x + 2y = 108 (2) 6x + 3y = 90
Divide thru by 2 Divide thru by 3
4x + y = 54 2x + y = 30
-2x - y = -30
2x = 24
x = 12 2(12) + y = 30
24 + y = 30
y = 6
HELP WILL GIVE BRANLIEST
Answer:
the answer is b
Step-by-step explanation:
Answer:
Last Choice
Step-by-step explanation:
No time to explain I am 100 % sure its correct i had same problem
Represent the greatest common factor of 36 and 8 using the distributive property
36 + 8 =
0 4x(9+2)
O2 x (18+4)
O 8x (5+2)
0 11 x (3+1)
Which side lengths form a right triangle?
Answer:
Answer:[tex] \huge\mathfrak\pink{S} \huge\mathfrak\purple{o} \huge\mathfrak\blue{l} \huge\mathfrak\red{u} \huge\mathfrak\green{t} \huge\mathfrak\pink{i}\huge\mathfrak\purple{o}\huge\mathfrak\red{n}\huge\mathfrak\orange{➔}\ [/tex] Pythagoras law:h²=p²+b²
needed to apply
4²+√8²=24²
24≠576
not a right angled triangle
again
5²+√5²=5²
50≠25
side are not a right angled triangle
again
4²+7.5²=(8.5)²
72.25=72.25
side are a right angled triangle
What are some of the applications for exponential functions?
Designing identification tags
Conversion of measurements
Assigning phone numbers
Finding perimeter
Determining the number of subsets in a given set
Answer:
Option B and D are correct
Step-by-step explanation:
Exponential functions are really useful in the real world situation. They can be used to solve following
a) Population Models
b) Determination of area and perimeters
c) Determine time related things such as half life, time of happening of an event etc.
d) Useful for solving financial problems such as computing investments etc.
Hence, option B and D
Using the product of the means equals the product of the extremes, solve for x, to the nearest tenth. 4:9=x:6
Cross multiply:
4 x 6 = 9x
24 = 9x
Divide both sides by 9
X = 24/9
X = 2.7 ( rounded to the nearest tenth)
The coordinates of a rectangle, LMNO, are L(- 1,3), M(2,3), N(2, - 5), and 0(- 1,- 5).
a. What is the length and width of this rectangle?
b. What is the perimeter of the rectangle?
c. What is the area of the rectangle?
Answer:
length = 8; width = 3
perimeter = 22
area = 24
Step-by-step explanation:
L(- 1,3), M(2,3)
LM = |-1 - 2| = 3
M(2,3), N(2, - 5)
MN = |-5 - 3| = 8
length = 8; width = 3
perimeter = 2(L + W) = 2(8 + 3) = 22
area = LW = 8 × 3 = 24
Mrs Mills buys 4 packs of treats for her cats, Fluff and tigger
she gives Fluff 1/6 of a pack each day
She gives tigger 1/5 of a pack each day
for how many complete days will the 4 packs of treats last
Answer: 10 days
Step-by-step explanation:
1/6 + 1/5 = 5/30 + 6/30 = 11/30 (total for the day)
4 / (11/30) = 10.90909091 (divide the total amount of packages by the daily total)
So 10 complete days.
Which expression best matches the statement:
Twelve less than the product of three and a number.
12 - 3n
3n - 12
3 + 7 - 12
12 - 3 + n
Answer: 3n - 12
Product means multiplication. So the 3 and n are being multiplied. If 12 is less than, then that means it is being subtracted from 3n, not the other way around.
A psychologist has designed a questionnaire to measure individuals' aggressiveness. Suppose that the scores on the questionnaire are normally distributed with a standard deviation of 80. Suppose also that exactly 15% of the scores exceed 700. Find the mean of the distribution of scores. Carry your intermediate computations to at least four decimal places. Round your answer to at least one decimal place.
Answer:
The mean score is of 617.4.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Suppose that the scores on the questionnaire are normally distributed with a standard deviation of 80.
This means that [tex]\sigma = 80[/tex]
Suppose also that exactly 15% of the scores exceed 700.
This means that when X = 700, Z has a pvalue of 0.85. So X when X = 700, Z = 1.033. We use this to find [tex]\mu[/tex]
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.033 = \frac{700 - \mu}{80}[/tex]
[tex]700 - \mu = 80*1.033[/tex]
[tex]\mu = 700 - 80*1.033[/tex]
[tex]\mu = 617.4[/tex]
The mean score is of 617.4.
What is sec 0 when cot 0 = -4/2?
Answer:
[tex]sec 0=\frac{\sqrt{66} }{8}[/tex]
Step-by-step explanation:
[tex]Cot0=-4\sqrt{2}[/tex]
[tex]sec0=\frac{\sqrt{33} }{4\sqrt{2} }[/tex]
[tex]=\frac{\sqrt{33} }{4\sqrt{4} } *\frac{4\sqrt{2} }{4\sqrt{2} }[/tex]
[tex]=\frac{4\sqrt{66} }{32}[/tex]
[tex]=\frac{\sqrt{66} }{8}[/tex]
--------------------
hope it helps...
have a great day!!
Convert 400 meters (m) to feet (ft). Round your answer to two decimal places. (1 metre = 3.28084 feet)
Answer:
1m----------3.28084ft
400m---------xft
x=(400*3.28084)/1
x=1,312.33 ft
Step-by-step explanation:
A Solve each problem.
1. Henry flies his plane at 240 mph for 3 hours. How far does he travel?
Distance = speed x time
Distance = 240 x 3 = 720 miles
Answer:
henry doesn't travel but plane travel
Step-by-step explanation:
240m×3hour240m×60×60sec2592000m/sYou have been given the task of designing a study concerning the lifetimes of five different types of electric motor. The initial question to be addressed is whether there are differences in mean lifetime among the five types. There are 20 motors, four of each type, available for testing. A maximum of five motors can be tested in a day. The ambient temperature differs from day to day, and this can affect motor lifetime.
a. Describe how you would choose the five motors to test each day. Would you use a completely randomized design? Would you use any randomization at all?
b. If X;j represents the measured lifetime of a motor of type i tested on day j, express the test statistic for testing the null hypothesis of equal lifetimes in terms of the Xir
Answer:
a-As the only factor of interest is type of electric motor, thus instead of using 1-factor randomization, a randomized block design is used where at maximum one motor of each type is tested every day.
b- The test statistic is given as
[tex]F_{I-1,(I-1)(J-1)}=\dfrac{12\left(\Sigma^{5}_{i=1}\bar{X}^{2}_{i.}-IJ\bar{X}^2_{..}\right) }{\Sigma^5_{i=1}\Sigma^4_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}[/tex]
Step-by-step explanation:
a-
This is done such that the days are considered as blocks and the randomization is only occuring within the block. The order of testing is random. However the condition is implemented such that one motor of each type is tested each day.
b-
The F-Value is given as
[tex]F-Value=\dfrac{MSA}{MSAB}[/tex]
Here MSA is given as
[tex]MSA=\dfrac{J\Sigma^I_{i=1}(\bar{X}_{i.}-\bar{X}_{..})^2}{I-1}[/tex]
Here
I is the number of types which is 5J is the number of motors of each type which is 4[tex]\bar{X}_{i.}[/tex] is the row-wise mean which is given as [tex]\bar{X}_{i.}=\dfrac{1}{J}\Sigma^J_{j=1}X_{ij}[/tex][tex]\bar{X}_{..}[/tex] is the sample grand mean which is given as [tex]\bar{X}_{..}=\dfrac{1}{IJ}\Sigma^I_{i=1}\Sigma^J_{j=1}X_{ij}[/tex]Similarly MSAB is given as
[tex]MSAB=\dfrac{\Sigma^I_{i=1}\Sigma^J_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}{(I-1)(J-1)}[/tex]
Here
I is the number of types which is 5J is the number of motors of each type which is 4[tex]\bar{X}_{i.}[/tex] is the row-wise mean which is given as [tex]\bar{X}_{i.}=\dfrac{1}{J}\Sigma^J_{j=1}X_{ij}[/tex][tex]\bar{X}_{..}[/tex] is the sample grand mean which is given as [tex]\bar{X}_{..}=\dfrac{1}{IJ}\Sigma^I_{i=1}\Sigma^J_{j=1}X_{ij}[/tex][tex]\bar{X}_{.j}[/tex] is the column-wise mean which is given as [tex]\bar{X}_{.j}=\dfrac{1}{I}\Sigma^I_{i=1}X_{ij}[/tex][tex]X_{ij}[/tex] is the any motor j of type iBy putting these values and simplifying, equation becomes:
[tex]F-Value=\dfrac{MSA}{MSAB}\\\\F-Value=\dfrac{\dfrac{J\Sigma^I_{i=1}(\bar{X}_{i.}-\bar{X}_{..})^2}{I-1}}{\dfrac{\Sigma^I_{i=1}\Sigma^J_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}{(I-1)(J-1)}}\\\\F-Value=\dfrac{\dfrac{4\Sigma^5_{i=1}(\bar{X}_{i.}-\bar{X}_{..})^2}{5-1}}{\dfrac{\Sigma^5_{i=1}\Sigma^4_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}{(5-1)(4-1)}}\\\\[/tex]
This is further simplified as
[tex]F-Value=\dfrac{\dfrac{4\Sigma^5_{i=1}(\bar{X}_{i.}-\bar{X}_{..})^2}{4}}{\dfrac{\Sigma^5_{i=1}\Sigma^4_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}{12}}\\\\F-Value=\dfrac{\Sigma^5_{i=1}(\bar{X}_{i.}-\bar{X}_{..})^2}{\dfrac{\Sigma^5_{i=1}\Sigma^4_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}{12}}\\\\[/tex]
The numerator can be written as
[tex]F-Value=\dfrac{\Sigma^{5}_{i=1}\bar{X}^{2}_{i.}-IJ\bar{X}^2_{..}}{\dfrac{\Sigma^5_{i=1}\Sigma^4_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}{12}}\\\\F-Value=\dfrac{12(\Sigma^{5}_{i=1}\bar{X}^{2}_{i.}-IJ\bar{X}^2_{..})}{{\Sigma^5_{i=1}\Sigma^4_{j=1}\left(X_{ij}-\bar{X}_{i.}-\bar{X}_{.j}+\bar{X}_{..}\right)^2}}\\[/tex]
Someone PLease help me
hey I need help with my coordinates
Ok send the picture so I can help you.
Answer:
what is the question? I can help
Step-by-step explanation:
If a rectangle has an area of 48 cm², what would be the area of a similar rectangle if
the dimensions are doubled?
A) 2304 cm^2
B) 192 cm^2
C)96 cm^2
D)216 cm^2
find the area of the triangle ! be sure to include the correct unit with the answer. (yd) , (yd2) , (yd3) .
HELP PLEASE ! i really need it . thank you
Answer:
70 yd²
Step-by-step explanation:
Area of triangle = (1/2)(base)(perpendicular height)
= (1/2)(20)(7)
= 70 yd²
Help ASAP
What is the highest common factor of 180 and 168
Answer:
Its 12
Step-by-step explanation:
Answer:
12
Step-by-step explanation:
make a factor tree, find the product of the prime factors, it will be 12.
Question 9 of 10
True or False? A circle could be circumscribed about the quadrilateral below.
Answer:
t
Step-by-step explanation:
A circle can be circumscribed about the given quadrilateral, the answer is: A. True.
We know that,
To circumscribe a circle about a quadrilateral means to place the quadrilateral inside the circle, such that the four vertices of the quadrilateral touches the circumference of the circle.
Opposite angles of a circumscribed polygon are supplementary.
Therefore, a circle can be circumscribed about the given quadrilateral, the answer is: A. True.
Learn more about circumscribed polygon on:
brainly.com/question/1423054
#SPJ7
Find the volume of a pyramid with a square base, where the perimeter of the base is 16.1 ft and the height of the pyramid is 12.1 ft. Round your answer to the nearest tenth of a cubic foot?
Answer: V= 65.3 ft^3
The catapults are 14.5 m, end text apart, as shown. From catapult A, there is a 96 degree angle between catapult B and the target. From catapult B, there is a 58°degree angle between catapult A and the target.
How far should catapult B throw the snowball to reach the target?
Do not round during your calculations. Round your final answer to the nearest tenth of a meter.
Thank you very much.
Answer:32.9 m
Step-by-step explanation:
Pls help me if u can
Answer:
523.33 cm³
Step-by-step explanation:
Formula of volume of sphere
[tex] = \frac{4}{3} \pi {r}^{3} [/tex]
The volume of the sphere
[tex] = \frac{4}{3} \times 3.14 \times {5}^{3} [/tex]
[tex] = \frac{1570}{3} [/tex]
[tex] = 523.3333333...[/tex]
= 523.33 cm³ (rounded to the nearest hundredth)
Stacia buys 6 yards of ribbon to make a costume. She has 2 feet of ribbons left over. How many feet of ribbon did Stacia use to make the costume? Explain your work.
ANSWER WITH WORDS
Answer:
16 feet
Step-by-step explanation:
6 yards of ribbon = 6 x 3 =18 feet
ribbon used = 18 -2 = 16 feet
If a team of minors drill a hole 50.4 m into a rock formation and drill at a steady rate of 2.8 m/min. how long does it take to drill the hole
Answer:
t = 18 minutes.
Step-by-step explanation:
We can find the time by using the following kinematic equation:
[tex] y_{f} - y_{0} = v_{0}t + \frac{1}{2}at^{2} [/tex]
[tex] \Delta y = v_{0}t + \frac{1}{2}at^{2} [/tex]
Where:
Δy: is the difference between the initial and the final height = 50.4 m
t: is the time
a: is the acceleration
v₀: is the velocity of the drill = 2.8 m/min
Since the speed of perforation is constant, the acceleration is zero so:
[tex]\Delta y = v_{0}t[/tex]
Then, by solving the above equation for "t" we have:
[tex] t = \frac{\Delta y}{v_{0}} = \frac{50.4 m}{2.8 m/min} = 18 min [/tex]
Therefore, it takes 18 minutes to drill the hole.
I hope it helps you!
HELP PLEASE ILL GIVE BRAINLIEST!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
50%
- Animals
Home
Economics -
20%
30%
- Farm Mechanics
There were 2500 entries at the county fair. The circle graph tells what types of entries were made.
How many were Farm Mechanics entries?
Answer:
750 were Farm Mechanics.
Step-by-step explanation:
30% of 2500 is 750.
Hope this helps