Explanation:
mass=force*acceleration
mass=3000*10
mass=30,000
The mass of the bodies in the elevator is 400 kg.
The acceleration of the elevator is 2.5 m/s².
What is acceleration?Acceleration is rate of change of velocity with time. Due to having both direction and magnitude, it is a vector quantity. Si unit of acceleration is meter/second² (m/s²).
Given parameters:
Mass of the elevator: M = 250 kg.
Mass of two persons: m₁ = 50 kg and m₂ = 100 kg.
Force exerted by the motor: F = 3000N.
g = 10 m/s².
Let, the acceleration of the elevator = a.
the mass of the bodies in the elevator :m= 250 kg. + 50 kg +100 kg. = 400 kg.
Now, F = mg - ma
⇒ 3000 = 400×10 - 400a
⇒ a = 1000/400 = 2.5 m/s²
Hence, the acceleration of the elevator is 2.5 m/s².
Learn more about acceleration here:
brainly.com/question/12550364
#SPJ2
A 10 kg box initially at rest is pulled with a 50 N horizontal force for 4 m across a level surface. The force of friction
acting on the box is a constant 20 N. How much work is done by the gravitational force?
A. 03
OB. 10 J
C. 100
D. 50 J
Answer:
B i think
Explanation:
...
Which two chemical equations show double-replacement reactions?
A. C+02 - CO2
B. 2Li + CaCl2 - 2LiCl + Ca
I C. Ca(OH)2 + H2S04 - CaSO4 + 2H20
D. Na2CO3 + H2S - H2CO3 + Na2S
The two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
What is double replacement reaction?A double replacement reaction have two ionic compounds that are exchanging anions or cations.
From the given options, we can choose the following based on their exchange of anions or cations.
Ca(OH)2 + H2S04 - CaSO4 + 2H20Na2CO3 + H2S - H2CO3 + Na2SThus, the two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
Learn more about double replacement reaction here: https://brainly.com/question/14281077
#SPJ2
Batteries are not perfect. They can't deliver infinite current. As the current load on a battery gets larger, the voltage output gets smaller.
a. True
b. False
When a 20 kg explosive detonates and sends a 5 kilogram piece traveling to the right at 105 m/s
what is the speed and direction of the other 15 kilogram piece of the explosive!
Answer:
speed: 35m/s
direction: left
Explanation:
Assuming the right side is the positive direction:
before explosion:
P = mv = 0
after explosion:
P' = 15P + 5P
(Set the velocity of the 15kg piece after explosion as v1' and the velocity of the 5kg piece after explosion as v2')
P' = 0.75mv1' + 0.25mv2'
P' = (15kg)v' + (5kg)(105m/s)
P' = 525kg/m/s + (15kg)v1'
P = P'
525kg/m/s + (15kg)v1' = 0
(15kg)v1' = -525kg/m/s
v1' = -35m/s
speed = |-35| = 35m/s
direction is to the left since the right side is the positive direction.
In a nuclear fusion reaction, atoms:
split apart.
combine.
explode.
cool down.
Suppose a diode consists of a cylindrical cathode with a radius of 6.200×10−2 cm , mounted coaxially within a cylindrical anode with a radius of 0.5580 cm . The potential difference between the anode and cathode is 400 V . An electron leaves the surface of the cathode with zero initial speed (vinitial=0). Find its speed vfinal when it strikes the anode.
Answer:
The final speed will be "[tex]1.185\times 10^7 \ m/sec[/tex]".
Explanation:
The given values are:
Potential difference,
Δv = 400 v
Radius,
r = 0.5580 cm
As we know,
⇒ [tex]W=e \Delta v[/tex]
and,
⇒ [tex]\frac{1}{2}mv^2=e \Delta v[/tex]
then,
⇒ [tex]v=\sqrt{\frac{2e \Delta v}{m} }[/tex]
On substituting the values, we get
⇒ [tex]=\sqrt{\frac{2\times 1.6\times 10^{-19}\times 400}{9.11\times 10^{-31}} }[/tex]
⇒ [tex]=\sqrt{\frac{1.6\times 10^{-19}\times 800}{9.11\times 10^{-31}}}[/tex]
⇒ [tex]=1.185\times 10^7 \ m/sec[/tex]
Review please help.
Answer:
1 and 3
Explanation:
because they are going up from 0
A box having a weight of 8 lb is moving around in a circle of radius rA = 2 ft with a speed of (vA)1 = 5 ft/s while connected to the end of a rope. If the rope is pulled inward with a constant speed of vr = 4 ft/s, determine the speed of the box at the instant rB = 1 ft. How much work is done after pulling in the rope from A to B? Neglect friction and the size of the box
Answer:
W = 1.875 J
Explanation:
For this exercise let's use the relationship between work and kinetic energy
W = ΔK
The kinetic energy of rotational motion is
K₀ = ½ I w²
we can assume that the box is small, so it can be treated as a point object, with moment of inertia
I = m rₐ²
angular and linear velocity are related
v = w r
w = v / r
we substitute in the equation, for point A
K₀ = ½ (m rₐ²) (v / rₐ)²
K₀ = ½ m v²
For the final point B, as the system is isolated the angular momentum is conserved
initial L₀ = Io wo
final L_f = I_f w_f
L₀ = L_f
I₀ w₀ = I_f w_f
(m rₐ²) w₀ = (m [tex]r_{b} ^2[/tex]) w_f
w_f = (rₐ/r_b)² w₀
with this value we find the final kinetic energy
K_f = ½ I_f w_f²
K_f = ½ (m [tex]r_{b}^2[/tex]) ( (rₐ / r_b)² w₀) ²
K_f = ½ m [tex]\frac{r_a^4}{r_b^2} \ w_o^2[/tex]
we substitute in the realcion of work
W = K_f - K₀
W = ½ m [tex]( \( \frac {r_a^2 }{r_b} )^2[/tex] w₀² - ½ m v²
W = ½ m [tex]\frac{r_a^4}{r_b^2} ( \frac{v}{r_a} ) ^2[/tex] - ½ m v²
W = ½ m [tex]\frac{r_a^2}{r_b^2} \ v^2[/tex] - ½ m v2
W = ½ m v² (([tex]( \ (\frac{r_a}{r_b})^2 -1)[/tex]
let's calculate
W = ½ ( [tex]\frac{8}{32}[/tex] ) 5 ((2/1)² -1)
W = 0.625 (3)
W = 1.875 J
Tony ran 600 meters in 60 seconds. What was Tony's speed during the
race?
6) Which of the following describes a good team member?
A) She is willing to compromise.
B) He is aggressive.
C) She is stubborn.
D) He is conceited.
Answer: A
Explanation:
Because someone who is aggressive, stubborn, or proud of theirselves are more likely to think they're above everyone else and be a bully. However someone who is willing to compromise is better since you can generally make everyone happy that way
HOPE THIS HELPS ^^
If you live in Melbourne, Australia, the local magnetic field has a strength of about 4x10-5 T. The magnetic field vector is directed northward, making an angle of 30 deg above the horizontal. An electron in Melbourne is moving parallel to the ground, in the west direction, at a speed of 9x105 m/s. What are the magnitude and direction of the magnetic force on the electron
Answer:
[tex]5.76\times 10^{-18}\ \text{N}[/tex] perpendicular to the velocity and magnetic field
Explanation:
B = Magnetic field = [tex]4\times 10^{-5}\ \text{T}[/tex]
[tex]\theta[/tex] = Angle the magnetic field makes with the horizontal = [tex]30^{\circ}[/tex]
v = Velocity of electron = [tex]9\times 10^5\ \text{m/s}[/tex]
q = Charge of electron = [tex]1.6\times 10^{-19}\ \text{C}[/tex]
Magnetic force is given by
[tex]F=qvB\sin\theta\\\Rightarrow F=1.6\times 10^{-19}\times 9\times 10^5\times 4\times 10^{-5}\sin30^{\circ}\\\Rightarrow F=2.88\times 10^{-18}\ \text{N}[/tex]
The magnitude of the magnetic force is [tex]2.88\times 10^{-18}\ \text{N}[/tex] and the direction is perpendicular to the velocity and magnetic field.
16. Two electric bulbs marked 100W 220V and 200W 200V have tungsten
filament of same length. Which of the two bulbs will have thicker
filament?
Answer:
The second bulb will have thicker filament
Explanation:
Given;
First electric bulb: Power, P₁ = 100 W and Voltage, V₁ = 220 V
Second electric bulb: Power, P₂ = 200 W and Voltage, V₂ = 200 V
Resistivity of tungsten, ρ = 4.9 x 10⁻⁸ ohm. m
Resistance of the first bulb:
[tex]P = IV = \frac{V}{R} .V = \frac{V^2}{R} \\\\R = \frac{V^2}{P} \\\\R_1 = \frac{V_1^2}{P_1} = \frac{(220)^2}{100} = 484 \ ohms[/tex]
Resistance of the second bulb:
[tex]R_2 = \frac{V_2^2}{P_2} = \frac{(200)^2}{200} = 200 \ ohms[/tex]
Resistivity of the tungsten filament is given by the following equation;
[tex]\rho = \frac{RA}{L}[/tex]
where;
L is the length of the filament
R is resistance of each filament
A is area of each filament
[tex]A = \pi r^2[/tex]
where;
r is the thickness of each filament
[tex]\rho = \frac{R (\pi r^2)}{L} \\\\\frac{\rho L}{\pi} = Rr^2 \\\\Recall ,\ \frac{\rho L}{\pi} \ is \ constant \ for \ both \ filaments\\\\R_1r_1^2 = R_2r_2^2\\\\(\frac{r_1}{r_2} )^2 = \frac{R_2}{R_1} \\\\\frac{r_1}{r_2} = \sqrt{\frac{R_2}{R_1} } \\\\\frac{r_1}{r_2} = \sqrt{\frac{200}{484} } \\\\\frac{r_1}{r_2} = 0.64\\\\r_1 = 0.64 \ r_2\\\\r_2 = 1.56 \ r_1[/tex]
Therefore, the second bulb will have thicker filament
Which of the following best defines
weather?
A. the expanding or contracting of the atmosphere
B. the measurement of the amount of water vapor in the
atmosphere
C. the condition of the atmosphere at a certain time and
place
Help Resources
D. the average air temperature of a specific region
Answer:
I'd say D
Explanation:
because not all weather happens within the atmosphere, and most weather depends on region (lile if your near the equator or not)
In which type of circuit does charge move in only one direction?
A. A D.C CIRCUIT
B. AN A.C CIRCUIT
C. A COMBINED CIRCUIT
D. A PARALLEL CIRCUIT
The eight plants of the Solar System orbit the Sun in a chaotic random way.
True
False
Answer:
The Solar System has plants? I assume you meant planets. If so, that is false
Explanation:
What kind of energy is in a moving skateboard
Answer:
I guess it is kinetic energy
Answer:
kinetic energy because my dog told me
In the past, asteroids striking the earth have produced disastrous results. If we discovered an asteroid on a collision course with the earth, we could, in principle, deflect it and avoid an impact by focusing a laser on the surface. Intense surface heating from the laser could cause surface material to be ejected into space at high speed.
Required:
How would this deflect the asteroid?
Answer:
Explained below.
Explanation:
We are told that the surface material is ejected into space at a high speed. This means that it will have a likely high momentum as well.
Now, we can say that the total momentum is conserved because the entire asteroid system behaves like an isolated system.
Also, as the surface material is moving with the high momentum like we established earlier, it will cause the asteroid to move with a speed in an opposite direction which also means deflection in an opposite direction.
Answer:
Explained below.
Explanation:
The material ejected from the surface of the asteroid would have a significant momentum. Since the asteroid and all its material is an isolated system, the ejection would cause an oppositely directed change in momentum of the asteroid, according to the law of conservation of momentum.
The ejected material is analogous to gases expelled from a rocket, and the asteroid is analogous to a rocket.
Balance the equation by choosing the correct coefficient numbers in the drop down menus.
[Select]
SO2 +
[Select]
VH₂ →
[Select]
S +
[ Select]
H20
It is suggested you write this on scratch paper and balance it before choosing your answers :)
Answer:
SO₂ + 2H₂ —> S + 2H₂O
The coefficients are: 1, 2, 1, 2
Explanation:
SO₂ + H₂ —> S + H₂O
The above equation can be balance as follow:
SO₂ + H₂ —> S + H₂O
There are 2 atoms of O on the left side and 1 atom on the right side. It can be balance by writing 2 before H₂O as shown below:
SO₂ + H₂ —> S + 2H₂O
There are 2 atoms of H on the left side and 4 atoms the right side. It can be balance by writing 2 before H₂ as shown below:
SO₂ + 2H₂ —> S + 2H₂O
Now, the equation is balanced.
The coefficients are: 1, 2, 1, 2
A carnival ride starts at rest and is accelerated from an initial angle of zero to a final angle of 6.3 rad by a rad counterclockwise angular acceleration of 2.0 s2 What is the angular velocity at 6.3 rad?
The final angular velocity of the carnival ride at a displacement of 6.3 rad is 25.2 rad/s.
Final angular velocity of the carnival ride
The final angular velocity of the carnival ride is determined by applying third kinematic equation as shown below;
ωf = ωi + 2αθ
where;
ωf is the final angular velocity of the carnival ride = ?ωi is the initial angular velocity of the carnival ride = 0α is the angular acceleration = 2.0 rad/s²θ is the angular displacement of the carnival ride = 6.3 radωf = 0 + 2(2.0) x 6.3
ωf = 25.2 rad/s
Thus, the final angular velocity of the carnival ride at a displacement of 6.3 rad is 25.2 rad/s.
Learn more about angular velocity here: https://brainly.com/question/6860269
Answer: 5.0 rad/s
Explanation: Because that’s what khan said so try it out.
A woman shouts at a boy who is underwater what happens to the speed of the sound wave as it moves from the air into the water
Answer:
B. it increases
Explanation:
As shown in the table provided, the speed of sound in water (1493 m/s) is greater than the speed of sound in air (346 m/s).
Answer:
B is the correct answer.
Explanation:
The moon does not stay at the same distance from the earth.why?
Answer:
The moon does not stay at the same distance of the earth because the ortbit of the moon is slightly elliptical. If earth is not tilted at an angle of 66.5°, there will be no change in the season and the earth will have equal length of days and night.
Explanation:
mark me brainlest
if the density of a napthalene ball is 0.02kg.what is the mass of the napthalene ball if it has a volume of 100m³
CiCi is hiking in the woods after a rainstorm when she sees a single large mass of rock and soil moving quickly downhill.
Which type of mass movement is this?
A. landslide
B. slump
C. creep
D. mudflow
Becoming informed about economics helps a person understand the reasons a command economy is ideal. role of government in regulating production. why consumers receive tax revenue. reasons an economy must always be completely regulated. Mark this and return
Answer:
Role of government in regulating production
Explanation:
The role of government in regulating show , provides the legal and social framework, uphold competition, provides public goods and services.
What is the role of economics in the community?The community's role in conserving and enhancing common-property resources is well known.
In extra, its role in helping market growth by its power to execute trade agreements among transacting parties belonging to the community network is stressed.
Thus, it provides the legal and social framework, maintains competition, and provides public goods and services.
To learn more about economics in community click here:
https://brainly.com/question/1344575
Which one the answer to this question
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 41 mm , while nonathletes' stretch only 33 mm .
Hello. Your question is incomplete. However, I managed to find it completely on the internet and I realized that you forgot to mention that the question asks you for the maximum energy difference between velovistas and non-athletes, considering that the spring constant for the tendon of the two groups is equal to 33n/mm.
To make this calculation you will need to use Hooke's law, using the formula: ¹/2*K*x², where "K" will be the value of the spring constant for the tendon and "X" will be the value of the sprinter and non-athlete terms.
So for the sprinter we will have the calculation:
¹/2*33*41² -------> 0,5*33*1681 = 27736. 5 Nmm
(To facilitate the calculation, first solve the division of ¹/2 and then multiply 41 by 41, lastly, just multiply all the results.)
For the non-athlete we will have the calculation:
¹/2*33*33² -------> 0,5*33*1089 = 17968. 5 Nmm
(To facilitate the calculation, first solve the division of ¹/2 and then multiply 41 by 41, lastly, just multiply all the results.)
Now, to reach the final result, you only need to subtract the two values presented by the sprinter and the non-athlete.
27736.5 - 17968.5 = 9768 Nmm
A fox runs at a speed of 16 m/s and then stops to eat a rabbit. If this all took 120
seconds, what was his acceleration?
Answer:
a = 52s²
Explanation:
How to find acceleration
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
Solve
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500
Answer:
8 kV
Explanation:
Here is the complete question
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500 μF capacitors and an 800−V charging source?
Solution
Since the capacitors are initially connected in parallel, the same voltage of 800 V is applied to each capacitor. The charge on each capacitor Q = CV where C = capacitance = 500 μF and V = voltage = 800 V
So, Q = CV
= 500 × 10⁻⁶ F × 800 V
= 400000 × 10⁻⁶ C
= 0.4 C
Now, when the capacitors are connected in series and the voltage disconnected, the voltage across is capacitor is gotten from Q = CV
V = Q/C
= 0.4 C/500 × 10⁻⁶ F
= 0.0008 × 10⁶ V
= 800 V
The total voltage obtained across the ten capacitors is thus V' = 10V (the voltages are summed up since the capacitors are in series)
= 10 × 800 V
= 8000 V
= 8 kV
The magnitude of the force can be determined as?
Answer:
the mass of the object multiplied by the acceleration of the object
Explanation:
N2L states that F = ma (force equals mass times acceleration).
A solenoid that is 93.9 cm long has a cross-sectional area of 17.3 cm2. There are 1270 turns of wire carrying a current of 7.80 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).
Answer:
[tex]65.6\ \text{J/m}^3[/tex]
[tex]0.11\ \text{J}[/tex]
Explanation:
B = Magnetic field = [tex]\mu_0 \dfrac{N}{l}I[/tex]
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi10^{-7}\ \text{H/m}[/tex]
N = Number of turns = 1270
[tex]l[/tex] = Length of solenoid = 93.9 cm = 0.939 m
[tex]I[/tex] = Current = 7.8 A
A = Area of solenoid = [tex]17.3\ \text{cm}^2[/tex]
Energy density of a solenoid is given by
[tex]u_m=\dfrac{B^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{(\mu_0 \dfrac{N}{l}I)^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{\mu_0N^2I^2}{2l^2}\\\Rightarrow u_m=\dfrac{4\pi\times 10^{-7}\times 1230^2\times 7.8^2}{2\times 0.939^2}\\\Rightarrow u_m=65.6\ \text{J/m}^3[/tex]
The energy density of the magnetic field inside the solenoid is [tex]65.6\ \text{J/m}^3[/tex]
Energy is given by
[tex]U_m=u_mAl\\\Rightarrow U_m=65.6\times 17.3\times 10^{-4}\times 0.939\\\Rightarrow U_m=0.11\ \text{J}[/tex]
The total energy in joules stored in the magnetic field is [tex]0.11\ \text{J}[/tex].