Given that an Olympic diver starts at 7.5 m above the water, during her dive, she goes 1.5 m below the water, the vertical distance the diver travels is 9 meters.
To determine what is the vertical distance the diver travels the following calculation must be performed:
The initial height must be subtracted from the final height, in order to obtain the difference between the two heights.
1.5 - (-7.5) = X1.5 + 7.5 = X9 = XTherefore, the vertical distance the diver travels is 9 meters.
Learn more about this topic in https://brainly.com/question/22089868?referrer=searchResults.
The vertical distance traveled by the Olympic diver is 6 m
The given parameters include:
initial position of the Olympic diver, x₁ = 7.5 m above the waterfinal position of the Olympic diver, x₂ = 1.5 m below the waterThe sketch of the Olympic diver's displacement is as follows;
x₁ ---------- 7.5 m
|
|
|
|
----------- water surface
|
↓
x₂ ------------ 1.5 m below water surface
The vertical distance from x₁ to x₂ = 7.5 m - 1.5 m = 6 m
Therefore, the vertical distance traveled by the Olympic diver is 6 m
To learn more about distance visit: https://brainly.in/question/7482539
Estimate 3 divided by 1788
Answer:
Maybe the answer for ur question is 1/596 if the 3 divides the number if not then it's only 596
find the distance traveled in 27.9 minutes
Answer:
A
Step-by-step explanation:
d = 0.5 * t There are no conversions. You just substitute the value for t.
d = 0.5 * 27.9
d = 13.95 which is A
i need help with this
Answer:
A) (-8, -16)
B) (0, 48)
C) (-4, 0), (-12, 0)
Step-by-step explanation:
A) the vertex is the minimum y value.
extremes of a function we get by using the first derivation and solving it for y' = 0.
y = x² + 16x + 48
y' = 2x + 16 = 0
2x = -16
x = -8
so, the vertex is at x=-8.
the y value is (-8)² + 16(-8) + 48 = 64 - 128 + 48 = -16
B) is totally simple. it is f(0) or x=0. so, y is 48.
C) is the solution of the equation for y = 0.
the solution for such a quadratic equation is
x = (-b ± sqrt(b² - 4ac)) / (2a)
in our case here
a=1
b=16
c=48
x = (-16 ± sqrt(16² - 4×48)) / 2 = (-16 ± sqrt(256-192)) / 2 =
= (-16 ± sqrt(64)) / 2 = (-16 ± 8) / 2 = (-8 ± 4)
x1 = -8 + 4 = -4
x2 = -8 - 4 = -12
so the x- intercepts are (-4, 0), (-12, 0)
Help with step by step solution please
Answer:
5/2
Step-by-step explanation:
The square root of 5 divided by the negative square root of 5 equals -1. 7/2 - 1 = 5/2.
An office was built in the shape of a rectangle. If one side of the office measures 60 metres and the length is measured 4000 centimetres.
Calculate the perimeter of the office in meters.
Answer:
200m
Step-by-step explanation:
Width=60m
Length=4000cm=40m
[PERIMETER OF RECTANGLE= 2(l+b)]
2(40+60)
2×100
200cm
Can you help with number 9,10,12
Whats 5867 times 382?
Whats 5867 times 382?
answer;
5867×382
=2241194
Hope it helps you.........
evaluate : 8/-5+(4/-3)+1/3
Explain full steps
with easy method
Answer:
-39/15
Step-by-step explanation:
=-8/5-4/3+1/3
Taking LCM of 5,3 and 3.
=3(-8)-5(4)+5(1)/15
=-24-20+5/15
=-44+5/15
=-39/15
Note:if you need to ask any question please let me know.
(x-3).(x+3)-(x+5).(x-1)
after allowing 20% discount an article is sold for rs.672 levying 12% VAT, find its market price
The market price is Rs. 750 which was obtained by creating a mathematical relationship from the given parameters.
PERCENTAGE DISCOUNT = 20%
VAT LEVIED= 12%
PRICE SOLD = 672
Let the MARKET PRICE = m
Hence,
market price * (1 - discount) * (1 + VAT) = price sold
m * (1 - 20%) * (1 + 12%) = 672
m * (1 - 0.2) * (1 + 0.12) = 672
m * 0.8 * 1.12 = 672
0.896m = 672
m = 672 / 0.896
m = Rs. 750
Learn more :
https://brainly.com/question/20418815
The Market Price of the product is RS. 750.
The Market Price is calculated by dividing the components associated to Discount, which is less than 1, and the Value Added Tax, which more than 1, to the Resulting Price.
[tex]c_{M} = \frac{c_{R}}{\left(1-\frac{r_{D}}{100} \right)\cdot \left(1+\frac{r_{T}}{100} \right)}[/tex] (1)
Where:
[tex]c_{M}[/tex] - Market price, in monetary units.
[tex]c_{R}[/tex] - Resulting price, in monetary units.
[tex]r_{D}[/tex] - Discount rate, in percentage.
[tex]r_{T}[/tex] - Tax rate, in percentage.
If we know that [tex]c_{R} = 672[/tex], [tex]r_{D} = 20[/tex] and [tex]r_{T} = 12[/tex], then the market price is:
[tex]c_{M} = \frac{672}{\left(1-\frac{20}{100} \right)\cdot \left(1+\frac{12}{100} \right)}[/tex]
[tex]c_{M} = 750[/tex]
The market price of the product is RS. 750.
FIRST ANSWER GETS BRAINLIEST!!
(sorry for the colors on the picture)
It is the 3rd answer
Geometry, please answer question ASAP
Answer:
C) 81 degrees
Step-by-step explanation:
all quadrilateral's sum of interiror angles is 360 degrees
right angles are 90 degrees
call measure of angle C =y
360=90+90+99+y
180=99+y
y= 81
Simplify. (x2+2x-4)+(2x-5x-3)
Answer:
Step by Step Solution
More Icon
STEP
1
:
3
Simplify ——
x2
Equation at the end of step
1
:
3
((((2•(x2))-5x)-——)+2x)-3
x2
STEP
2
:
Equation at the end of step
2
:
3
(((2x2 - 5x) - ——) + 2x) - 3
x2
STEP
3
:
Rewriting the whole as an Equivalent Fraction
3.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using x2 as the denominator :
2x2 - 5x (2x2 - 5x) • x2
2x2 - 5x = ———————— = ———————————————
1 x2
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
2x2 - 5x = x • (2x - 5)
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x • (2x-5) • x2 - (3) 2x4 - 5x3 - 3
————————————————————— = —————————————
x2 x2
Equation at the end of step
4
:
(2x4 - 5x3 - 3)
(——————————————— + 2x) - 3
x2
STEP
5
:
Rewriting the whole as an Equivalent Fraction :
5.1 Adding a whole to a fraction
Rewrite the whole as a fraction using x2 as the denominator :
2x 2x • x2
2x = —— = ———————
1 x2
Polynomial Roots Calculator :
5.2 Find roots (zeroes) of : F(x) = 2x4 - 5x3 - 3
Polynomial Roots Calculator is a set of methods aimed at finding values of x for which F(x)=0
Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers x which can be expressed as the quotient of two integers
Find the value of each variable. Lines that appear tangent are tangent, and the dot is the center. (Answer in the form a=? b=? c=? d=?)
Answer:
a = 60°/2 = 30°
b = 84/2 = 42°
c = (100+60)/2 = 80°
d = 360-100-60-84 = 116°
Answered by GAUTHMATH
The area under the standard normal curve to the right of z = -0.51 is 0.6950. What is the area to the left of z = 0.51?
Answer:
0.305
Step-by-step explanation:
We are told that area under the standard normal curve to the right of z = -0.51 is 0.6950
Thus, to get the area to the left, we just subtract 0.6950 from 1.
Thus;
area to the left of z = 0.51 is;
P( z < 0.51) = 1 - 0.6950 = 0.305
Maritza is comparing cell phones plans and notices that verizon offers a plan that is $60 for 10GB of data and $12 for each extra GB of data ore month. Create an expression to model this situation
Answer:
60 + 12 * g, with g representing the number of extra gigabytes
Step-by-step explanation:
First, we know that Maritza has to pay $60 for 10GB of data, no matter what. Therefore, the base cost of the cell phone plan is 60 dollars, and all extra costs must be added to that. Currently, our expression is therefore 60 + something = cost of cell phone plan.
After that, the plan costs $12 for each gigabyte of data past 10 GB. This means that, for example, if Maritza uses 11 gigabytes, the plan will cost 60 (the base amount) + 12 for each gigabyte past 10 GB. There are 11-10=1 extra gigabytes, so the cost is 60 + 12 * 1 = 72 dollars. For each extra gigabyte, 12 dollars are added, so we can represent this as
60 + 12 * g, with g representing the number of extra gigabytes
pls answer quickly before 3:30
BRAINLIEST graphing question
Answer:
Step-by-step explanation:
A new car that is a gas- and electric-powered hybrid has recently hit the market. The distance traveled on 1 gallon of fuel is normally distributed with a mean of 65 miles and a standard deviation of 7 miles. Find the probability of the following events: a. The car travels more than 69 miles per gallon. Proba
Answer:
0.28386
Step-by-step explanation:
Given that :
Mean, μ = 65 miles
Standard deviation, σ = 7 miles
Probability that car travels more than 69 miles per gallon :
Recall,
Z = (x - μ) / σ ; x = 69
Z = (69 - 65) / 7 = 0.5714
The probability :
P(Z > z) = P(Z > 0.5714) = 1 - P(Z < 0.5714)
P(Z > 0.5714) = 1 - P(Z < 0.5714) = 1 - 0.71614 = 0.28386
P(Z > 0.5714) = 0.28386
The velocity of a bus increases from 72km/hr to 30m/s in 10 seconds. Calculate its acceleration
Answer:
I think this will help you
What type of number is 37 + 1?
Choose all answers that apply:
Whole number
Integer
Rational
Irrational
help
Answer:
Irrational
Step-by-step explanation:
The constant [tex]\pi[/tex], or "pi", is an irrational mathematic constant that corresponds to a non-terminating (never-ending decimal). Because there are an infinite number of digits in pi, pi cannot be expressed as a fraction and therefore is irrational.
Multiplying or adding a rational number does not make pi rational, and therefore the desired answer is (D) Irrational.
In figure above, if l1 | | l2 then value of x is:
a) 40°
b) 50°
c) 80°
d) 100°
Answer:
its letter c so 80
Step-by-step explanation:
I hope this help
Hello, have anyone can help me to solve this question?
Answer:
24 days LCM
prime factor :
4- 2, 2
8-2,2,2
12- 2,2,3
largest factors- 2,2,2,3
2*2*2*3 = 24
Step-by-step explanation:
I need help please I don't understand
Answer:
57.2
Step-by-step explanation:
This is a right triangle so we can use trig ratios.
We are asked to find a side when we know a angle adjacent to that side. And we are given a side opposite of that angle. We can use Tangent to find the side length.
[tex] \tan(40) = \frac{48}{x} [/tex]
Take the reciprocal of both sides.
[tex] \frac{1}{ \tan( 40) ) } = \frac{x}{ 48} [/tex]
Multiply both sides by 48.
[tex] x = \frac{1}{ \tan(40) } \times 48[/tex]
[tex]x = 57.2[/tex]
The function f(t) = 4t2 − 8t + 7 shows the height from the ground f(t), in meters, of a roller coaster car at different times t. Write f(t) in the vertex form a(x − h)2 + k, where a, h, and k are integers, and interpret the vertex of f(t).
A) f(t) = 4(t − 1)2 + 3; the minimum height of the roller coaster is 3 meters from the ground
B) f(t) = 4(t − 1)2 + 3; the minimum height of the roller coaster is 1 meter from the ground
C) f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 2 meters from the ground
D) f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 1 meter from the ground
Answer:
A) f(t) = 4(t − 1)^2 + 3; the minimum height of the roller coaster is 3 meters from the ground
Step-by-step explanation:
f(t) = 4t^2 − 8t + 7
Factor out 4 from the first two terms
f(t) = 4(t^2 − 2t) + 7
Complete the square
(-2/2)^2 =1 But there is a 4 out front so we add 4 and then subtract 4 to balance
f(t) = 4( t^2 -2t+1) -4 +7
f(t) = 4( t-1)^2 +3
The vertex is (1,3)
This is the minimum since a>0
The minimun is y =3 and occurs at t =1
Answer:
The above answer is correct.
Step-by-step explanation:
solve for x.
solve for x.
solve for x.
Answer:
[tex]x=10[/tex]
Step-by-step explanation:
A secant is a line segment that intersects a circle in two places. One property of a secant is the product of the lengths ratio. This ratio can be described as the following, let ([tex]inside[/tex]) refer to the part of the secant that is inside the circle, and ([tex]outside[/tex]) refer to the part that is outside of it. ([tex]total[/tex]) will refer to the entirety of the secant or ([tex]inside+outside[/tex]). The numbers (1) and (2) will be used as subscripts to indicate that there are two different secants.
[tex](outside_1)(total_2)=(outside_2)(total_2)[/tex]
Substitute,
[tex](outside_1)(total_2)=(outside_2)(total_2)[/tex]
[tex](outside_1)(inside_1+outisde_1)=(outside_2)(inside_2+outside_2)[/tex]
[tex](6)(6+x+5)=(7)(7+x+1)[/tex]
Simplify,
[tex](6)(6+x+5)=(7)(7+x+1)[/tex]
[tex]6(x+11)=7(x+8)[/tex]
[tex]6x+66=7x+56[/tex]
Inverse operations,
[tex]6x+66=7x+56[/tex]
[tex]66=x+56[/tex]
[tex]10=x[/tex]
Find the measure of each angle indicated.
A) 95°
C) 26°
B) 92°
D) 20°
Answer:
D) 20°
Step-by-step explanation:
Using the triangle sum theorem, you know that every triangle's interior angles add up to 180°. Therefore the bottom triangle's missing angle can be found by giving it the variable x.
57° + 30° + x = 180°
Simplify: 87° + x =180°
x=93°
By the vertical angles theorem, the vertical angle directly across this angle is congruent to this one. Meaning that the top triangle's angle are 67°, 93°, and unknown, which we can assign y. We can use the same method from above here.
67° + 93° + y = 180°
Simplify: 160° + y = 180°
y=20°
Answer:
(C). 26°
Step-by-step explanation:
the vertex of this parabola is at (-2 -3). When the y value is -2, the x value is -5. What is the coefficient of the squared term in the parabolas equation.
Answer:
1/9
Step-by-step explanation:
The vertex form is
y =a(x-h)^2 +k where (h,k) is the vertex
The vertex is (-2,-3)
y =a(x--2)^2 +-3
y =a(x+2)^2 -3
Substitute the point into the equation
-2 = a(-5+2)^2 -3
-2=a(-3)^2-3
Add 3 to each side
-2+3 = a(9)
1 = 9a
1/9 =a
y =1/9(x+2)^2 -3
The coefficient of the x^2 is 1/9
Answer:
[tex]\frac{1}{9}[/tex]
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k ) = (- 2, - 3) , then
y = a(x + 2)² - 3
To find a substitute (- 5, - 2 ) into the equation
- 2 = a(- 5 + 3)² - 3 ( add 3 to both sides )
1 = a(- 3)² = 9a ( divide both sides by 9 )
[tex]\frac{1}{9}[/tex] = a
y = [tex]\frac{1}{9}[/tex] (x + 2)² - 3
The coefficient of the x² term is therefore [tex]\frac{1}{9}[/tex]
Given: PSTK is a rectangle
Area of PSTK=562m^2
m∠TOK=75
Find:PS, PK
(HELP! ILL GIVE BRAINLIEST)
Answer:
See picture below
Step-by-step explanation:
Let PK be the length and PS be the width of the rectangle.
Then LW =562
Assuming O is the center of the rectangle then ∠KST = ∠STO = 75/2
Hence tan ( 75/2 ) = PS/PK
Now solve the system of the equations
PS*PK=562
tan ( 75/2 ) = PS/ PK
Solve for X. Geometry
Answer:
x=12
Step-by-step explanation:
LM + MN = LN
2x-16 + x-9 = 11
Combine like terms
3x-25=11
Add 25 to each side
3x-25+25 = 11+25
3x = 36
Divide by 3
3x/3=36/3
x = 12