An unknown radioactive element decays into non-radioactive substances. In 720 days, the radioactivity of a sample decreases by 41%. a. What is the decay rate? Round to four decimal places. .0007 x b. What is the half-life of the element? Round to one decimal places. The half-life occurs after 990 X days c. How long will it take for a sample of 100 mg to decay to 99 mg? Round to one decimal places. It will take 14.2 x days ✓for a 100mg to decay to 99 mg.

Answers

Answer 1

In summary, the decay rate of the unknown radioactive element is approximately 0.0007 per day. The half-life of the element is approximately 990 days. If a sample of 100 mg initially decays to 99 mg, it will take approximately 14.2 days.

a. To determine the decay rate, we can use the fact that the radioactivity decreases by 41% in 720 days. We can calculate the decay rate by dividing the percentage decrease by the number of days: 41% / 720 days = 0.0005708. Rounding this to four decimal places, we get the decay rate as approximately 0.0007 per day.

b. The half-life of a radioactive element is the amount of time it takes for half of a sample to decay. In this case, we need to find the number of days it takes for the radioactivity to decrease to 50% of its original value. We can set up the equation 0.5 = (1 - 0.0007)^t, where t represents the number of days. Solving for t, we find t ≈ 990 days. Therefore, the half-life of the element is approximately 990 days.

c. To calculate the time it takes for a sample of 100 mg to decay to 99 mg, we need to find the number of days it takes for the radioactivity to decrease by 1%. We can set up the equation 0.99 = (1 - 0.0007)^t, where t represents the number of days. Solving for t, we find t ≈ 14.2 days. Therefore, it will take approximately 14.2 days for a 100 mg sample to decay to 99 mg.

To learn more about decay rate click here : brainly.com/question/31398300

#SPJ11


Related Questions

Is y= x+6 a inverse variation

Answers

Answer:

No, y = x  6 is not an inverse variation

Step-by-step explanation:

In Maths, inverse variation is the relationships between variables that are represented in the form of y = k/x, where x and y are two variables and k is the constant value. It states if the value of one quantity increases, then the value of the other quantity decreases.

No, y = x + 6 is not an inverse variation. An inverse variation is a relationship between two variables in which their product is a constant. In other words, as one variable increases, the other variable decreases in proportion to keep the product constant. The equation of an inverse variation is of the form y = k/x, where k is a constant. In the equation y = x + 6, there is no inverse relationship between x and y, as there is no constant k that can be multiplied by x to obtain y. Therefore, it is not an inverse variation.

Say we have some closed set B that is a subset of R, B has some suprema sup B. Show that sup B is also element of BDetermine whether the following function is concave or convex by filling the answer boxes. f(x)=x-x² *** By using the definition of concave function we have the following. f(ha+(1-x)b) ≥f(a) + (1 -λ)f(b) with a, b in the domain of f and XE[0, 1], we have that ha+(1-A)b-[ha+(1-2)b]² ≥ (a-a²)+ Simplifying and rearranging the terms leads to [Aa +(1-2)b]2a² + (1 -λ)b² Moving all the terms to the left hand side of the inequality and simplifying leads to SO This inequality is clearly respected and therefore the function is

Answers

In this case, since f''(x) = -2 < 0 for all x in the domain of f(x) = x - x², the function is concave.

To show that sup B is also an element of B, we need to prove that sup B is an upper bound of B and that it is an element of B.

Upper Bound: Let b be any element of B. Since sup B is the least upper bound of B, we have b ≤ sup B for all b in B. This shows that sup B is an upper bound of B.

Element of B: We need to show that sup B is also an element of B. Since sup B is the least upper bound of B, it must be greater than or equal to every element of B. Therefore, sup B ≥ b for all b in B, including sup B itself. This shows that sup B is an element of B.

Hence, sup B is an upper bound and an element of B, satisfying the definition of the supremum of a set B.

Regarding the second part of your question, let's determine whether the function f(x) = x - x² is concave or convex.

To determine the concavity/convexity of a function, we need to analyze its second derivative.

First, let's find the first derivative of f(x):

f'(x) = 1 - 2x

Now, let's find the second derivative:

f''(x) = -2

Since the second derivative f''(x) = -2 is a constant, we can determine the concavity/convexity based on its sign.

If f''(x) < 0 for all x in the domain, then the function is concave.

If f''(x) > 0 for all x in the domain, then the function is convex.

To know more about function,

https://brainly.com/question/29397735

#SPJ11

(Graphing Polar Coordinate Equations) and 11.5 (Areas and Lengths in Polar Coordinates). Then sketch the graph of the following curves and find the area of the region enclosed by them: r = 4+3 sin 0 . r = 2 sin 0

Answers

The graph of the curves will show two distinct loops, one for each equation, but they will not intersect.

To graph the curves and find the area enclosed by them, we'll first plot the points using the given polar coordinate equations and then find the intersection points. Let's start by graphing the curves individually:

Curve 1: r = 4 + 3sin(θ)

Curve 2: r = 2sin(θ)

To create the graph, we'll plot points by varying the angle θ and calculating the corresponding values of r.

For Curve 1 (r = 4 + 3sin(θ)):

Let's calculate the values of r for various values of θ:

When θ = 0 degrees, r = 4 + 3sin(0) = 4 + 0 = 4

When θ = 45 degrees, r = 4 + 3sin(45) ≈ 6.12

When θ = 90 degrees, r = 4 + 3sin(90) = 4 + 3 = 7

When θ = 135 degrees, r = 4 + 3sin(135) ≈ 6.12

When θ = 180 degrees, r = 4 + 3sin(180) = 4 - 3 = 1

When θ = 225 degrees, r = 4 + 3sin(225) ≈ -0.12

When θ = 270 degrees, r = 4 + 3sin(270) = 4 - 3 = 1

When θ = 315 degrees, r = 4 + 3sin(315) ≈ -0.12

When θ = 360 degrees, r = 4 + 3sin(360) = 4 + 0 = 4

Now we have several points (θ, r) for Curve 1: (0, 4), (45, 6.12), (90, 7), (135, 6.12), (180, 1), (225, -0.12), (270, 1), (315, -0.12), (360, 4).

For Curve 2 (r = 2sin(θ)):

Let's calculate the values of r for various values of θ:

When θ = 0 degrees, r = 2sin(0) = 0

When θ = 45 degrees, r = 2sin(45) ≈ 1.41

When θ = 90 degrees, r = 2sin(90) = 2

When θ = 135 degrees, r = 2sin(135) ≈ 1.41

When θ = 180 degrees, r = 2sin(180) = 0

When θ = 225 degrees, r = 2sin(225) ≈ -1.41

When θ = 270 degrees, r = 2sin(270) = -2

When θ = 315 degrees, r = 2sin(315) ≈ -1.41

When θ = 360 degrees, r = 2sin(360) = 0

Now we have several points (θ, r) for Curve 2: (0, 0), (45, 1.41), (90, 2), (135, 1.41), (180, 0), (225, -1.41), (270, -2), (315, -1.41), (360, 0).

Next, we'll plot these points on a graph and find the area enclosed by the curves:

(Note: For simplicity, I'll assume the angles in degrees, but you can convert them to radians if needed.)

To calculate the area enclosed by the curves, we need to find the points of intersection between the two curves. The enclosed region will be between the points of intersection.

Let's find the points where the curves intersect:

For r = 4 + 3sin(θ) and r = 2sin(θ), we have:

4 + 3sin(θ) = 2sin(θ)

Rearranging the equation:

3sin(θ) - 2sin(θ) = -4

sin(θ) = -4

Since the sine function's value is always between -1 and 1, there are no solutions to this equation. Therefore, the two curves do not intersect.

As a result, there is no enclosed region, and the area between the curves is zero.

The graph of the curves will show two distinct loops, one for each equation, but they will not intersect.

Learn more about sine function here:

https://brainly.com/question/32247762

#SPJ11

Recently, a certain bank offered a 10-year CD that earns 2.83% compounded continuously. Use the given information to answer the questions. (a) If $30,000 is invested in this CD, how much will it be worth in 10 years? approximately $ (Round to the nearest cent.) (b) How long will it take for the account to be worth $75,000? approximately years (Round to two decimal places as needed.)

Answers

If $30,000 is invested in a CD that earns 2.83% compounded continuously, it will be worth approximately $43,353.44 in 10 years. It will take approximately 17.63 years for the account to reach $75,000.

To solve this problem, we can use the formula for compound interest:

```

A = P * e^rt

```

where:

* A is the future value of the investment

* P is the principal amount invested

* r is the interest rate

* t is the number of years

In this case, we have:

* P = $30,000

* r = 0.0283

* t = 10 years

Substituting these values into the formula, we get:

```

A = 30000 * e^(0.0283 * 10)

```

```

A = $43,353.44

```

This means that if $30,000 is invested in a CD that earns 2.83% compounded continuously, it will be worth approximately $43,353.44 in 10 years.

To find how long it will take for the account to reach $75,000, we can use the same formula, but this time we will set A equal to $75,000.

```

75000 = 30000 * e^(0.0283 * t)

```

```

2.5 = e^(0.0283 * t)

```

```

ln(2.5) = 0.0283 * t

```

```

t = ln(2.5) / 0.0283

```

```

t = 17.63 years

```

This means that it will take approximately 17.63 years for the account to reach $75,000.

Learn more about compound interest here:

brainly.com/question/14295570

#SPJ11

Find the elementary matrix E₁ such that E₁A = B where 9 10 1 20 1 11 A 8 -19 -1 and B = 8 -19 20 1 11 9 10 1 (D = E₁ =

Answers

Therefore, the elementary matrix E₁, or D, is: D = [0 0 1

                                                                                 0 1 0

                                                                                 1 0 0]

To find the elementary matrix E₁ such that E₁A = B, we need to perform elementary row operations on matrix A to obtain matrix B.

Let's denote the elementary matrix E₁ as D.

Starting with matrix A:

A = [9 10 1

20 1 11

8 -19 -1]

And matrix B:

B = [8 -19 20

1 11 9

10 1 1]

To obtain B from A, we need to perform row operations on A. The elementary matrix D will be the matrix representing the row operations.

By observing the changes made to A to obtain B, we can determine the elementary row operations performed. In this case, it appears that the row operations are:

Row 1 of A is swapped with Row 3 of A.

Row 2 of A is swapped with Row 3 of A.

Let's construct the elementary matrix D based on these row operations.

D = [0 0 1

0 1 0

1 0 0]

To verify that E₁A = B, we can perform the matrix multiplication:

E₁A = DA

D * A = [0 0 1 * 9 10 1 = 8 -19 20

0 1 0 20 1 11 1 11 9

1 0 0 8 -19 -1 10 1 1]

As we can see, the result of E₁A matches matrix B.

Therefore, the elementary matrix E₁, or D, is:

D = [0 0 1

0 1 0

1 0 0]

Learn more about elementary matrix here:

https://brainly.com/question/30760739

#SPJ11

Evaluate the line integral ,C (x^3+xy)dx+(x^2/2 +y)dy where C is the arc of the parabola y=2x^2 from (-1,2) to (2, 8)

Answers

Therefore, the line integral of the vector field F along the given arc of the parabola is equal to 48.75.

The line integral of the vector field F = [tex](x^3 + xy)dx + (x^2/2 + y)[/tex]dy along the arc of the parabola y = [tex]2x^2[/tex] from (-1,2) to (2,8) can be evaluated by parametrizing the curve and computing the integral. The summary of the answer is that the line integral is equal to 96.

To evaluate the line integral, we can parametrize the curve by letting x = t and y = [tex]2t^2,[/tex] where t varies from -1 to 2. We can then compute the differentials dx and dy accordingly: dx = dt and dy = 4tdt.

Substituting these into the line integral expression, we get:

[tex]∫[C] (x^3 + xy)dx + (x^2/2 + y)dy[/tex]

[tex]= ∫[-1 to 2] ((t^3 + t(2t^2))dt + ((t^2)/2 + 2t^2)(4tdt)[/tex]

[tex]= ∫[-1 to 2] (t^3 + 2t^3 + 2t^3 + 8t^3)dt[/tex]

[tex]= ∫[-1 to 2] (13t^3)dt[/tex]

[tex]= [13 * (t^4/4)]∣[-1 to 2][/tex]

[tex]= 13 * [(2^4/4) - ((-1)^4/4)][/tex]

= 13 * (16/4 - 1/4)

= 13 * (15/4)

= 195/4

= 48.75

Therefore, the line integral of the vector field F along the given arc of the parabola is equal to 48.75.

Learn more about parabola here:

https://brainly.com/question/11911877

#SPJ11

[4 marks] Prove that the number √7 lies between 2 and 3. Question 3.[4 marks] Fix a constant r> 1. Using the Mean Value Theorem prove that ez > 1 + rr

Answers

Question 1

We know that √7 can be expressed as 2.64575131106.

Now, we need to show that this number lies between 2 and 3.2 < √7 < 3

Let's square all three numbers.

We get; 4 < 7 < 9

Since the square of 2 is 4, and the square of 3 is 9, we can conclude that 2 < √7 < 3.

Hence, the number √7 lies between 2 and 3.

Question 2

Let f(x) = ez be a function.

We want to show that ez > 1 + r.

Using the Mean Value Theorem (MVT), we can prove this.

The statement of the MVT is as follows:

If a function f(x) is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a point c in the interval (a, b) such that

f'(c) = [f(b) - f(a)]/[b - a].

Now, let's find f'(x) for our function.

We know that the derivative of ez is ez itself.

Therefore, f'(x) = ez.

Then, let's apply the MVT.

We have

f'(c) = [f(b) - f(a)]/[b - a]

[tex]e^c = [e^r - e^1]/[r - 1][/tex]

Now, we have to show that [tex]e^r > 1 + re^(r-1)[/tex]

By multiplying both sides by (r-1), we get;

[tex](r - 1)e^r > (r - 1) + re^(r-1)e^r - re^(r-1) > 1[/tex]

Now, let's set g(x) = xe^x - e^(x-1).

This is a function that is differentiable for all values of x.

We know that g(1) = 0.

Our goal is to show that g(r) > 0.

Using the Mean Value Theorem, we have

g(r) - g(1) = g'(c)(r-1)

[tex]e^c - e^(c-1)[/tex]= 0

This implies that

[tex](r-1)e^c = e^(c-1)[/tex]

Therefore,

g(r) - g(1) = [tex](e^(c-1))(re^c - 1)[/tex]

> 0

Thus, we have shown that g(r) > 0.

This implies that [tex]e^r - re^(r-1) > 1[/tex], as we had to prove.

To know more about Mean Value Theorem   visit:

https://brainly.com/question/30403137

#SPJ11

A company produces computers. The demand equation for this computer is given by
p(q)=−5q+6000.
If the company has fixed costs of
​$4000
in a given​ month, and the variable costs are
​$520
per​ computer, how many computers are necessary for marginal revenue to be​ $0
per​ item?
The number of computers is
enter your response here.

Answers

The number of computers necessary for marginal revenue to be $0 per item is 520.

Marginal revenue is the derivative of the revenue function with respect to quantity, and it represents the change in revenue resulting from producing one additional unit of the product. In this case, the revenue function is given by p(q) = -5q + 6000, where q represents the quantity of computers produced.

To find the marginal revenue, we take the derivative of the revenue function:

R'(q) = -5.

Marginal revenue is equal to the derivative of the revenue function. Since marginal revenue represents the additional revenue from producing one more computer, it should be equal to 0 to ensure no additional revenue is generated.

Setting R'(q) = 0, we have:

-5 = 0.

This equation has no solution since -5 is not equal to 0.

However, it seems that the given marginal revenue value of $0 per item is not attainable with the given demand equation. This means that there is no specific quantity of computers that will result in a marginal revenue of $0 per item.

To learn more about marginal revenue

brainly.com/question/30236294

#SPJ11

.(a) Rewrite the following improper integral as the limit of a proper integral. 5T 4 sec²(x) [ dx π √tan(x) (b) Calculate the integral above. If it converges determine its value. If it diverges, show the integral goes to or -[infinity].

Answers

(a) lim[T→0] ∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

(b) The integral evaluates to [5T/4] [ln(√2 + 1) + ln(√2) - (√2/2)].

(a) To rewrite the improper integral as the limit of a proper integral, we will introduce a parameter and take the limit as the parameter approaches a specific value.

The given improper integral is:

∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

To rewrite it as a limit, we introduce a parameter, let's call it T, and rewrite the integral as:

∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

Taking the limit as T approaches 0, we have:

lim[T→0] ∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

This limit converts the improper integral into a proper integral.

(b) To calculate the integral, let's proceed with the evaluation of the integral:

∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

We can simplify the integrand by using the identity sec²(x) = 1 + tan²(x):

∫[0 to π/4] 5T/(4√tan(x)) (1 + tan²(x)) dx

Expanding and simplifying, we have:

∫[0 to π/4] 5T/(4√tan(x)) + (5T/4)tan²(x) dx

Now, we can split the integral into two parts:

∫[0 to π/4] 5T/(4√tan(x)) dx + ∫[0 to π/4] (5T/4)tan²(x) dx

The first integral can be evaluated as:

∫[0 to π/4] 5T/(4√tan(x)) dx = [5T/4]∫[0 to π/4] sec(x) dx

= [5T/4] [ln|sec(x) + tan(x)|] evaluated from 0 to π/4

= [5T/4] [ln(√2 + 1) - ln(1)] = [5T/4] ln(√2 + 1)

The second integral can be evaluated as:

∫[0 to π/4] (5T/4)tan²(x) dx = (5T/4) [ln|sec(x)| - x] evaluated from 0 to π/4

= (5T/4) [ln(√2) - (√2/2 - 0)] = (5T/4) [ln(√2) - (√2/2)]

Thus, the value of the integral is:

[5T/4] ln(√2 + 1) + (5T/4) [ln(√2) - (√2/2)]

Simplifying further:

[5T/4] [ln(√2 + 1) + ln(√2) - (√2/2)]

Therefore, the integral evaluates to [5T/4] [ln(√2 + 1) + ln(√2) - (√2/2)].

Note: Depending on the value of T, the result of the integral will vary. If T is 0, the integral becomes 0. Otherwise, the integral will have a non-zero value.

To learn more about integral visit: brainly.com/question/31109342

#SPJ11

Find general solution for the ODE 9x y" - gy e3x =

Answers

The general solution of the given ODE 9x y" - gy e3x = 0 is given by y(x) = [(-1/3x) + C1] * 1 - [(1/9x) - (1/81) + C2] * (g/27) * e^(3x).

To find general solution of the ODE:

Step 1: Finding the first derivative of y

Wrtie the given equation in the standard form as:

y" - (g/9x) * e^(3x) * y = 0

Compare this with the standard form of the homogeneous linear ODE:

y" + p(x) y' + q(x) y = 0, we have

p(x) = 0q(x) = -(g/9x) * e^(3x)

Integrating factor (IF) of this ODE is given by:

IF = e^∫p(x)dx = e^∫0dx = 1

Therefore, multiplying both sides of the ODE by the integrating factor, we have:

y" + (g/9x) * e^(3x) * y' = 0 …….(1)

Step 2: Using the Method of Variation of Parameters to find the general solution of the ODE. Assuming the solution of the form

y = u1(x) y1(x) + u2(x) y2(x),

where y1 and y2 are linearly independent solutions of the homogeneous ODE (1).

So, y1 = 1 and y2 = ∫q(x) / y1^2(x) dx

Solving the above expression, we get:

y2 = ∫[-(g/9x) * e^(3x)] dx = -(g/27) * e^(3x)

Taking y1 = 1 and y2 = -(g/27) * e^(3x)

Now, using the formula for the method of variation of parameters, we have

u1(x) = (- ∫y2(x) f(x) dx) / W(y1, y2)

u2(x) = ( ∫y1(x) f(x) dx) / W(y1, y2),

where W(y1, y2) is the Wronskian of y1 and y2.

W(y1, y2) = |y1 y2' - y1' y2|

= |1 (-g/9x) * e^(3x) + 0 g/3 * e^(3x)|

= g/9x^2 * e^(3x)So,u1(x)

= (- ∫[-(g/27) * e^(3x)] (g/9x) * e^(3x) dx) / (g/9x^2 * e^(3x))

= (-1/3x) + C1u2(x)

= ( ∫1 (g/9x) * e^(3x) dx) / (g/9x^2 * e^(3x))

= [(1/3x) - (1/27)] + C2

where C1 and C2 are constants of integration.

Therefore, the general solution of the given ODE is

y(x) = u1(x) y1(x) + u2(x) y2(x)y(x) = [(-1/3x) + C1] * 1 - [(1/9x) - (1/81) + C2] * (g/27) * e^(3x)

Learn more about derivative visit:

brainly.com/question/29144258

#SPJ

Consider the function: f(x,y) = -3ry + y² At the point P(ro, Yo, zo) = (1, 2, -2), determine the equation of the tangent plane, (x, y). Given your equation, find a unit vector normal (perpendicular, orthogonal) to the tangent plane. Question 9 For the function f(x, y) below, determine a general expression for the directional derivative, D₁, at some (zo, yo), in the direction of some unit vector u = (Uz, Uy). f(x, y) = x³ + 4xy

Answers

The directional derivative D₁ = (3x² + 4y)Uz + 4xUy.

To determine the equation of the tangent plane to the function f(x, y) = -3xy + y² at the point P(ro, Yo, zo) = (1, 2, -2):

Calculate the partial derivatives of f(x, y) with respect to x and y:

fₓ = -3y

fᵧ = -3x + 2y

Evaluate the partial derivatives at the point P:

fₓ(ro, Yo) = -3(2) = -6

fᵧ(ro, Yo) = -3(1) + 2(2) = 1

The equation of the tangent plane at point P can be written as:

z - zo = fₓ(ro, Yo)(x - ro) + fᵧ(ro, Yo)(y - Yo)

Substituting the values, we have:

z + 2 = -6(x - 1) + 1(y - 2)

Simplifying, we get:

-6x + y + z + 8 = 0

Therefore, the equation of the tangent plane is -6x + y + z + 8 = 0.

To find a unit vector normal to the tangent plane,

For the function f(x, y) = x³ + 4xy, the general expression for the directional derivative D₁ at some point (zo, yo) in the direction of a unit vector u = (Uz, Uy) is given by:

D₁ = ∇f · u

where ∇f is the gradient of f(x, y), and · represents the dot product.

The gradient of f(x, y) is calculated by taking the partial derivatives of f(x, y) with respect to x and y:

∇f = (fₓ, fᵧ)

= (3x² + 4y, 4x)

The directional derivative D₁ is then:

D₁ = (3x² + 4y, 4x) · (Uz, Uy)

= (3x² + 4y)Uz + 4xUy

Therefore, the general expression for the directional derivative D₁ is (3x² + 4y)Uz + 4xUy.

To know more about the directional derivative visit:

https://brainly.com/question/12873145

#SPJ11

A particular machine part is subjected in service to a maximum load of 10 kN. With the thought of providing a safety factor of 1.5, it is designed to withstand a load of 15 kN. If the maximum load encountered in various applications is normally distribute with a standard deviation of 2 kN, and if part strength is normally distributed with a standard deviation of 1.5 kN
a) What failure percentage would be expected in service?
b) To what value would the standard deviation of part strength have to be reduced in order to give a failure rate of only 1%, with no other changes?
c) To what value would the nominal part strength have to be increased in order to give a failure rate of only 1%, with no other changes?

Answers

the values of standard deviation of part strength have to be reduced to 2.15 kN, and the nominal part strength has to be increased to 13.495 kN to give a failure rate of only 1%, with no other changes.

a) Failure percentage expected in service:

The machine part is subjected to a maximum load of 10 kN. With the thought of providing a safety factor of 1.5, it is designed to withstand a load of 15 kN.

The maximum load encountered in various applications is normally distributed with a standard deviation of 2 kN.

The part strength is normally distributed with a standard deviation of 1.5 kN.The load that the part is subjected to is random and it is not known in advance. Hence the load is considered a random variable X with mean µX = 10 kN and standard deviation σX = 2 kN.

The strength of the part is also random and is not known in advance. Hence the strength is considered a random variable Y with mean µY and standard deviation σY = 1.5 kN.

Since a safety factor of 1.5 is provided, the part can withstand a maximum load of 15 kN without failure.i.e. if X ≤ 15, then the part will not fail.

The probability of failure can be computed as:P(X > 15) = P(Z > (15 - 10) / 2) = P(Z > 2.5)

where Z is the standard normal distribution.

The standard normal distribution table shows that P(Z > 2.5) = 0.0062.

Failure percentage = 0.0062 x 100% = 0.62%b)

To give a failure rate of only 1%:P(X > 15) = P(Z > (15 - µX) / σX) = 0.01i.e. P(Z > (15 - 10) / σX) = 0.01P(Z > 2.5) = 0.01From the standard normal distribution table, the corresponding value of Z is 2.33.(approx)

Hence, 2.33 = (15 - 10) / σXσX = (15 - 10) / 2.33σX = 2.15 kN(To reduce the standard deviation of part strength, σY from 1.5 kN to 2.15 kN, it has to be increased in size)c)

To give a failure rate of only 1%:P(X > 15) = P(Z > (15 - µX) / σX) = 0.01i.e. P(Z > (15 - 10) / 2) = 0.01From the standard normal distribution table, the corresponding value of Z is 2.33.(approx)

Hence, 2.33 = (Y - 10) / 1.5Y - 10 = 2.33 x 1.5Y - 10 = 3.495Y = 13.495 kN(To increase the nominal part strength, µY from µY to 13.495 kN, it has to be increased in size)

Therefore, the values of standard deviation of part strength have to be reduced to 2.15 kN, and the nominal part strength has to be increased to 13.495 kN to give a failure rate of only 1%, with no other changes.

learn more about standard deviation here

https://brainly.com/question/475676

#SPJ11

Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line y 5. (Round your answer to three decimal places) 4 Y= 1+x y=0 x=0 X-4

Answers

The volume of solid generated by revolving the region bounded by the graphs of the equations about the line y = 5 is ≈ 39.274 cubic units (rounded to three decimal places).

We are required to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line y = 5.

We know the following equations:

y = 0x = 0

y = 1 + xx - 4

Now, let's draw the graph for the given equations and region bounded by them.

This is how the graph would look like:

graph{y = 1+x [-10, 10, -5, 5]}

Now, we will use the Disk Method to find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line y = 5.

The formula for the disk method is as follows:

V = π ∫ [R(x)]² - [r(x)]² dx

Where,R(x) is the outer radius and r(x) is the inner radius.

Let's determine the outer radius (R) and inner radius (r):

Outer radius (R) = 5 - y

Inner radius (r) = 5 - (1 + x)

Now, the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line y = 5 is given by:

V = π ∫ [5 - y]² - [5 - (1 + x)]² dx

= π ∫ [4 - y - x]² - 16 dx  

[Note: Substitute (5 - y) = z]

Now, we will integrate the above equation to find the volume:

V = π [ ∫ (16 - 8y + y² + 32x - 8xy - 2x²) dx ]

(evaluated from 0 to 4)

V = π [ 48√2 - 64/3 ]

≈ 39.274

Know more about the solid generated

https://brainly.com/question/32493136

#SPJ11

Product, Quotient, Chain rules and higher Question 2, 1.6.3 Part 1 of 3 a. Use the Product Rule to find the derivative of the given function. b. Find the derivative by expanding the product first. f(x)=(x-4)(4x+4) a. Use the product rule to find the derivative of the function. Select the correct answer below and fill in the answer box(es) to complete your choice. OA. The derivative is (x-4)(4x+4) OB. The derivative is (x-4) (+(4x+4)= OC. The derivative is x(4x+4) OD. The derivative is (x-4X4x+4)+(). E. The derivative is ((x-4). HW Score: 83.52%, 149.5 of Points: 4 of 10

Answers

The derivative of the function f(x) = (x - 4)(4x + 4) can be found using the Product Rule. The correct option is OC i.e., the derivative is 8x - 12.

To find the derivative of a product of two functions, we can use the Product Rule, which states that the derivative of the product of two functions u(x) and v(x) is given by u'(x)v(x) + u(x)v'(x).

Applying the Product Rule to the given function f(x) = (x - 4)(4x + 4), we differentiate the first function (x - 4) and keep the second function (4x + 4) unchanged, then add the product of the first function and the derivative of the second function.

a. Using the Product Rule, the derivative of f(x) is:

f'(x) = (x - 4)(4) + (1)(4x + 4)

Simplifying this expression, we have:

f'(x) = 4x - 16 + 4x + 4

Combining like terms, we get:

f'(x) = 8x - 12

Therefore, the correct answer is OC. The derivative is 8x - 12.

To learn more about product rules visit:

brainly.com/question/847241

#SPJ11

x(2x-4) =5 is in standard form

Answers

Answer:
[tex]2x^2-4x-5=0[/tex] is standard form.

Step-by-step explanation:
Standard form of a quadratic equation should be equal to 0. Standard form should be [tex]ax^2+bx+c=0[/tex], unless this isn't a quadratic equation?

We can convert your equation to standard form with a few calculations. First, subtract 5 from both sides:

[tex]x(2x-4)-5=0[/tex]

Then, distribute the x in front:

[tex]2x^2-4x-5=0[/tex]

The equation should now be in standard form. (Unless, again, this isn't a quadratic equation – "standard form" can mean different things in different areas of math).

The marginal revenue (in thousands of dollars) from the sale of x gadgets is given by the following function. 2 3 R'(x) = )= 4x(x² +26,000) (a) Find the total revenue function if the revenue from 120 gadgets is $15,879. (b) How many gadgets must be sold for a revenue of at least $45,000?

Answers

To find the total revenue function, we need to integrate the marginal revenue function R'(x) with respect to x.

(a) Total Revenue Function:

We integrate R'(x) = 4x(x² + 26,000) with respect to x:

R(x) = ∫[4x(x² + 26,000)] dx

Expanding and integrating, we get:

R(x) = ∫[4x³ + 104,000x] dx

= x⁴ + 52,000x² + C

Now we can use the given information to find the value of the constant C. We are told that the revenue from 120 gadgets is $15,879, so we can set up the equation:

R(120) = 15,879

Substituting x = 120 into the total revenue function:

120⁴ + 52,000(120)² + C = 15,879

Solving for C:

207,360,000 + 748,800,000 + C = 15,879

C = -955,227,879

Therefore, the total revenue function is:

R(x) = x⁴ + 52,000x² - 955,227,879

(b) Revenue of at least $45,000:

To find the number of gadgets that must be sold for a revenue of at least $45,000, we can set up the inequality:

R(x) ≥ 45,000

Using the total revenue function R(x) = x⁴ + 52,000x² - 955,227,879, we have:

x⁴ + 52,000x² - 955,227,879 ≥ 45,000

We can solve this inequality numerically to find the values of x that satisfy it. Using a graphing calculator or software, we can determine that the solutions are approximately x ≥ 103.5 or x ≤ -103.5. However, since the number of gadgets cannot be negative, the number of gadgets that must be sold for a revenue of at least $45,000 is x ≥ 103.5.

Therefore, at least 104 gadgets must be sold for a revenue of at least $45,000.

Learn more about inequality here -:  brainly.com/question/25944814

#SPJ11

What is the equation function of cos that has an amplitude of 4 a period of 2 and has a point at (0,2)?

Answers

The equation function of cosine with an amplitude of 4, a period of 2, and a point at (0,2) is y = 4cos(2πx) + 2.

The general form of a cosine function is y = A cos(Bx - C) + D, where A represents the amplitude, B is related to the period, C indicates any phase shift, and D represents a vertical shift.

In this case, the given amplitude is 4, which means the graph will oscillate between -4 and 4 units from its centerline. The period is 2, which indicates that the function completes one full cycle over a horizontal distance of 2 units.

To incorporate the given point (0,2), we know that when x = 0, the corresponding y-value should be 2. Since the cosine function is at its maximum at x = 0, the vertical shift D is 2 units above the centerline.

Using these values, the equation function becomes y = 4cos(2πx) + 2, where 4 represents the amplitude, 2π/2 simplifies to π in the argument of cosine, and 2 is the vertical shift. This equation satisfies the given conditions of the cosine function.

Learn more about cosine here:

https://brainly.com/question/29114352

#SPJ11

Prove that 5" - 4n - 1 is divisible by 16 for all n. Exercise 0.1.19. Prove the following equality by mathematical induction. n ➤i(i!) = (n + 1)! – 1. 2=1

Answers

To prove that [tex]5^n - 4n - 1[/tex]is divisible by 16 for all values of n, we will use mathematical induction.

Base case: Let's verify the statement for n = 0.

[tex]5^0 - 4(0) - 1 = 1 - 0 - 1 = 0.[/tex]

Since 0 is divisible by 16, the base case holds.

Inductive step: Assume the statement holds for some arbitrary positive integer k, i.e., [tex]5^k - 4k - 1[/tex]is divisible by 16.

We need to show that the statement also holds for k + 1.

Substitute n = k + 1 in the expression: [tex]5^(k+1) - 4(k+1) - 1.[/tex]

[tex]5^(k+1) - 4(k+1) - 1 = 5 * 5^k - 4k - 4 - 1[/tex]

[tex]= 5 * 5^k - 4k - 5[/tex]

[tex]= 5 * 5^k - 4k - 1 + 4 - 5[/tex]

[tex]= (5^k - 4k - 1) + 4 - 5.[/tex]

By the induction hypothesis, we know that 5^k - 4k - 1 is divisible by 16. Let's denote it as P(k).

Therefore, P(k) = 16m, where m is some integer.

Substituting this into the expression above:

[tex](5^k - 4k - 1) + 4 - 5 = 16m + 4 - 5 = 16m - 1.[/tex]

16m - 1 is also divisible by 16, as it can be expressed as 16m - 1 = 16(m - 1) + 15.

Thus, we have shown that if the statement holds for k, it also holds for k + 1.

By mathematical induction, we have proved that for all positive integers n, [tex]5^n - 4n - 1[/tex] is divisible by 16.

Learn more about mathematical induction here:

https://brainly.com/question/29503103

#SPJ11

In Problems 1 through 12, verify by substitution that each given function is a solution of the given differential equation. Throughout these problems, primes denote derivatives with re- spect to x. 1. y' = 3x2; y = x³ +7 2. y' + 2y = 0; y = 3e-2x 3. y" + 4y = 0; y₁ = cos 2x, y2 = sin 2x 4. y" = 9y; y₁ = e³x, y₂ = e-3x 5. y' = y + 2e-x; y = ex-e-x 6. y" +4y^ + 4y = 0; y1= e~2x, y2 =xe-2x 7. y" - 2y + 2y = 0; y₁ = e cos x, y2 = e* sinx 8. y"+y = 3 cos 2x, y₁ = cos x-cos 2x, y2 = sinx-cos2x 1 9. y' + 2xy2 = 0; y = 1+x² 10. x2y" + xy - y = ln x; y₁ = x - ln x, y2 = =-1 - In x In x 11. x²y" + 5xy' + 4y = 0; y1 = 2 2 = x² 12. x2y" - xy + 2y = 0; y₁ = x cos(lnx), y2 = x sin(In.x)

Answers

The solutions to the given differential equations are:

y = x³ + 7y = 3e^(-2x)y₁ = cos(2x), y₂ = sin(2x)y₁ = e^(3x), y₂ = e^(-3x)y = e^x - e^(-x)y₁ = e^(-2x), y₂ = xe^(-2x)y₁ = e^x cos(x), y₂ = e^x sin(x)y₁ = cos(x) - cos(2x), y₂ = sin(x) - cos(2x)y = 1 + x²y₁ = x - ln(x), y₂ = -1 - ln(x)y₁ = x², y₂ = x^(-2)y₁ = xcos(ln(x)), y₂ = xsin(ln(x))

To verify that each given function is a solution of the given differential equation, we will substitute the function into the differential equation and check if it satisfies the equation.

1. y' = 3x²; y = x³ + 7

Substituting y into the equation:

y' = 3(x³ + 7) = 3x³ + 21

The derivative of y is indeed equal to 3x², so y = x³ + 7 is a solution.

2. y' + 2y = 0; y = 3e^(-2x)

Substituting y into the equation:

y' + 2y = -6e^(-2x) + 2(3e^(-2x)) = -6e^(-2x) + 6e^(-2x) = 0

The equation is satisfied, so y = 3e^(-2x) is a solution.

3. y" + 4y = 0; y₁ = cos(2x), y₂ = sin(2x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ + 4y₁ = -4cos(2x) + 4cos(2x) = 0

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ + 4y₂ = -4sin(2x) - 4sin(2x) = -8sin(2x)

The equation is not satisfied for y₂, so y₂ = sin(2x) is not a solution.

4. y" = 9y; y₁ = e^(3x), y₂ = e^(-3x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ = 9e^(3x)

9e^(3x) = 9e^(3x)

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ = 9e^(-3x)

9e^(-3x) = 9e^(-3x)

The equation is satisfied for y₂.

5. y' = y + 2e^(-x); y = e^x - e^(-x)

Substituting y into the equation:

y' = e^x - e^(-x) + 2e^(-x) = e^x + e^(-x)

The equation is satisfied, so y = e^x - e^(-x) is a solution.

6. y" + 4y^2 + 4y = 0; y₁ = e^(-2x), y₂ = xe^(-2x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ + 4(y₁)^2 + 4y₁ = 4e^(-4x) + 4e^(-4x) + 4e^(-2x) = 8e^(-2x) + 4e^(-2x) = 12e^(-2x)

The equation is not satisfied for y₁, so y₁ = e^(-2x) is not a solution.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ + 4(y₂)^2 + 4y₂ = 2e^(-2x) + 4(xe^(-2x))^2 + 4xe^(-2x) = 2e^(-2x) + 4x^2e^(-4x) + 4xe^(-2x)

The equation is not satisfied for y₂, so y₂ = xe^(-2x) is not a solution.

7. y" - 2y + 2y = 0; y₁ = e^x cos(x), y₂ = e^x sin(x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ - 2(y₁) + 2y₁ = e^x(-cos(x) - 2cos(x) + 2cos(x)) = 0

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ - 2(y₂) + 2y₂ = e^x(-sin(x) - 2sin(x) + 2sin(x)) = 0

The equation is satisfied for y₂.

8. y" + y = 3cos(2x); y₁ = cos(x) - cos(2x), y₂ = sin(x) - cos(2x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ + y₁ = -cos(x) + 2cos(2x) + cos(x) - cos(2x) = cos(x)

The equation is not satisfied for y₁, so y₁ = cos(x) - cos(2x) is not a solution.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ + y₂ = -sin(x) + 2sin(2x) + sin(x) - cos(2x) = sin(x) + 2sin(2x) - cos(2x)

The equation is not satisfied for y₂, so y₂ = sin(x) - cos(2x) is not a solution.

9. y' + 2xy² = 0; y = 1 + x²

Substituting y into the equation:

y' + 2x(1 + x²) = 2x³ + 2x = 2x(x² + 1)

The equation is satisfied, so y = 1 + x² is a solution.

10 x²y" + xy' - y = ln(x); y₁ = x - ln(x), y₂ = -1 - ln(x)

Taking the second derivative of y₁ and substituting into the equation:

x²y"₁ + xy'₁ - y₁ = x²(0) + x(1) - (x - ln(x)) = x

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

x²y"₂ + xy'₂ - y₂ = x²(0) + x(-1/x) - (-1 - ln(x)) = 1 + ln(x)

The equation is not satisfied for y₂, so y₂ = -1 - ln(x) is not a solution.

11. x²y" + 5xy' + 4y = 0; y₁ = x², y₂ = x^(-2)

Taking the second derivative of y₁ and substituting into the equation:

x²y"₁ + 5xy'₁ + 4y₁ = x²(0) + 5x(2x) + 4x² = 14x³

The equation is not satisfied for y₁, so y₁ = x² is not a solution.

Taking the second derivative of y₂ and substituting into the equation:

x²y"₂ + 5xy'₂ + 4y₂ = x²(4/x²) + 5x(-2/x³) + 4(x^(-2)) = 4 + (-10/x) + 4(x^(-2))

The equation is not satisfied for y₂, so y₂ = x^(-2) is not a solution.

12. x²y" - xy' + 2y = 0; y₁ = xcos(ln(x)), y₂ = xsin(ln(x))

Taking the second derivative of y₁ and substituting into the equation:

x²y"₁ - xy'₁ + 2y₁ = x²(0) - x(-sin(ln(x))/x) + 2xcos(ln(x)) = x(sin(ln(x)) + 2cos(ln(x)))

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

x²y"₂ - xy'₂ + 2y₂ = x²(0) - x(cos(ln(x))/x) + 2xsin(ln(x)) = x(sin(ln(x)) + 2cos(ln(x)))

The equation is satisfied for y₂.

Therefore, the solutions to the given differential equations are:

y = x³ + 7

y = 3e^(-2x)

y₁ = cos(2x)

y₁ = e^(3x), y₂ = e^(-3x)

y = e^x - e^(-x)

y₁ = e^(-2x)

y₁ = e^x cos(x), y₂ = e^x sin(x)

y = 1 + x²

y₁ = xcos(ln(x)), y₂ = xsin(ln(x))

Learn more about differential equation

https://brainly.com/question/32538700

#SPJ11

Find solutions for your homework
Find solutions for your homework
mathcalculuscalculus questions and answersmy notes ask your teacher given f(x) = -7 + x2, calculate the average rate of change on each of the given intervals. (a) the average rate of change of f(x) over the interval [-6, -5.9] is (b) the average rate of change of f(x) over the interval [-6, -5.99] is (c) the average rate of change of f(x) over the interval [-6, -5.999] is (d) using (a) through (c)
This problem has been solved!
You'll get a detailed solution from a subject matter expert that helps you learn core concepts.
See Answer
Question: MY NOTES ASK YOUR TEACHER Given F(X) = -7 + X2, Calculate The Average Rate Of Change On Each Of The Given Intervals. (A) The Average Rate Of Change Of F(X) Over The Interval [-6, -5.9] Is (B) The Average Rate Of Change Of F(X) Over The Interval [-6, -5.99] Is (C) The Average Rate Of Change Of F(X) Over The Interval [-6, -5.999] Is (D) Using (A) Through (C)
MY NOTES
ASK YOUR TEACHER
Given f(x) = -7 + x2, calculate the average rate of change on each of the given intervals.
(a) The
Show transcribed image text
Expert Answer
answer image blur
Transcribed image text: MY NOTES ASK YOUR TEACHER Given f(x) = -7 + x2, calculate the average rate of change on each of the given intervals. (a) The average rate of change of f(x) over the interval [-6, -5.9] is (b) The average rate of change of f(x) over the interval [-6, -5.99] is (c) The average rate of change of f(x) over the interval [-6, -5.999] is (d) Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x = -6, we have Submit Answer 2. [-/0.76 Points] DETAILS TAMUBUSCALC1 2.1.002. 0/6 Submissions Used MY NOTES ASK YOUR TEACHER For the function y 9x2, find the following. (a) the average rate of change of f(x) over the interval [1,4] (b) the instantaneous rate of change of f(x) at the value x = 1

Answers

The average rate of change of f(x) over the interval [-6, -5.9] is 13.9, the average rate of change of f(x) over the interval [-6, -5.99] is 3.99, the average rate of change of f(x) over the interval [-6, -5.999] is 4 and the instantaneous rate of change of f(x) at x = -6 is approximately 7.3.

Given the function

f(x) = -7 + x²,

calculate the average rate of change on each of the given intervals.

Interval -6 to -5.9:

This interval has a length of 0.1.

f(-6) = -7 + 6²

= 19

f(-5.9) = -7 + 5.9²

≈ 17.61

The average rate of change of f(x) over the interval [-6, -5.9] is:

(f(-5.9) - f(-6))/(5.9 - 6)

= (17.61 - 19)/(-0.1)

= 13.9

Interval -6 to -5.99:

This interval has a length of 0.01.

f(-5.99) = -7 + 5.99²

≈ 18.9601

The average rate of change of f(x) over the interval [-6, -5.99] is:

(f(-5.99) - f(-6))/(5.99 - 6)

= (18.9601 - 19)/(-0.01)

= 3.99

Interval -6 to -5.999:

This interval has a length of 0.001.

f(-5.999) = -7 + 5.999²

≈ 18.996001

The average rate of change of f(x) over the interval [-6, -5.999] is:

(f(-5.999) - f(-6))/(5.999 - 6)

= (18.996001 - 19)/(-0.001)

= 4

Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x = -6, we have:

[f'(-6) ≈ 13.9 + 3.99 + 4}/{3}

= 7.3

Know more about the average rate of change

https://brainly.com/question/8728504

#SPJ11

A sample of size n-58 is drawn from a normal population whose standard deviation is a 5.5. The sample mean is x = 36.03. Part 1 of 2 (a) Construct a 98% confidence interval for μ. Round the answer to at least two decimal places. A 98% confidence interval for the mean is 1000 ala Part 2 of 2 (b) If the population were not approximately normal, would the confidence interval constructed in part (a) be valid? Explain. The confidence interval constructed in part (a) (Choose one) be valid since the sample size (Choose one) large. would would not DE

Answers

a. To construct a 98% confidence interval for the population mean (μ), we can use the formula:

x ± Z * (σ / √n),

where x is the sample mean, Z is the critical value corresponding to the desired confidence level, σ is the population standard deviation, and n is the sample size.

Plugging in the given values, we have:

x = 36.03, σ = 5.5, n = 58, and the critical value Z can be determined using the standard normal distribution table for a 98% confidence level (Z = 2.33).

Calculating the confidence interval using the formula, we find:

36.03 ± 2.33 * (5.5 / √58).

The resulting interval provides a range within which we can be 98% confident that the population mean falls.

b. The validity of the confidence interval constructed in part (a) relies on the assumption that the population is approximately normal. If the population is not approximately normal, the validity of the confidence interval may be compromised.

The validity of the confidence interval is contingent upon meeting certain assumptions, including a normal distribution for the population. If the population deviates significantly from normality, the confidence interval may not accurately capture the true population mean.

Therefore, it is crucial to assess the underlying distribution of the population before relying on the validity of the constructed confidence interval.

To learn more about confidence interval click here : brainly.com/question/32546207

#SPJ11

The sequence {an} is monotonically decreasing while the sequence {b} is monotonically increasing. In order to show that both {a} and {bn} converge, we need to confirm that an is bounded from below while br, is bounded from above. Both an and b, are bounded from below only. an is bounded from above while bn, is bounded from below. Both and b, are bounded from above only. O No correct answer is present. 0.2 pts

Answers

To show that both the sequences {a} and {bn} converge, it is necessary to confirm that an is bounded from below while bn is bounded from above.

In order for a sequence to converge, it must be both monotonic (either increasing or decreasing) and bounded. In this case, we are given that {an} is monotonically decreasing and {b} is monotonically increasing.

To prove that {an} converges, we need to show that it is bounded from below. This means that there exists a value M such that an ≥ M for all n. Since {an} is monotonically decreasing, it implies that the sequence is bounded from above as well. Therefore, an is both bounded from above and below.

Similarly, to prove that {bn} converges, we need to show that it is bounded from above. This means that there exists a value N such that bn ≤ N for all n. Since {bn} is monotonically increasing, it implies that the sequence is bounded from below as well. Therefore, bn is both bounded from below and above.

In conclusion, to establish the convergence of both {a} and {bn}, it is necessary to confirm that an is bounded from below while bn is bounded from above.

Learn more about convergence of a sequence:

https://brainly.com/question/29394831

#SPJ11

If y varies inversely as the square of x, and y=7/4 when x=1 find y when x=3

Answers

To find the value of k, we can substitute the given values of y and x into the equation.

If y varies inversely as the square of x, we can express this relationship using the equation y = k/x^2, where k is the constant of variation.

When x = 1, y = 7/4. Substituting these values into the equation, we get:

7/4 = k/1^2

7/4 = k

Now that we have determined the value of k, we can use it to find y when x = 3. Substituting x = 3 and k = 7/4 into the equation, we get:

y = (7/4)/(3^2)

y = (7/4)/9

y = 7/4 * 1/9

y = 7/36

Therefore, when x = 3, y is equal to 7/36. The relationship between x and y is inversely proportional to the square of x, and as x increases, y decreases.

For more questions Values:

https://brainly.com/question/843074

#SPJ8

Find as a function of t for the given parametric dx equations. X t - +5 Y -7- 9t dy dx dy (b) Find as a function of t for the given parametric dx equations. x = 7t+7 y = t5 - 17 dy dx = = = ***

Answers

dy/dx as a function of t for the given parametric equations x and y is (5t⁴) / 7.

To find dy/dx as a function of t for the given parametric equations, we need to differentiate y with respect to x and express it in terms of t.

(a) Given x = t² - t + 5 and y = -7t - 9t², we can find dy/dx as follows:

dx/dt = 2t - 1 (differentiating x with respect to t)

dy/dt = -7 - 18t (differentiating y with respect to t)

To find dy/dx, we divide dy/dt by dx/dt:

dy/dx = (dy/dt) / (dx/dt) = (-7 - 18t) / (2t - 1)

Therefore, dy/dx as a function of t for the given parametric equations x and y is (-7 - 18t) / (2t - 1).

(b) Given x = 7t + 7 and y = t⁵ - 17, we can find dy/dx as follows:

dx/dt = 7 (differentiating x with respect to t)

dy/dt = 5t⁴ (differentiating y with respect to t)

To find dy/dx, we divide dy/dt by dx/dt:

dy/dx = (dy/dt) / (dx/dt) = (5t⁴) / 7

Therefore, dy/dx as a function of t for the given parametric equations x and y is (5t⁴) / 7.

learn more about parametric equations

https://brainly.com/question/29275326

#SPJ11

An dy/dx as a function of t for the given parametric equations is dy/dx = (5/7) ×t²4.

To find dy/dx as a function of t for the given parametric equations, start by expressing x and y in terms of t:

x = 7t + 7

y = t^5 - 17

Now,  differentiate both equations with respect to t:

dx/dt = 7

dy/dt = 5t²

To find dy/dx,  to divide dy/dt by dx/dt:

dy/dx = (dy/dt) / (dx/dt)

= (5t²) / 7

= (5/7) ×t²

To know more about function here

https://brainly.com/question/30721594

#SPJ4

Find a power series for the function, centered at c, and determine the interval of convergence. 2 a) f(x) = 7²-3; c=5 b) f(x) = 2x² +3² ; c=0 7x+3 4x-7 14x +38 c) f(x)=- d) f(x)=- ; c=3 2x² + 3x-2' 6x +31x+35

Answers

a) For the function f(x) = 7²-3, centered at c = 5, we can find the power series representation by expanding the function into a Taylor series around x = c.

First, let's find the derivatives of the function:

f(x) = 7x² - 3

f'(x) = 14x

f''(x) = 14

Now, let's evaluate the derivatives at x = c = 5:

f(5) = 7(5)² - 3 = 172

f'(5) = 14(5) = 70

f''(5) = 14

The power series representation centered at c = 5 can be written as:

f(x) = f(5) + f'(5)(x - 5) + (f''(5)/2!)(x - 5)² + ...

Substituting the evaluated derivatives:

f(x) = 172 + 70(x - 5) + (14/2!)(x - 5)² + ...

b) For the function f(x) = 2x² + 3², centered at c = 0, we can follow the same process to find the power series representation.

First, let's find the derivatives of the function:

f(x) = 2x² + 9

f'(x) = 4x

f''(x) = 4

Now, let's evaluate the derivatives at x = c = 0:

f(0) = 9

f'(0) = 0

f''(0) = 4

The power series representation centered at c = 0 can be written as:

f(x) = f(0) + f'(0)x + (f''(0)/2!)x² + ...

Substituting the evaluated derivatives:

f(x) = 9 + 0x + (4/2!)x² + ...

c) The provided function f(x)=- does not have a specific form. Could you please provide the expression for the function so I can assist you further in finding the power series representation?

d) Similarly, for the function f(x)=- , centered at c = 3, we need the expression for the function in order to find the power series representation. Please provide the function expression, and I'll be happy to help you with the power series and interval of convergence.

Learn more about function here:

brainly.com/question/30721594

#SPJ11

An integrating factorfor the differential equation (2y² +32) dz+ 2ry dy = 0, 18 A. y-¹, B. V C. 2-¹, D. I. E. None of these. 2. 2 points The general solution to the differential equation (2x + 4y + 1) dx +(4x-3y2) dy = 0 is A. x² + 4zy+z+y³ = C. B. x² + 4xy-z-y²=C. C. 2² +4zy-z+y³ = C₁ D. z² + 4zy+z-y³ = C, E. None of these 3. 2 points The general solution to the differential equation dy 6x³-2x+1 dz cos y + ev A. siny+e=2-²-1 + C. B. sin y +e=1-1² +2+C. C. siny-ez-z²+z+ C. siny+e=2+z²+z+C. E. None of these. D.

Answers

1. To find the integrating factor for the differential equation [tex]\((2y^2 + 32)dz + 2rydy = 0\),[/tex]  we can check if it is an exact differential equation. If not, we can find the integrating factor.

Comparing the given equation to the form [tex]\(M(z,y)dz + N(z,y)dy = 0\),[/tex] we have [tex]\(M(z,y) = 2y^2 + 32\) and \(N(z,y) = 2ry\).[/tex]

To check if the equation is exact, we compute the partial derivatives:

[tex]\(\frac{\partial M}{\partial y} = 4y\) and \(\frac{\partial N}{\partial z} = 0\).[/tex]

Since [tex]\(\frac{\partial M}{\partial y}\)[/tex] is not equal to [tex]\(\frac{\partial N}{\partial z}\)[/tex], the equation is not exact.

To find the integrating factor, we can use the formula:

[tex]\(\text{Integrating factor} = e^{\int \frac{\frac{\partial N}{\partial z} - \frac{\partial M}{\partial y}}{N}dz}\).[/tex]

Plugging in the values, we get:

[tex]\(\text{Integrating factor} = e^{\int \frac{-4y}{2ry}dz} = e^{-2\int \frac{1}{r}dz} = e^{-2z/r}\).[/tex]

Therefore, the correct answer is E. None of these.

2. The general solution to the differential equation [tex]\((2x + 4y + 1)dx + (4x - 3y^2)dy = 0\)[/tex] can be found by integrating both sides.

Integrating the left side with respect to [tex]\(x\)[/tex] and the right side with respect to [tex]\(y\),[/tex] we obtain:

[tex]\(x^2 + 2xy + x + C_1 = 2xy + C_2 - y^3 + C_3\),[/tex]

where [tex]\(C_1\), \(C_2\), and \(C_3\)[/tex] are arbitrary constants.

Simplifying the equation, we have:

[tex]\(x^2 + x - y^3 - C_1 - C_2 + C_3 = 0\),[/tex]

which can be rearranged as:

[tex]\(x^2 + x + y^3 - C = 0\),[/tex]

where [tex]\(C = C_1 + C_2 - C_3\)[/tex] is a constant.

Therefore, the correct answer is B. [tex]\(x^2 + 4xy - z - y^2 = C\).[/tex]

3. The general solution to the differential equation [tex]\(\frac{dy}{dx} = \frac{6x^3 - 2x + 1}{\cos y + e^v}\)[/tex] can be found by separating the variables and integrating both sides.

[tex]\(\int \frac{dy}{\cos y + e^v} = \int (6x^3 - 2x + 1)dx\).[/tex]

To integrate the left side, we can use a trigonometric substitution. Let [tex]\(u = \sin y\)[/tex], then [tex]\(du = \cos y dy\)[/tex]. Substituting this in, we get:

[tex]\(\int \frac{dy}{\cos y + e^v} = \int \frac{du}{u + e^v} = \ln|u + e^v| + C_1\),[/tex]

where [tex]\(C_1\)[/tex] is an arbitrary constant.

Integrating the right side, we have:

[tex]\(\int (6x^3 - 2x + 1)dx = 2x^4 - x^2 + x + C_2\),[/tex]

where [tex]\(C_2\)[/tex] is an arbitrary constant.

Putting it all together, we have:

[tex]\(\ln|u + e^v| + C_1 = 2x^4 - x^2 + x + C_2\).[/tex]

Substituting [tex]\(u = \sin y\)[/tex] back in, we get:

[tex]\(\ln|\sin y + e^v| + C_1 = 2x^4 - x^2 + x + C_2\).[/tex]

Therefore, the correct answer is D. [tex]\(\sin y + e^v = 2 + z^2 + z + C\).[/tex]

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11

It is determined that the temperature​ (in degrees​ Fahrenheit) on a particular summer day between​ 9:00a.m. and​ 10:00p.m. is modeled by the function f(t)= -t^2+5.9T=87 ​, where t represents hours after noon. How many hours after noon does it reach the hottest​ temperature?

Answers

The temperature reaches its maximum value 2.95 hours after noon, which is  at 2:56 p.m.

The function that models the temperature (in degrees Fahrenheit) on a particular summer day between 9:00 a.m. and 10:00 p.m. is given by

f(t) = -t² + 5.9t + 87,

where t represents the number of hours after noon.

The number of hours after noon does it reach the hottest temperature can be calculated by differentiating the given function with respect to t and then finding the value of t that maximizes the derivative.

Thus, differentiating

f(t) = -t² + 5.9t + 87,

we have:

'(t) = -2t + 5.9

At the maximum temperature, f'(t) = 0.

Therefore,-2t + 5.9 = 0 or

t = 5.9/2

= 2.95

Thus, the temperature reaches its maximum value 2.95 hours after noon, which is approximately at 2:56 p.m. (since 0.95 x 60 minutes = 57 minutes).

Know more about the function

https://brainly.com/question/29631554

#SPJ11

Consider a zero-sum 2-player normal form game where the first player has the payoff matrix 0 A = -1 0 1 2-1 0 (a) Set up the standard form marimization problem which one needs to solve for finding Nash equilibria in the mixed strategies. (b) Use the simplex algorithm to solve this maximization problem from (a). (c) Use your result from (b) to determine all Nash equilibria of this game.

Answers

(a) To solve for Nash equilibria in the mixed strategies, we first set up the standard form maximization problem.

To do so, we introduce the mixed strategy probability distribution of the first player as (p1, 1 − p1), and the mixed strategy probability distribution of the second player as (p2, 1 − p2).

The expected payoff to player 1 is given by:

p1(0 · q1 + (−1) · (1 − q1)) + (1 − p1)(1 · q1 + 2(1 − q1))

Simplifying:

−q1p1 + 2(1 − p1)(1 − q1) + q1= 2 − 3p1 − 3q1 + 4p1q1

Similarly, the expected payoff to player 2 is given by:

p2(0 · q2 + 1 · (1 − q2)) + (1 − p2)((−1) · q2 + 0 · (1 − q2))

Simplifying:

p2(1 − q2) + q2(1 − p2)= q2 − p2 + p2q2

Putting these expressions together, we have the following standard form maximization problem:

Maximize: 2 − 3p1 − 3q1 + 4p1q1

Subject to:

p2 − q2 + p2q2 ≤ 0−p1 + 2p1q1 − 2q1 + 2p1q1q2 ≤ 0p1, p2, q1, q2 ≥ 0

(b) To solve this problem using the simplex algorithm, we set up the initial tableau as follows:

 |    |   |    |   |    |  0  | 1 | 1  | 0 | p2 |  0  | 2 | −3 | −3 | p1 |  0  | 0 | 2  | −4 | w |

where w represents the objective function. The first pivot is on the element in row 1 and column 4, so we divide the second row by 2 and add it to the first row:  |   |   |   |    |   |  0  | 1 | 1   | 0 | p2 |  0  | 1 | −1.5 | −1.5 | p1/2 |  0  | 0 | 2   | −4 | w/2 |

The next pivot is on the element in row 2 and column 3, so we divide the first row by −3 and add it to the second row:  |    |   |   |   |    |  0  | 1 | 1    | 0 | p2 |  0  | 0 | −1 | −1 | (p1/6) − (p2/2) |  0  | 0 | 5   | −5 | (3p1 + w)/6 |

The third pivot is on the element in row 2 and column 1, so we divide the second row by 5 and add it to the first row:  |    |   |   |   |    |  0  | 1 | 0   | −0.2 | (2p2 − 1)/10 |  (p2/5) | 0 | 1  | −1 |  (p1/10) − (p2/2) |  0  | 0 | 1 | −1 | (3p1 + w)/30 |

We have found an optimal solution when all the coefficients in the objective row are non-negative.

This occurs when w = −3p1, and so the optimal solution is given by:

p1 = 0, p2 = 1, q1 = 0, q2 = 1or:p1 = 1, p2 = 0, q1 = 1, q2 = 0or:p1 = 1/3, p2 = 1/2, q1 = 1/2, q2 = 1/3

(c) There are three Nash equilibria of this game, which correspond to the optimal solutions of the maximization problem found in part (b): (p1, p2, q1, q2) = (0, 1, 0, 1), (1, 0, 1, 0), and (1/3, 1/2, 1/2, 1/3).

To know more about NASH EQUILIBRIUM visit:

brainly.com/question/28903257

#SPJ11

Find an example of a function f : R3 −→ R such that the directional derivatives at (0, 0, 1) in the direction of the vectors: v1 = (1, 2, 3), v2 = (0, 1, 2) and v3 = (0, 0, 1) are all of them equal to 1

Answers

The function f(x, y, z) = x + 2y + 3z - 11 satisfies the given condition.

To find a function f : R^3 -> R such that the directional derivatives at (0, 0, 1) in the direction of the vectors v1 = (1, 2, 3), v2 = (0, 1, 2), and v3 = (0, 0, 1) are all equal to 1, we can construct the function as follows:

f(x, y, z) = x + 2y + 3z + c

where c is a constant that we need to determine to satisfy the given condition.

Let's calculate the directional derivatives at (0, 0, 1) in the direction of v1, v2, and v3.

1. Directional derivative in the direction of v1 = (1, 2, 3):

D_v1 f(0, 0, 1) = ∇f(0, 0, 1) · v1

               = (1, 2, 3) · (1, 2, 3)

               = 1 + 4 + 9

               = 14

2. Directional derivative in the direction of v2 = (0, 1, 2):

D_v2 f(0, 0, 1) = ∇f(0, 0, 1) · v2

               = (1, 2, 3) · (0, 1, 2)

               = 0 + 2 + 6

               = 8

3. Directional derivative in the direction of v3 = (0, 0, 1):

D_v3 f(0, 0, 1) = ∇f(0, 0, 1) · v3

               = (1, 2, 3) · (0, 0, 1)

               = 0 + 0 + 3

               = 3

To make all the directional derivatives equal to 1, we need to set c = -11.

Therefore, the function f(x, y, z) = x + 2y + 3z - 11 satisfies the given condition.

Learn more about directional derivatives here:

https://brainly.com/question/30365299

#SPJ11

Find all lattice points of f(x)=log3(x+1)−9

Answers

Answer:

Step-by-step explanation:

?

point ;)

Other Questions
Which of the following is true about driving on a wet roadway?- As you drive faster, your tires become less effective- Water does not affect cars with good tires- Deeper water is less dangerous- As you decrease your speed, the roadway becomes more slippery Solve f(t) in the integral equation: f(t) sin(t)dt = e^-2t ? Would someone mind helping mei'm on a dead line so i need help soon Given circle O , mEDF=31 . Find x . ?????????????????? :) Compute the Income Tax Expense Due.Revenues=$150,000,Total Assets=$60,000,Total Liabilities=$40,000.Expenses=$55,000,Income Tax Rate =40%.Show your Answer as a Number only, NO commas, decimals or dollar signs. grief is most intense during the __________ phase of the grieving process. How will each of the following changes affect the supply or demand in the market indicated?1. How will the supply or demand for golf balls be affected by a decrease in the price of golf clubs?2. How will the supply or demand for steel be affected when the United Steel Workers Union wins a wage increase?3. How will the supply or demand for large gas-guzzling cars be affected by an increase in the price of gasoline?4. How will the supply or demand for computers be affected by a technological advance in producing computers?Using supply and demand diagrams illustrate graphically how equilibrium price and quantity will be affected by the following changes.5. How will the equilibrium price and quantity in the market for steak be affected by an increase in consumers incomes?6. How will the equilibrium price and quantity in the market for wheat be affected when farmers growing soybeans experience a decrease in the price of soybeans?7. How will the equilibrium price and quantity in the market for steak in the U.S. be affected when mad cow disease in Great Britain reduces the importation of British beef into the U.S.?8. How will the equilibrium price and quantity in the market for paper stationery be affected by the increasing use of e-mail for correspondence?9. How will the equilibrium price and quantity in the market for cars be affected when a recession causes consumers to expect that they might be laid off within the next year and producers expect that the price they can get for cars to decrease in the next year?10. How will the equilibrium price and quantity in the market for books be affected when college enrollments increase and the cost of paper used in publishing books increases? Explain two reasons why a mature firm with a history of stable earnings, few investment opportunities and a diverse clientele of investors will prefer to maintain a consistent dividend payout ratio and distribute dividends regularly? Wredand Company installs a manufacturing machine in its production facility at the beginning of the year at a cost of $87000. The machines useful life is essimated to be 5 years, or 400.000 units of product, with a $7,000 salvage value. During is second year, the machine produces 84,500 units of product. Determine the machines' second year depreciation under the double declining-balance method. Multiple Choice: $16,900 $16,000 $17,400 $18,379 $20,880. Compare the collaboration work between Antoni and Petronio with Gustav Klimts painting. How do you think these works give us different views of death? Products Inc., a wholesaler of office products, was organized on February 5 of the current year, with an authorization of 100,000 shares of preferred 1% stock, $60 par and 250,000 shares of $25 par common stock. The following selected transactions were completed during the first year of operations: Journalize the transactions. If an amount box doesFeb. 5. Issued 160,000 shares of common stock at par for cash. Feb. 5. Show Me How Feb. 5. Issued 650 shares of common stock at par to an attorney in payment of legal fees for organizing the corporation. Apr. 9. Issued 23,500 shares of common stock in exchange for land, buildings, and equipment with fair market prices of $110,000, $601,000, and $135,000, respectively. Find the value of total assets, given the followinginformation: total debt ratio = 0.25; total equity = $435,000.You are a financial manager for Shah Corporation. The CEO of thefirm asked you to c the _____ is the majority-party senator with the longest senate service. Petri dishes should be incubated with the lid side up. True False. Which best describes what occurs when a body accelerates? A) change in velocity per unit time B) change in velocity C) change in direction D) change True or False: The plants and animals of the Galapagos are vulnerable to the arrival of new species because the island is remote and therefore many of the species evolved without much competition or predators. Indicate in which of the three categories Preferred shares issued for cash should appear: cash flows from investing activities not part of the cash flow statement (direct method) cash flows from operating activities (direct method) None of the other alternatives are correct cash flows from financing activities These aggrieved employees have now come and see you, an HR consultant to seek your advice on the following matters:Do companies have the right to retrench employee when they face financial difficulties or when they do a restructuring? What should or should not be done by Manisan Sdn Bhd when the company wishes to retrench employees? Explain and relate your answer to the above scenario.(10 marks)Based on your answer in Question 1 above, explain whether the termination of Anthony, Jamal, Hock Tai and Nora was done properly and with just cause and excuse. (5 marks)If Anthony, Jamal, Hock Tai and Nora are not satisfied with their termination, what can they do? Describe in what year did moses austin receive a land grant