Answer:
In my opinion the limit is equal to 1 not 0, sorry.
Step-by-step explanation: 6 25 13 43
lim n ⇒∞ ((2n - 1)/2n)
lim n ⇒∞ (2n/2n) - 1)/2n) 2n/2n = 1 1/∞ = 0
= 1 - 0
= 1
when I graphed the function I also got 1
4 pillows and 5 quilts cost £53, 6 pillows and 5 quilts cost £57, find the cost of one each
Answer:
p=2
q=9
Step-by-step explanation:
4p+5q=53
6p+5q =57
A review of combination
Answer:
What is a Combination? A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. In combinations, you can select the items in any order. Combinations can be confused with permutations.
#happylearning
Search
Khan Academy
Dependent probability
In a class of 7, there are 4 students who play soccer.
If the teacher chooses 3 students, what is the probability that none of the three of them play soccer?
Answer:
[tex]\frac{12}{49}[/tex]
Step-by-step explanation:
[tex]\frac{4}{7} *\frac{3}{7} = \frac{12}{49}[/tex]
Hope this helps.
What is the distance between [(3 + 4i) + (2 - 3i)] and (9 - 2i)?
Answer:
5
Step-by-step explanation:
(3 + 4i) + (2 - 3i) = 3 + 4i + 2 - 3i = 5 + i
distance between (5 + i) and (9 - 2i) is the difference between them. and difference means subtraction.
(9 - 2i) - (5 + i) = 9 - 2i - 5 - i = 4 - 3i
and since we are looking for a distance, we are looking for the absolute value of that subtraction.
after all, we could have done the subtraction also in the other direction
(5 + i) - (9 - 2i) = -4 + 3i
and this must be the same distance.
|(-4 + 3i)| = |(4 - 3i)|
and that is done by calculating the distance of any of these 2 points from (0,0) on the coordinate grid of complex numbers.
|(a +bi)| = sqrt(a² + b²)
in our case here
distance = sqrt(4² + (-3)²) = sqrt(16 + 9) = sqrt(25) = 5
as you can easily see, this is (as expected) the same for the result of the subtraction in the other direction :
sqrt((-4)² + 3²) = sqrt(16+9) = sqrt(25) = 5
Exhibit 11-10 n = 81 s2 = 625 H0: σ2 = 500 Ha: σ2 ≠ 500 At 95% confidence, the null hypothesis _____. a. should not be rejected b. should be revised c. should be rejected d. None of these answers are correct
Answer:
Option C
Step-by-step explanation:
n = 81
s2 = 625
H0: σ2 = 500
Ha: σ2 ≠ 500
Test Statistics X^2 = (n-1)s^2/ σ2 = (81-1)*625/500
X^2 = 100
P value = 0.0646 for degree of freedom = 81-1 = 80
And X^2 = 100
At 95% confidence interval
Alpha = 0.05 , p value = 0.0646
p < alpha, we will reject the null hypothesis
At 95% confidence, the null hypothesis
HELP ME PLSSSSSS
if f(x) = 2x-3/5 , which of the following is the inverse of f(x)?
Write the following comparison as a ratio reduced to lowest terms. 169 inches to 13 feet
Answer:
14.0833333333 feet | 13 feet
Step-by-step explanation:
169 Inches is 14.0833333333 feet on calculator compared to 13 feet
and 1.08333333333 is 14.0833333333 divided by 13
if is not it, then 13/14.0833333333 is 0.92307692307
i guess that is the lowest terms in ratio
Peter Piper picked a pickled pepper out of a pepper jar. If the probability of drawing a pickled pepper was 2/5,
how many total peppers could be in the jar (psst. you can't have a half of a pepper)?
Answer:
5
Step-by-step explanation:
2/5 pickled peppers means that there are 2 pickled peppers out of 5 total peppers.
The following data represents the number of days absent and the final grade for a sample of college students in a general education course at a large state university.
No. of absences 0 1 2 3 4 5 6 7 8 9
Final Grade 89.2 86.4 83.5 81.1 78.2 73.9 64.3 71.8 65.5 66.2
a) Which variable is the explanatory variable?
b) Draw a scatter plot and describe your scatter plot (Direction, Strength, Form).
c) Compute the correlation coefficient
d) Does a linear relation exist between the number of absences and the final grade? Justify your answer.
e) Write out the least-squares regression line equation.
f) Compute and draw the residual (on your scatter plot) for a student who misses 5 class meetings.
g) Explain the slope in context.
h) Is the y-intercept meaningful in this situation? Explain.
i) Compute and interpret the coefficient of determination.
j) Construct a residual plot to verify the requirements of the least-squares regression model.
Which function of x has a y-intercept of -3?
Answer:
C. y = 2x - 3
Step-by-step explanation:
you look at the number without the x. and the minus three means it's negative. But if it's a plus three then it's positive
Solve Only estimation
Answer:
3a)1680
b)2620
4a)2130
b)13300
c)460
d)7540
Step-by-step explanation:
3a)1500+180
b)2800-170
4a)1800+330
b)7300+6000
c)670-210
d)8000-460
Answer:
a) 1600
b) 2600
c) 2200
d) 13200
e) 500
Step-by-step explanation:
a) 1463 + 179
1400 + 200
1600
b) 2806 - 176
2800 - 200
2600
c) 1831 + 329
1900 + 300
2200
d) 7345 + 5893
7300 + 5900
13200
e) 665 - 213
700 - 200
500
What is the solution to the inequality x(x – 3) > 0?
Answer:
The solution to the inequality is [tex](-\infty, 0) \cup (3, \infty)[/tex]
Step-by-step explanation:
We have a product, which is positive if both terms is positive or if both is negative.
Both positive:
[tex]x > 0[/tex]
[tex]x - 3 > 0 \rightarrow x > 3[/tex]
Then the intersection of these two is: [tex]x > 3[/tex]
Both negative:
[tex]x < 0[/tex]
[tex]x - 3 < 0 \rightarrow x < 3[/tex]
Then the intersection of those two is: [tex]x < 0[/tex]
Then:
Union of two solutions:
[tex]x < 0[/tex] or [tex]x > 3[/tex]
Then
[tex](-\infty, 0) \cup (3, \infty)[/tex]
y+4x=7 find the missing coordinates for a(-3,) and b (5,)
Answer:
-3 1
Step-by-step explanation:
Question
At a certain university, intramural volleyball is chosen as an activity by 50% of the student population. How likely is it that a
randomly chosen student will or will not participate in intramural volleyball?
Answer:
50%
Step-by-step explanation:
50% of the student population chooses instramural volleyball, meaning 50% doesn't. So if a random student is chosen, then it is a 50% chance that they will choose volleyball and 50% chance they won't.
b. If you take one spin, what is your expected value?
Answer:
3/7
Step-by-step explanation:
Expected Value:
3(1/7) + 1(2/7) + 0(2/7) - 1(2/7) = 3/7
Expected value when we take one spin = 3/7
What is the expected value?It is the sum of values multiplied by their respective probabilities.
How do we calculate the expected value after one spin?We have 2 red, 2 purple, 2 yellow, and 1 blue sector.
Total number of Sectors = 7
∴Probability of landing on red sector = 2/7
∴Probability of landing on purple sector = 2/7
∴Probability of landing on yellow sector = 2/7
∴Probability of landing on blue sector = 1/7
Points on blue sector = 3, on yellow sector = 1, on purple sector = 0, and on red sector = -1.
X 3 1 0 -1
P(X) 1/7 2/7 2/7 2/7
Expected Value = ∑X.P(X)
=3.(1/7) + 1(2/7) + 0(2/7) - 1(2/7)
= 3/7
Learn more about Expected Values on
https://brainly.com/question/15858152
#SPJ2
NO LINKS OR ELSE YOU'LL BE REPORTED! Only answer if you're very good at Math.No guessing please.
The sample space,S,of a coin being tossed three times is shown below, where H and T denote the coin landing on heads and tails respectively.
Answer: Bottom left corner
=======================================================
Explanation:
There are only four possible outcomes here
A) we get all tails, ie getting 0 headsB) we get exactly one head (the rest tails)C) we get exactly 2 headsD) we get all three headsBased on this so far, the answer is either the table in the bottom left corner or in the top right corner. It's not possible for X = 4 since we only flipped 3 coins.
The probability of case A happening is 1/8 since we have 1 scenario that's all tails (TTT) out of 8 items in the sample space. Similarly, the probability for case D is the same probability. We only have one HHH out of 8 total items.
The probabilities of cases B and C are the same. Both are 3/8. Note that for case B, we have HTT, THT, TTH which is three occurrences in which we get exactly 1 head. So that explains the 3/8.
Please help me in this! you get 30 points!
Answer:
y=3x-2
Step-by-step explanation:
You can verify it's not D because the y-intercept is at -2.
You can verify it's not A because that would mean the x-intercept is 2 despite it appearing to be closer to one.
You can verify it's not B because that would mean the x-intercept is 1.5
Find the value of k, if (x - 2) is a factor of the polynomial p(x) = 2x2 + 3x - k
Answer:
The value of k is 14.
Step-by-step explanation:
(x - 2) is a factor of the polynomial
[tex]x - 2 = 0 \rightarrow x = 2[/tex]
This means that [tex]p(2) = 0[/tex]
p(x) = 2x² + 3x - k
[tex]p(2) = 2(2)^2 + 3(2) - k[/tex]
[tex]0 = 8 + 6 - k[/tex]
[tex]14 - k = 0[/tex]
[tex]k = 14[/tex]
The value of k is 14.
Choose the correct Set-builder form for the following set written in Roster form: { − 2 , − 1 , 0 , 1 , 2 }
Step-by-step explanation:
{x:x is an integer where x>-3 and x<3}
Please can you help me
Answer:
[tex]x = 24.75[/tex]
Step-by-step explanation:
Required
Find x
To find x, we have:
[tex]\angle PQR + \angle RPQ + \angle QRP = 180[/tex] -- angles in a triangle
Because [tex]\bar {PR}[/tex] is extended to S, then:
[tex]\angle QRS = \angle QRP[/tex]
So, we have:
[tex]2x + 6 + x - 7 + 5x -17 = 180[/tex]
Collect like terms
[tex]2x + x + 5x = 180 + 17 + 7-6[/tex]
[tex]8x = 198[/tex]
Divide by 8
[tex]x = 24.75[/tex]
Use the following formula for compound interest. If P dollars is invested at an annual interest rate r (expressed as a decimal) compounded n times yearly, the amount A after t years is given by
A= P(1+ r/n)^nt
Required:
What rate of interest is required so that $1000 will yield $1900 after 5 years if the interest rate is compounded monthly?
Answer:
12.906%/year
Step-by-step explanation:
Given data
Principal= $1000
Final Amount= $1900
Time= 5 years
The compound interest formula is given as
A= P(1+ r/n)^nt
Solving for rate r as a decimal
r = n[(A/P)1/nt - 1]
r = 12 × [(1,900.00/1,000.00)1/(12)(5) - 1]
r = 0.12906
Then convert r to R as a percentage
R = r * 100
R = 0.12906 * 100
R = 12.906%/year
if ABCD is a cyclic quadrilateral and A,B,C,D are its interior angles , then prove that
tanA/2+tanB/2=cotC/2+cotD/2
answer the question plz
dont spam or else i will report that
9514 1404 393
Explanation:
In a cyclic quadrilateral, opposite angles are supplementary. This means ...
A + C = 180° ⇒ A/2 +C/2 = 90° ⇒ C/2 = 90° -A/2
B + D = 180° ⇒ B/2 +D/2 = 90° ⇒ D/2 = 90° -B/2
It is a trig identity that ...
tan(α) = cot(90° -α)
so we have ...
tan(A/2) = cot(90° -A/2) = cot(C/2)
and
tan(B/2) = cot(90° -B/2) = cot(D/2)
Adding these two equations together gives the desired result:
tan(A/2) +tan(B/2) = cot(C/2) +cot(D/2)
Which two terms are interchangeable?
Answer: Axioms and Postulates
Step-by-step explanation:
Even if we draw more points on a line, It is an accepted statement of a fact that cannot be disproved - which which these are called Axioms or Postulates; and they are interchangeable.
I hope my explanation helped. Your welcome.
A,B and C are the vertices of a triangle,
A has coordinates (4,6)
B has coordinates (2,-2)
C has coordinates (-2,-4)
D is the midpoint of AB.
E is the midpoint of AC.
prove that DE is parallel to BC.
Answer:
SSS (side, side, side)
hope it helps:))!!!
Mô hình quy hồi tuyến tính và ứng dụng
Answer:
where are you from Korea or not
Hope it helps you!
-miraculousfanx-
GIVING OUT BRAINLIEST HELP PLEASE ❤️
Answer:
C
Step-by-step explanation:
PLEASE HELP ASAP!!
Q: Use the graph of f below. Assume the entire function is graphed below. Find where f(x)<0.
(graph and answers pictured.)
Answer:
Option (4)
Step-by-step explanation:
From the graph attached,
We have to find the interval in which the function is less than zero or negative.
Value of the function are along the y-axis and negative value of the function means negative side of the y-axis.
In the graph, function is below the x-axis in the interval x > 4 and x = 6 only.
Therefore, in the interval (4, 6] function f(x) < 0.
Option (4) is the correct option.
Which best explains whether a triangle with side lengths 2 in., 5 in., and 4 in. is an acute triangle?
The triangle is acute because 22 + 52 > 42.
The triangle is acute because 2 + 4 > 5.
The triangle is not acute because 22 + 42 < 52.
The triangle is not acute because 22 < 42 + 52.
9514 1404 393
Answer:
The triangle is not acute because 2² + 4² < 5²
Step-by-step explanation:
The square of the hypotenuse of a right triangle with the given short sides would be 2² +4² = 20. So, that hypotenuse would be √20, about 4.47. The long side of this triangle is longer than that, so the angle opposite is larger than 90°. The triangle with sides 2, 4, 5 is an obtuse triangle.
The triangle is not acute because 2² + 4² < 5²
The triangle is not acute because 22 + 42 < 52.
Option C is the correct answer.
What is a triangle?A triangle is a 2-D figure with three sides and three angles.
The sum of the angles is 180 degrees.
We can have an obtuse triangle, an acute triangle, or a right triangle.
We have,
To determine if a triangle is acute, we need to check whether all three angles of the triangle are acute angles (less than 90 degrees).
Pythagorean theorem,
- If the square of the length of the hypotenuse is greater than the sum of the squares of the other two sides, then the triangle is acute.
- If the square of the length of the hypotenuse is less than the sum of the squares of the other two sides, then the triangle is obtuse.
Now,
The triangle with side lengths 2 in., 5 in., and 4 in. is not a right triangle.
So we can't use the Pythagorean theorem directly.
Now,
We can check if the sum of the squares of the two shorter sides is greater than the square of the longest side.
2² + 4² = 4 + 16 = 20
5² = 25
Since 20 < 25, we know that the triangle is not acute.
Therefore,
The triangle is not acute because 22 + 42 < 52.
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ7
i need help plz help me
Answer:
a+2b
Step-by-step explanation:
2(a+2b)-a-2b
2a+4b-a-2b
=a+2b
Answer:
Step-by-step explana:2 ( a+ 2b) - a- 2b
=2a + 4b - a - 2b= a + 2b
Use the limit definition of the derivative to find the instantaneous rate of change of
f(x)=5x^2+3x+3 at x=4
[tex]f'(4) = 43[/tex]
Explanation:
Given: [tex]f(x)=5x^2 + 3x + 3[/tex]
[tex]\displaystyle f'(x)= \lim_{h \to 0} \dfrac{f(x+h) - f(x)}{h}[/tex]
Note that
[tex]f(x+h) = 5(x+h)^2 + 3(x+h) + 3[/tex]
[tex]\:\:\;\:\:\:\:= 5(x^2 + 2hx + h^2) + 3x + 3h +3[/tex]
[tex]\:\:\;\:\:\:\:= 5x^2 + 10hx + 5h^2 + 3x + 3h +3[/tex]
Substituting the above equation into the expression for f'(x), we can then write f'(x) as
[tex]\displaystyle f'(x) = \lim_{h \to 0} \dfrac{10hx + 3h + 5h^2}{h}[/tex]
[tex]\displaystyle\:\:\;\:\:\:\:= \lim_{h \to 0} (10x +3 +5h)[/tex]
[tex]\:\:\;\:\:\:\:= 10x + 3[/tex]
Therefore,
[tex]f'(4) = 10(4) + 3 = 43[/tex]