Answer:
$1.70
Step-by-step explanation:
To figure out how much each apple costs, divide $1.50 by the quantity of apples (6). The answer to that is $0.25, so multiply it by the two apples to get $0.50.
For the oranges, divide $3 by 5. The answer for that is $0.60. Multiply that by the two oranges to get $1.20.
Then, add $0.50 to $1.20 to get a total of $1.70
Answer:
$1.70
Step-by-step explanation:
We know that you can buy 6 apples for $1.50 and 5 oranges for $3.00. So let's look at the cost for one individual apple first.
To find the amount/apple we can divide $1.50 by 6. Here's another way to look at it:
Assume A is cost per apple.
6A = $1.50
6A/6 = $1.50/6
A = $0.25
Now to find the amount for 2 apples, you want to multiply the amount it costs for one apple by 2, because you are multiplying the quantity by 2 as well.
A= $0.25
A *2 = $0.25 * 2
2A = $0.50
So for two apples, it is 50 cents.
We can use a similar process for oranges but with a different price and quantity.
Assume R is cost per orange.
5R = $3.00
5R/5 = $3.00/5
R = $0.60
To find the amount for two oranges we multiply the cost by two.
R = $0.60
R*2 = $0.60*2
2R = $1.20
Finally, we want the total amount for apples AND oranges so we find the sum.
$0.50 + $1.20 = $1.70
Which equation can be used to determine the reference angle
Answer:
2nd option
Step-by-step explanation:
[tex]\frac{7\pi }{12}[/tex] is an angle in the second quadrant
Thus to find the reference angle, subtract from π , that is
r = π - θ
what single transformation maps triangle ABC onto A’B’C?
Answer:
the answer is rotation hope it helps ahhaha
Is the discriminant of g positive, zero, or negative?
You are given the exponential function g(x)=3^x. Which ootion below gives the formula for the new function h created by stretching g by a factor of 3 along the y-axis?
Answer:
h(x) = 3^(x + 1)
Step-by-step explanation:
The exponential function is;
g(x) = 3^(x)
Now, in transformation of exponential functions of say f(x) = b^(x), when the new function g(x) is created by stretching by a factor of say c along the y-axis, we have;
g(x) = c•b^(x)
In this question, we are told it is stretched by a factor of 3 along the y-axis.
Thus, new function h is;
h(x) = 3 × 3^(x)
Using law of indices, we have;
h(x) = 3^(x + 1)
HURRY NEED ASAP TRYNA FINISH SUMMER SCHOOL LOL, I WILL MARK BRAINLIEST :)) PICTURE IS THERE FOR U
Answer:
B.
Step-by-step explanation:
Since the numbers in the root is all the same, lets say [tex]\sqrt{2}[/tex] is a variable.
7x[tex]\sqrt{2}[/tex] - 4[tex]\sqrt{2}[/tex] + x[tex]\sqrt{2}[/tex]
Group with like terms:
7x[tex]\sqrt{2}[/tex] + x[tex]\sqrt{2}[/tex] - 4[tex]\sqrt{2}[/tex]
Combine like terms:
8x[tex]\sqrt{2}[/tex] - 4[tex]\sqrt{2}[/tex]
There you have it! Since all the square roots are the same thing, we can treat them like variables.
the answer is B..................
Work out the area of this circle.
Give your answer in terms ofand state its units.
units:
Submit ANSWEI
6 mm
Plss help due in very soon
Answer:
36π mm²
Step-by-step explanation:
Formula: πr²
r=radius
r=6
π6²=36π
Which set of ordered pairs does not represent a function? \{(5, -9), (6, -6), (-3, 8), (9, -6)\}{(5,−9),(6,−6),(−3,8),(9,−6)} \{(-6, -4), (4, -8), (-6, 9), (1, -3)\}{(−6,−4),(4,−8),(−6,9),(1,−3)} \{(1, -1), (-5, 7), (4, -9), (-9, 7)\}{(1,−1),(−5,7),(4,−9),(−9,7)} \{(8, -9), (-3, -6), (-4, 4), (1, -5)\}{(8,−9),(−3,−6),(−4,4),(1,−5)}
Answer:
[tex]\{(-6, -4), (4, -8), (-6, 9), (1, -3)\}[/tex]
Step-by-step explanation:
Given
[tex]\{(5, -9), (6, -6), (-3, 8), (9, -6)\}[/tex]
[tex]\{(-6, -4), (4, -8), (-6, 9), (1, -3)\}[/tex]
[tex]\{(1, -1), (-5, 7), (4, -9), (-9, 7)\}[/tex]
[tex]\{(8, -9), (-3, -6), (-4, 4), (1, -5)\}[/tex]
Required
Which is not a function
An ordered pair is represented as:
[tex]\{(x_1,y_1),(x_2,y_2),(x_3,y_3),..........,(x_n,y_n)\}[/tex]
However, for the ordered pair to be a function; all the x values must be unique (i.e. not repeated)
From options (a) to (d), option (b) has -6 repeated twice. Hence, it is not a function.
What conversion ratio was skipped in this multiple-step conversion?
Answer:
B
Step-by-step explanation:
B was missed. You have to convert this from hours into minutes before you can deal with seconds.
A man invests $ 16800 in savings plan that pays simple interest at a rate of 5% per annum. Find the Tim’s taken for his investment to grow to $18900
Answer:
2.5 years
Step-by-step explanation:
The given amount invested, which is the principal, P = $16,800
The simple interest rate, R = 5% per annum
The intended total value of the investment, A = $18,900
The simple interest on the principal, I = A - P
∴ I = $18,900 - $16,800 = $2,100
The formula for the simple interest, I, is given as follows;
[tex]I = \dfrac{P \times R \times T}{100}[/tex]
Therefore, we have;
[tex]T = \dfrac{I \times 100}{P \times R}[/tex]
Plugging in the values, gives;
[tex]T = \dfrac{2,100 \times 100}{16,800 \times 5} =2.5[/tex]
The time it will take the investment to grow to $18,900 is T = 2.5 years
When Zero added to any integer, what is the result?
Answer:
answer will be the integer only which was added to zero
Find the measure of the missing angle using the exterior angle sum theorm
Answer:
160=130+x
x=160-130
x=30
find missing side of triangle, help!
Answer:
2√10 km
Step-by-step explanation:
By Pythagoras theorem,
x^2 + 9^2 = 11^2
x^2 + 81 = 121
x^2 = 121 - 81
x^2 = 40
= 4 x 10
x^2 = 2^2 x 10
x = 2√10 km
Find the values of x and y from the following equal ordered pairs. a) (x,-2) = (4,y) b) (3x, 4) = (6, 2y) c) (2x-1, y + 2) = (-1,2) d) (2x + 4, y + 5) = (3x + 3,6) e) (x + y,y + 3) = (6, 2y) f) (x + y, x - y) - (8,0)
Answer:
a)
x=4, y=-2
b)
x=2, y=2
c)
x=0, y=0
d)
x=1, y=1
e)
x=3, y=3
f)
x=4, y=4
Step-by-step explanation:
a) (x,-2) = (4,y)
x=4
y=-2
b) (3x, 4) = (6, 2y)
3x=6 => x=2
2y=4 => y=2
c) (2x-1, y + 2) = (-1,2)
2x-1 =-1 => x=0
y+2 = 2 => y=0
d) (2x + 4, y + 5) = (3x + 3,6)
2x+4 = 3x+3 => x=1
y+5 = 6 => y=1
e) (x + y,y + 3) = (6, 2y)
x+y = 6 => x+3 = 6 => x=3
y+3 = 2y => y=3
f) (x + y, x - y) - (8,0)
x+y = 8 => 2x=8 => x=4
x-y = 0 => x=y => y=4
The equation of line r is y = 1/2 * x + 1 line runs parallel to line r and passes through (2, 5) what would be the equation of line 8 ?help please
Answer:
x - 2y + 8 = 0
Step-by-step explanation:
that is the procedure above
5 + 3bc =
9a + b =
cd + bc =
Answer:
You can't answer these questons
sorry
Hope This Helps!!!
What number line model represents the expression 5 1/2 + (-3)
Answer:
(A)
Step-by-step explanation:
The bottom arrow goes to 5 1/2, and then because adding -3 is the same as subtracting 3, the top arrow correctly goes back 3, resulting in an answer of 2 1/2.
Hope it helps (●'◡'●)
using quadratic equation:
help me solve it
[tex]10x - \frac{1}{x } = 3[/tex]
Answer:
[tex]10x - \frac{1}{x} = 3 \\ 10x = 3 + \frac{1}{x} \\ 10x = \frac{3x + 1}{x} \\ 10x \times x = 3x + 1 \\ 10 {x}^{2} = 3x + 1 \\ 10 {x}^{2} - 3x - 1 = 0 \\ 10 {x}^{2} - 5x + 2x - 1 = 0 \\ 5x(2x - 1) + 1(2x - 1) = 0 \\ (5x + 1)(2x - 1) = 0 \\ \\ 5x + 1 = 0 \\ 5x = - 1 \\ x = \frac{ - 1}{5} \\ \\ 2x - 1 = 0 \\ 2x = 1 \\ x = \frac{1}{2} [/tex]
hope this helps you.
Have a nice day!
What is 8 x 3 + 10 - 13 x 2? Show your work.
Will give first answer brainliest
Hello!
8 × 3 + 10 - 13 × 2 =
= 24 + 10 - 13 × 2 =
= 24 + 10 - 26 =
= 34 - 26 =
= 8
Good luck! :)
Answer:
8
Step-by-step explanation:
According to bdmas rule
First multiply 8 and 3 or 13 and 2
Then, there will be 24 + 10 - 26
Then add 24 + 10, there will be 34
and again minus by 26
Then finally answer will be 8
someone help me please with this algebra problem
Answer:
D.
Step-by-step explanation:
She cannot buy a negative number of notebooks. She can buy 0 notebooks, or 1 notebook, or 2, or 3, etc. The number of notebooks she buys must be a non-negative integer.
Answer: D.
The daily listening audience of an AM radio station is five times as large as that of its FM sister station. If 144,000 people listen to these two radio stations, how many listeners does the FM station have?
Answer:
The number of FM listereners are 24000.
Step-by-step explanation:
Let the listeners of FM are p and thus the istereners of AM are 5p.
According to the question,
p + 5 p = 144000
6 p = 144000
p = 24000
The number of FM listereners are 24000.
A wooden board 27 ft long is cut into two pieces so that the longer piece is 8
times as long as the shorter piece. Find the lengths of the two pieces.
Answer:
3ft and 24 ft.
Step-by-step explanation:
Let the length of the shorter piece be xThe longer piece is 8 times as long as shorter piece
therefore,
Length of longer piece = 8xTotal length of the wooden board = 27 ft.
27 = longer length + shorter length
27 = x + 8x
27 = 9x
dividing both sided by 9
3 = x
since x was the length of the shorter piece
shorter piece is 3 ft. long
and the longer piece was equal to 8x
longer piece is 24 ft. long
can anyone help me here asapp,, I am in this question for nearly an hour
Answer:
See below
Step-by-step explanation:
Let side AB equal x. Since triangle ABC is equilateral, sides AB, BC, and Ac are all the same length, x. In any isosceles triangle(equilateral is a type of isosceles triangle) the median is the same as the altitude and angle bisector. This means we can say that AD is also a median. A median splits a side into two equal sections, so we can say BD = DC = x / 2. We are given that DC = CE, so we can also say CE = DC = x / 2. Now, we can use the pythagorean theorem to find the length of AD. So we get the equation:
AB^2 - BD^2 = AD^2
We have the values of AB and BD, so we can substitute them and solve for AD:
x^2 - (x/2)^2 = AD^2
x^2 - x^2 / 4 = AD^2
AD^2 = 3x^2 / 4
AD = x√3 / 2
DE is equal to the sum of DC and CE because of segment addition postulate, so we can say DE = DC + CE = x / 2 + x/ 2 = x. We can again use the pythagorean theorem to find the length of AE:
AD^2 + DE^2 = AE^2
(x√3 / 2)^2 + x^2 = AE^2
3x^2 / 4 + x^2 = AE^2
AE^2 = 7x^2 / 4
AE = x√7 / 2
Now, we know(from before) that AE squared is 7x^2 / 4. We can say EC squared is x^2 / 4 because EC is x / 2 and x / 2 squared is x^2 / 4. We can also notice that AE squared is 7 times EC squared because 7x^2 / 4 = 7 * x^2 / 4
Therefore, we can come to the conclusion AE^2 = 7 EC^2
There is money to send four of nine city council members to a conference in Honolulu. All want to go, so they decide to choose the members to go to the conference by a random process. How many different combinations of four council members can be selected from the nine who want to go to the conference
Answer:
126
Step-by-step explanation:
There are 9 city council members.
We have to choose 4 of them.
We have to use the combination as :
[tex]$^9C_4$[/tex]
where, 9 is the population size
4 is the sample size.
Therefore, the total number of possible samples without replacement is given as :
[tex]$^9C_4=\frac{9!}{4!(9-4)!}$[/tex]
[tex]$=\frac{9!}{5! \ 4!}$[/tex]
[tex]$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}$[/tex]
= 126
Answer qn in attachment
Answer:
[tex]\implies \dfrac{ -4x+7}{2(x-2) }[/tex]
Step-by-step explanation:
The given expression to us is ,
[tex]\implies \dfrac{\frac{ 3}{x-1} -4 }{ 2 -\frac{2}{x-1}}[/tex]
Now take the LCM as ( x - 1 ) and Simplify , we have ,
[tex]\implies \dfrac{\frac{ 3 -4(x-1) }{x-1} }{ \frac{2-2(2x-1)}{x-1}}[/tex]
Simplifying further , we get ,
[tex]\implies \dfrac{ -4x+7}{2(x-2) }[/tex]
Hence the second option is correct .
Step-by-step explanation:
[tex] \frac{ \frac{3}{x - 1} - 4}{2 - \frac{2}{x - 1} } \\ = \frac{ \frac{3 - 4(x - 1)}{x - 1} }{ \frac{2(x - 1) - 2}{x - 1} } \\ = \frac{3 - 4x + 4}{2x - 2 - 2} \\ = \frac{7 - 4x}{2x - 4} = \frac{ - 4x - 7}{2(x - 2)} \\ thank \: you[/tex]
[tex]option \: b \\ thank \: you[/tex]
If z varies jointly as x and y and inversely as w^2?, and
z = 72 when x = 80, y = 30 and
w=5, then find z when x = 20, y = 60 and w=9.
Answer:
Step-by-step explanation:
z = (k*x*y) / w²
Where,
k = constant of proportionality
z = 72 when x = 80, y = 30 and w = 5
z = (k*x*y) / w²
72 = (k * 80 * 30) / 5²
72 = 2400k / 25
Cross product
72 * 25 = 2400k
1800 = 2,400k
k = 2,400/1800
k = 24/18
= 4/3
k = 1 1/3
k = 1.33
find z when x = 20, y = 60 and w=9
z = (k*x*y) / w²
z = (1.33 * 20 * 60) / 9²
z = (1596) / 81
Cross product
81z = 1596
z = 1596/81
z = 19.703703703703
Approximately,
z = 19.7
Someone please help me with this math problem?
Answer:
(C) 0.3(10 + 4h) = 0.25(6h)
Step-by-step explanation:
Here's what we know about Fernando's fees:
$10 is the initial fee
$4 is the hourly fee (h)
Saves 30% (also written as 0.3) of the total cost (includes initial and hourly fee)
Here's what we know about Brenna's fees:
No initial fee
$6 is the hourly fee (h)
Saves 25% (also written as 0.25) of the total cost (just the hourly fee because she doesn't have an initial fee)
We want to find which hour Fernando and Brenna will have saved the same amount of money.
To do this, let's first set up an equation for Fernando and Brenna separately:
Fernando's equation:
0.3(10 + 4h) = how much money he saves from the total cost
Brenna's equation:
0.25(6h) = how much money she saves from the total cost
Now we set them equal to each other:
0.3(10 + 4h) = 0.25(6h)
There's your answer!
Hope it helps (●'◡'●)
Two friends enter a contest. Kelsey scored 200 more points than Jake. Together,
they collected a total of 1250 points. How many points did they each score?
Subtract the amount Kelsey got more than Jake from the total:
1250 - 200 = 1050
Divide by 2:
1050/2 = 525
Jake got 525
Kelsey got 525 + 200 = 725
Six liters of paint will cover 50 square meters. How many square meters will nine liters cover?
Answer:
75 m²Step-by-step explanation:
Six liters of paint will cover 50 square meters.
6L ⇒ 50m²
then,
1L ⇒ 50/6 m²
9L ⇒ 50 × [tex]\frac{9}{6}[/tex] m²
⇒ 75 m²
Find all possible values of α+
β+γ when tanα+tanβ+tanγ = tanαtanβtanγ (-π/2<α<π/2 , -π/2<β<π/2 , -π/2<γ<π/2)
Show your work too. Thank you!
Answer:
[tex]\rm\displaystyle 0,\pm\pi [/tex]
Step-by-step explanation:
please note that to find but α+β+γ in other words the sum of α,β and γ not α,β and γ individually so it's not an equation
===========================
we want to find all possible values of α+β+γ when tanα+tanβ+tanγ = tanαtanβtanγ to do so we can use algebra and trigonometric skills first
cancel tanγ from both sides which yields:
[tex] \rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \alpha ) \tan( \beta ) \tan( \gamma ) - \tan( \gamma ) [/tex]
factor out tanγ:
[tex]\rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \gamma ) (\tan( \alpha ) \tan( \beta ) - 1)[/tex]
divide both sides by tanαtanβ-1 and that yields:
[tex]\rm\displaystyle \tan( \gamma ) = \frac{ \tan( \alpha ) + \tan( \beta ) }{ \tan( \alpha ) \tan( \beta ) - 1}[/tex]
multiply both numerator and denominator by-1 which yields:
[tex]\rm\displaystyle \tan( \gamma ) = - \bigg(\frac{ \tan( \alpha ) + \tan( \beta ) }{ 1 - \tan( \alpha ) \tan( \beta ) } \bigg)[/tex]
recall angle sum indentity of tan:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( \alpha + \beta ) [/tex]
let α+β be t and transform:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( t) [/tex]
remember that tan(t)=tan(t±kπ) so
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm k\pi ) [/tex]
therefore when k is 1 we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm \pi ) [/tex]
remember Opposite Angle identity of tan function i.e -tan(x)=tan(-x) thus
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm \pi ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal which yields:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm \pi [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ \pm \pi }[/tex]
when is 0:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta \pm 0 ) [/tex]
likewise by Opposite Angle Identity we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm 0 ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal therefore:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm 0 [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ 0 }[/tex]
and we're done!
Answer:
-π, 0, and π
Step-by-step explanation:
You can solve for tan y :
tan y (tan a + tan B - 1) = tan a + tan y
Assuming tan a + tan B ≠ 1, we obtain
[tex]tan/y/=-\frac{tan/a/+tan/B/}{1-tan/a/tan/B/} =-tan(a+B)[/tex]
which implies that
y = -a - B + kπ
for some integer k. Thus
a + B + y = kπ
With the stated limitations, we can only have k = 0, k = 1 or k = -1. All cases are possible: we get k = 0 for a = B = y = 0; we get k = 1 when a, B, y are the angles of an acute triangle; and k = - 1 by taking the negatives of the previous cases.
It remains to analyze the case when "tan "a" tan B = 1, which is the same as saying that tan B = cot a = tan(π/2 - a), so
[tex]B=\frac{\pi }{2} - a + k\pi[/tex]
but with the given limitation we must have k = 0, because 0 < π/2 - a < π.
On the other hand we also need "tan "a" + tan B = 0, so B = - a + kπ, but again
k = 0, so we obtain
[tex]\frac{\pi }{2} - a=-a[/tex]
a contradiction.
Use a half angle identity to find the exact value of tan 5pi/12
a. 2+squared3/2
b. 2-squared3/2
C.2+squared 3
D.2-squared3. Please select the best answer from the choices provided
Observe that
5/12 = 1/4 + 1/6
so that
tan(5π/12) = tan(π/4 + π/6)
Then
tan(5π/12) = sin(π/4 + π/6) / cos(π/4 + π/6)
… = (sin(π/4) cos(π/6) + cos(π/4) sin(π/6)) / (cos(π/4) cos(π/6) - sin(π/4) sin(π/6))
… = (cos(π/6) + sin(π/6)) / (cos(π/6) - sin(π/6))
(since sin(π/4) = cos(π/4) = 1/√2)
… = (√3/2 + 1/2) / (√3/2 - 1/2)
… = (√3 + 1) / (√3 - 1)
… = (√3 + 1) / (√3 - 1) × (√3 + 1) / (√3 + 1)
… = (√3 + 1)² / ((√3)² - 1²)
… = ((√3)² + 2√3 + 1²) / (3 - 1)
… = (3 + 2√3 + 1) / 2
… = (4 + 2√3) / 2
… = 2 + √3 … … … (C)
If you insist on using the half-angle identity, recall that
sin²(x) = (1 - cos(2x))/2
cos²(x) = (1 + cos(2x))/2
==> tan²(x) = (1 - cos(2x)) / (1 + cos(2x))
Let x = 5π/12. The angle x lies in the first quadrant, so we know tan(x) is positive.
==> tan(x) = +√[(1 - cos(2x)) / (1 + cos(2x))]
We also know
cos(2x) = cos(5π/6) = -√3/2
which means
tan(x) = tan(5π/12) = √[(1 - (-√3/2)) / (1 + (-√3/2))]
… = √[(1 + √3/2) / (1 - √3/2)]
… = √[(2 + √3) / (2 - √3)]
… = √[(2 + √3) / (2 - √3) × (2 + √3) / (2 + √3)]
… = √[(2 + √3)² / (2² - (√3)²)]
… = √[(2 + √3)² / (4 - 3)]
… = √[(2 + √3)²]
… = 2 + √3