Answer:
NH4Cl > Li2SO4 > CoCl3
Explanation:
Let us recall that the freezing point depression depends on the molality of the solution and the number of particles present.
Let us also recall that freezing point depression is a colligative property. It depends on the number of particles present in solution.
Usually, the more the number of particles present, the lower the freezing point. Hence, NH4Cl which has only two particles will have the highest freezing point while CoCl3 which has four particles will have the lowest freezing point.
For an atoms electrons, how many energy sublevels are present in the principal energy level n = 4?
A. 4
B. 9
C. 10
D. 16
E. 32
Answer:
by the own's formula energy sublevels are 2 the power of n or principal quantum number this means 2 the power of 4 equal to 32
Select the choice that best completes the following sentence: When cooled slowly, transformations near the melting temperature tend to yield ______ grains due to the formation of ______ nucleation sites followed by ______ grain growth.
Question Completion with Options:
O coarse...few...rapid
O fine...few...slow
O fine...multiple...rapid
O coarse...few...slow
O fine...multiple...slow
Answer:
The choice that best completes the sentence is:
O coarse...few...slow
Explanation:
Transformations near the melting temperature develop coarse grains because few nucleation sites are formed and the rate of the grain growth is usually slow. This is because of the process that starts with recrystallization, recovery, and nucleation before growth can occur. While recrystallization enables the grain to increase in size at high temperature, nucleation gives the grain the energy to irreversibly grow into larger-sized nucleus.
which of the following is indicated by the ph value of a solution?
a- it's hydrogen ion concentration
b- its ammonium ion concentration
c- ability to undergo chemical reaction
d- its ratio of solute amount to solvent volume
Answer:
c- ability to undergo chemical reaction
name a factor tht affects the value of electron affinity
Answer:
Atomic sizeNuclear chargesymmetry of the electronic configurationthe nutrition label on rice lists the amounts of protein, carbohydrates and fats in one serving. these substances are important for human nutrition
Answer:
Carbohydrates, proteins, and fats are biological macromolecules that are made up of chemical elements which are inherent to chemistry.
Chemistry explain how these macromolecules are bonded together at the molecular level and give an explanation for their behavior.
Explanation:
State the different radiations emitted by radioactive elements.
1. Draw the condensed structural formula of sodium benzoate showing all charges, atoms including any lone pairs in the side chain functional group, and all sigma and pi bonds.
2. Draw the condensed structural formula of benzoic acid showing all atoms including any lone pairs in the side chain functional group, and all sigma and pi bonds. Indicate the acidic hydrogen.
3. Draw the condensed structural formula of tetrahydrofuran (THF) showing all heteroatoms plus their lone pairs and all sigma and pi bonds.
The structures are shown in the image attached.
A structural formula is the representation of the molecule in which all atoms and bonds in the molecule are shown.
Since the question requires that all the lone pairs, formal charges and sigma and pi bonds should be shown, then the simple condensed structural formula becomes insufficient in this case.
I have attached images of the structural formula of sodium benzoate (image 1), benzoic acid (image 2) and tetrahydrofuran (image 3).
All the formal charges, lone pairs as well as sigma and pi bonds are fully shown.
https://brainly.com/question/9988658
Which redox reaction would most likely occur if silver and copper metal were added to a solution that contained silver and copper ions?
A. Cu + Agt Cu2+ + 2Ag
B. Cu2+ + 2Ag* → Cu + 2Ag
C. Cu2+ + 2Ag → Cu + 2Ag+
D. Cu + 2Ag Cu²+ + 2Ag+
give the wrong answer and I'm reporting
Answer:
B
Explanation:
b/c copper is readuction agent
The most likely redox reaction that would occur if silver and copper metal were added to a solution that contained silver and copper ions is [tex]\rm Cu^{2+} + 2Ag \rightarrow Cu + 2Ag^+[/tex]. The correct answer is option C.
Redox reaction is a reaction in which reduction and oxidation takes place simultaneously.
In this reaction:
[tex]\rm Cu^{2+} + 2Ag \rightarrow Cu + 2Ag^+[/tex]
Copper metal has a higher reduction potential than silver metal, which means that it will be oxidized to [tex]\rm Cu^{2+}[/tex] ions before silver metal is oxidized to [tex]\rm Ag^+[/tex] ions.
The [tex]\rm Cu^{2+}[/tex] ions in the solution will then react with the silver metal to form [tex]\rm Ag^+[/tex] ions and Copper metal. This reaction is an example of a displacement reaction, where a more reactive metal removes a less reactive metal from its compound.
Therefore, option C. [tex]\rm Cu^{2+} + 2Ag \rightarrow Cu + 2Ag^+[/tex] is the correct answer.
Learn more about Redox reaction here:
https://brainly.com/question/28300253
#SPJ5
A reaction rate increases by a factor of 500. in the presence of a catalyst at 37oC. The activation energy of the original pathway is 106 kJ/mol. What is the activation energy of the new pathway, all other factor being equal
Answer:
[tex]E_2=999984KJ/mole[/tex]
Explanation:
From the question we are told that:
Factor [tex]dK=500[/tex]
Temperature [tex]T=37 C=310k[/tex]
Activation energy [tex]E=10^6kJ/mol[/tex]
Generally the Arhenius equation is mathematically given by
[tex]ln \frac{K_2}{K_1}=\frac{ E_1-E_2}{RT}[/tex]
Where
[tex]\frac{K_2}{K_1}=500[/tex]
[tex]ln 500=\frac{ 10^6-10^3-E_2}{8.314*310}[/tex]
[tex]E_2=999984KJ/mole[/tex]
The activation energy of the new reaction is 105.99 kJ/mol.
Using the Arrhenius equation;
ln(k2/k1) = -Ea2/RT2 + Ea1/RT1
Now, from the information in the question;
k2/k1 = 500
Ea = ?
R = 8.314 JKmol-1
T2 = 37oC + 273 = 310 K
T1 = 37oC + 273 = 310 K
Substituting values;
ln (500) =- Ea2 + Ea1
6.2 = -Ea2 + 106 × 10^3 J
Ea = 106 × 10^3 J - 6.2
Ea = 105.99 × 10^3 J or 105.99 kJ/mol
Learn more about activation energy: https://brainly.com/question/11334504
11 Explain how you would obtain solid lead carbonate from a mixture of lead carbonate and sodium chloride
Explanation:
Add water, Na2CO3 dissolves, filter, PbCO3 stays in the paper and dissolved Na2CO3 goes through as the solution. Dry the PbCO3 and you have the dry solid.
OR
Add water to dissolve then filter to obtain PbCo3 as you're residue and Na2Co3 as the filtrate. Dry the insoluble PbCo3 between filter papers and you obtain solid PbCo3
Consider the following reaction:
Cr(NO3)3 (aq) + 2NaF (aq) --> 3NaNO3 (aq) + CrF3 (s)
If 21.0 grams of NaF are needed to precipitate all of the Cr+3 ions present in 0.125L of a solution of Cr(NO3)3, what is the molarity of the Cr(NO3)3 solution?
Your answer should be to 2 decimal places.
Answer:
2.01
Explanation:
First, let's convert grams to moles
(Na) 22.99 + (F) 18.998 = 41.988
Every mole of NaF is 41.988 grams
21/41.988 = 0.500143 moles of NaF
For every Cr+3, we will need 2 NaF, so Cr+3 will be half of NaF
0.500143/2 = 0.250071
molarity = moles/liters
0.250071/0.125 = 2.0057 M
Which one of the following is not matches the organelle with its function
Answer:
rip there isnt a photo
Explanation:
i do know a lot about cells tho lol
Calculate the percent error in the atomic weight if the mass of a Cu electrode increased by 0.4391 g and 6.238x10-3 moles of Cu was produced. Select the response with the correct Significant figures. You may assume the molar mass of elemental copper is 63.546 g/mol. Refer to Appendix D as a guide for this calculation.
Answer:
10.77%
Explanation:
Molar mass of Cu = mass deposited/number of moles of Cu
Molar mass of Cu = 0.4391 g/6.238x10^-3 moles
Molar mass of Cu = 70.391 g/mol
%error = 70.391 g/mol - 63.546 g/mol/63.546 g/mol × 100
%error = 10.77%
5. Calcule las concentraciones cuando se alcanza el equilibrio si partimos de unas concentraciones iniciales [A]=[B]=1M ; [C]=[D]=0M y una constante de equilibrio de 5.
Las concentraciones en el equilibrio para la reacción química presentada son:
[tex][A] = [B] = 1-x = 1-0.69 = 0.31 M\\[C] = [D] = x = 0.69 M[/tex]
Consideremos la siguiente reacción química genérica:
A + B ⇄ C + D
Para calcular las concentraciones en el equilibrio, debemos construir una Tabla ICE. Cada fila representa una instancia (Inicial, Cambio, Equilibrio) y la completamos con la concentración o cambio de concentración ("x" para concentraciones desconocidas). Como inicialmente no hay productos, la reacción se desplazará hacia la derecha para alcanzar el equilibrio.
A + B ⇄ C + D
I 1 1 0 0
C -x -x +x +x
E 1-x 1-x x x
La constante de equilibrio, Kc, es:
[tex]Kc = 5 = \frac{[C][D]}{[A][B]} = \frac{x^{2} }{(1-x)^{2} } \\\sqrt{5} = x/1-x\\x = 0.69[/tex]
Las concentraciones en el equilibrio son:
[tex][A] = [B] = 1-x = 1-0.69 = 0.31 M\\[C] = [D] = x = 0.69 M[/tex]
Puedes aprender más sobre equilibrio químico aquí: https://brainly.com/question/21632386
Which subshells are found in each of the following shells
electron subshell - M shell
Answer:
3
Explanation:
The electron shells are labelled as K,L,M,N,O,P, and Q or 1,2,3,4,5,6, and 7.
As we go from innermost shell outwards, this number denotes the number of subshell in the shell. Electrons in outer shells have higher average energy and travel farther from the nucleus than those in inner shells.
Hence, M shell contains s,p and d subshells.
Assuming a mixture of equal volumes of o xylene and cyclohexane,which of these will distill off first?
Sally has constructed a concentration cell to measure Ksp for MCln. She constructs the cell by adding 2 mL of 0.05 M M(NO3)n to one compartment of the microwell plate. She then makes a solution of MCln by adding KCl to M(NO3)n. She adds 7.903 mL of the resulting mixture to a second compartment of the microwell plate. Sally knows n = +2. She has already calculated [Mn+] in the prepared MCln solution using the Nernst equation. [Mn+] = 8.279 M
Required:
How many moles of [Cl-] must be dissolved in that compartment?
Answer:
0.1309 mol
Explanation:
From the given information:
The metal ion, two ions of [tex]M^{+}[/tex] reacted with Cl⁻ to form [tex]MCl_n[/tex] i.e. the compound formed is [tex]MCl_2[/tex].
The concentration of the metal ion formed [tex][M^+][/tex] = 8.279 M
The concentration of the chlorine ion formed [tex][Cl^-][/tex] = 2 × 8.279 M
= 16.558 M
∴
We know that:
[tex]\mathsf{Molarity = \dfrac{no \ of \ moles }{volume (mL)}}[/tex]
The number of moles of [tex][Cl^-][/tex] = [tex]16.558 \ mol.L^{-1} \times 7.903 \ mL \times \dfrac{1 \ L}{1000 \ mL}[/tex]
= 0.1309 mol
When comparing Be2 and H2:
I. Be2 is more stable because it contains both bonding and antibonding valence electrons.
II. H2 has a higher bond order than Be2.
III. H2 is more stable because it only contains 1s electrons.
IV. H2 is more stable because it is diamagnetic, whereas Be2 is paramagnetic
a. II,III,IV
b.II,III
c.III only
d.I,II
e.III,IV.
Answer:
The answer is "Option b".
Explanation:
H2 does have bond energy of 1, while Be2 has a covalent bond of zero. Be2 has eight electrons, each of which dwells in a distinct orbital. As just a result, four of them are linked molecular orbitals and two are antibonding molecular orbitals, respectively. As just a result, this molecule is unstable. This chemical orbital, with a bond order of 1, has just two electrons. As a result, it is a very solid substance. H2's bond length is higher than Be2's. Since it only has one electron, H2 is more stable than that of other compounds.
An antacid tablet weighing 1.30g was fully neutralized at 42.00 mL(an excess amount) of 0.250MHCl. 10.00 mL of 0.100 M NaOH was then used to back titrate the excess HCl. How many moles of acid did the antacid neutralize
Answer:
0.0095 moles of acid were neutralized by the antiacid
Explanation:
The antiacid is a base that neutralize the acid in stomach. To find the moles of acid neutralized we need to find the moles of acid added initially. This acid is added in excess, then, the moles of NaOH added reacts to neutralize the moles of acid in excess. The difference between initial moles of HCl and moles of NaOH needed to titrate the excess = Moles of HCl that were neturalized by the antiacid as follows:
Moles HCl added:
42.00mL = 0.04200L * (0.250mol/L) = 0.0105 moles HCl
Moles NaOH to titrate the excess:
10.00mL = 0.01000L * (0.10mol/L) = 0.0010 moles NaOH = Moles HCl in excess.
Moles of acid that were neutralized:
0.0105 moles - 0.0010 moles =
0.0095 moles of acid were neutralized by the antiacidCalculate the molarity of a solution consisting of 65.5 g of K2S0 4 in 5.00 L of solution.
Answer:
Molarity is 0.075 M.
Explanation:
Moles:
[tex]{ \tt{ = \frac{65.5}{RFM} }}[/tex]
RFM of potassium sulphate :
[tex]{ \tt{ = (39 \times 2) + 32 + (16 \times 4)}} \\ = 174 \: g[/tex]
substitute:
[tex]{ \tt{moles = \frac{65.5}{174} = 0.376 \: moles}}[/tex]
In volume of 5.00 l:
[tex]{ \tt{5.00 \: l = 0.376 \: moles}} \\ { \tt{1 \: l = ( \frac{0.376}{5.00} ) \: moles}} \\ { \tt{molarity = 0.075 \: mol \: l {}^{ - 1} }}[/tex]
What is the energy of a photon emitted with a wavelength of 654 nm?
O A. 3.04 x 10^-19 J
O B. 1.01 * 10^-27 J
O C. 1.30 x 10^-22 J
O D. 4.33 * 10^-22 J
Answer:
A. 3.04×10^-19J
Explanation:
Hope this will help you.
calculate the volume of 20.5g of oxygen occupied at standard temperature and pressure.what the volume
Answer :
volume of a gas = weight * 22.4 l / gram molecular weight
volume of o2 = ?
weight given = 20.5 g
gram molecular weight of oxygen = 32 (because of 2 oxygen atoms )
volume of oxygen = 20.5 * 22.4 / 32
volume of oxygen = 14.35 liters
Explanation:
hope this helps you
if wrong just correct me
How many grams of magnesium chloride can be produced from 2.30 moles of chlorine gas reacting w excess magnesium Mg(s)+Cl2(g)->MgCl2(s)
The mass of magnesium chloride produced from 2.30 moles of chlorine gas is 218.99 grams.
How to calculate moles in stoichiometry?Stoichiometry refers to the study and calculation of quantitative (measurable) relationships of the reactants and products in chemical reactions.
According to this question, magnesium reacts with chlorine gas to form magnesium chloride as follows:
Mg + Cl₂ → MgCl₂
Based on the above chemical equation, 1 mole of chlorine gas forms 1 mole of magnesium chloride.
This means that 2.30 moles of chlorine gas will 2.30 moles of magnesium chloride.
Next, we convert moles of magnesium chloride to mass as follows:
molar mass of magnesium chloride = 95.211g/mol
mass of magnesium chloride = 95.211 × 2.30 = 218.99 grams.
Therefore, 218.99 grams of magnesium chloride will be formed.
Learn more about stoichiometry at: https://brainly.com/question/9743981
#SPJ1
Van der Waals forces hold molecules together by: A. moving electrons from one molecule to another. B. attracting a lone pair of electrons to the positive charge of a hydrogen. C. inducing temporary dipoles that attract each other. D. sharing electrons between atoms.
Van der Waals forces hold molecules together by inducing temporary dipoles that attract each other. That is option C
Van Der Waals forces are example of those intermolecular forces which are weaker than ionic and covalent bonds that exists between molecules.
Van Der Waals forces was postulated by a Dutch physicist known as Van Der Waals. He postulated the existence of weak, short-range forces of attraction, which are independent of normal bonding forces, between non-polar molecules. He came to this conclusion after studying the of real gases at low temperatures and high pressures that:
electrons in a non-polar molecule such as hydrogen are close to one nucleus as to the other, although momentary concentration at one end of the molecule may occur, this momentary concentration of electron cloud on one side create a temporary dipole in the hydrogen molecule, that is, one side of the molecule acquires a partial negative charge while the other side acquires a partial positive charge of equal magnitude, the temporary dipole induces a similar dipole in an adjacent behavior molecule, this results in a temporary dipole-induced dipole attraction between the positive and negative ends of the adjacent molecules.This is how weak Van Der Waals forces are set up. Therefore, option C is CORRECT
Learn more here:
https://brainly.com/question/11457190
6. Who stated that matter is not composed of particles
After careful consideration your answer is...
Leucippus and Democritus
*Hope I helped*
~Alanna~
Answer:
The first theories of matter were put forward by Empedocles in 450 BC, he proposed that all matter was composed of four elements - Earth, air, fire and water. Later, Leucippus and Democritus suggested matter was made up of tiny indestructible particles continuously moving in empty space.
Explanation:
Another method for creating a buffer, in situ, is to add an appropriate amount of a strong base, e.g., NaOH, to a weak acid OR add an appropriate amount of a strong acid, e.g., HNO3, to a weak base. As an example, mixing 1.0 mol of acetic acid with 0.5 mol of NaOH will result in a buffer solution with 0.5 mol of acetic acid and 0.5 mol of acetate. The acetate is created by the reaction of acetic acid and the strong base, hydroxide. Given this information, which of the following, when mixed with the appropriate amount of HCl, would create a buffer solution?
a. HNO3
b. HClO2
c. LiCl
d. NH3
Answer:
As an example, mixing 1.0 mol of acetic acid with 0.5 mol of NaOH will result in a buffer solution with 0.5 mol of acetic acid and 0.5 mol of acetate. The acetate is created by the reaction of acetic acid and the strong base, hydroxide.
When HClO2 is mixed with the appropriate amount of HCl it would create a buffer solution. That is option B.
Methods used to form buffer solutionA buffer solution is the solution that resists a change in pH of a solution when acid or base is added because it is made up of weak acid and the conjugate base or weak base and the conjugate acid.
The methods that can be used to form a buffer solution include:
Adding a strong base to a weak acid: For example, mixing 1.0 mol of acetic acid with 0.5 mol of NaOH will result in a buffer solution with 0.5 mol of acetic acid and 0.5 mol of acetate.Adding a weak acid to a conjugate base: For example HCl is a strong acid which will react with a conjugate base such as HClO2.Although HCl is a strong acid, it can be converted to a weak acid through dilution with water. It is in this context that it can be used to form a buffer solution.
Learn more about buffer solution here:
https://brainly.com/question/26416276
Calculate the pH of each solution.
A. 0.18 M CH3NH2
B. 0.18 M CH3NH3Cl
C. a mixture of 0.18 M CH3NH2 and 0.18 M CH3NH3Cl
Answer:
See Explanations
Explanation:
pH =-log[H₃O⁺] = -log[H⁺]
pOH = -log[OH⁻]
For weak acids [H⁺] = SqrRt(Ka·[Acid])
For weak bases [OH⁻] = SqrRt(Kb·[Base])
pH + pOH = 14
__________________________________________
A. Given 0.18M CH₃NH₂; Kb = (4.4 x 10⁻⁴)* => pH = 11.95
CH₃NH₂ + H₂O => CH₃NH₃OH ⇄ CH₃NH₃⁺ + OH⁻;
[OH⁻] = SqrRt(Kb·[weak base]) = SqrRt(4.4 x 10⁻⁴ x 0.18)M = 8.97 x 10⁻³M
=> pOH = -log[OH⁻] = -log(8.93x10⁻³) = -(-2.05) = 2.05
=> pH = 14 - pOH = 14 - 2.05 = 11.95.
*Kb values for most ammonia derivatives in water can be found online by searching 'Kb-values for weak bases'. Kb-values for methyl amine and methylammonium chloride are both 4.4x10⁻⁴.
___________________________________________________
B. Given 0.18M CH₃NH₃Cl
In water ... CH₃NH₃Cl => CH₃NH₃⁺ + Cl⁻; Kb(CH₃NH₃Cl) = 4.4 x 10⁻⁴
Cl⁻ + H₂O => No Rxn (i.e.; no hydrolysis occurs) ... Cl⁻ does not react with H₂O.
Hydrolysis Reaction of Methylammonium Ion:
CH₃NH₃⁺ + H₂O => CH₃NH₄OH ⇄ CH₃NH₄⁺ + OH⁻
Ka' x Kb = Kw => Ka' = Kw/Kb = 10⁻¹⁴/4.4 x 10⁻⁴ = 2.27 x 10⁻¹¹ Ka' = [CH₃NH₄⁺][OH⁻]/[CH₃NH₄OH] = (x)(x)/(0.18M) = (x²/0.18M) = 2.27 x 10⁻¹¹ => x = [OH⁻] = SqrRt(2.27x10⁻¹¹ x 0.18)M = 2.02 x 10⁻⁶M => pOH = -log(2.02 x 10⁻⁶) = -(-5.69) = 5.69 => pH = 14 - pOH = 14 - 5.69 = 8.31.
*note => the general nature of halide interactions would increase acidity (lower pH) of the halogenated compound.
C. A mixture of 0.18M CH₃NH₂ and 0.18M CH₃NH₃Cl
Mixture of 0.18M CH₃NH₂ + 0.18M CH₃NH₃Cl
In Water ...
=> 0.18M CH₃NH₃OH + 0.18M CH₃NH₃Cl
=> 0.18M CH₃NH₃⁺ + 0.1M OH⁻ + 0.18M CH₃NH₃⁺ + 0.18M Cl⁻
=> 0.36M CH₃NH₃⁺ + 0.18M OH⁻ + 0.18M Cl⁻
-----------------------------------------------------------
Ka'(CH₃NH₃⁺) x Kb(CH₃NH₂) = Kw => Ka'(CH₃NH₃⁺) = Kw/Kb(CH₃NH₂)
=> Ka'(CH₃NH₃⁺) = (10⁻¹⁴/4.4x10⁻⁴) = 2.27x10⁻¹¹
----------------------------------------------------------
From the 0.36M CH₃NH₃⁺
=> CH₃NH₃⁺ + H₂O ⇄ CH₃NH₄⁺ + OH⁻
C(eq) 0.36M ---- x x (<= at equilibrium after mixing)
Ka'(CH₃NH₃⁺) = [CH₃NH₄⁺][OH⁻]/[CH₃NH₃⁺] = x²/(0.36M)
=> x = [OH⁻] = SqrRt(Ka'(CH₃NH₃⁺)·0.36M) = SqrRt(2.27x10⁻¹¹/0.36) = 0.0126M
=> Total [OH⁻] = 0.0126M + 0.18M = 0.1926M from hydrolysis process
=> final solution mix is therefore, 0.1926M in OH⁻ + 0.18M in Cl⁻
--------------------------------------------------------
Cl⁻ + H₂O => No Rxn (Cl⁻ does not react with H₂O)The 0.1926M in OH⁻ => [H⁺] = Kw/[OH⁻] = (10⁻¹⁴/0.1926)M = 5.192 x 10⁻¹⁴M in H₃O⁺ ions (= H⁺ ions) ...∴pH = -log[H⁺] = -log(5.192x10⁻¹⁴) = -(-13.29) = 13.29 for solution mix
The acid and base dissociation constant and the 0.18 M of CH₃NH₂ and
CH₃NH₃Cl and the mixture give the following approximate values;
A. The pH value of the 0.18 M CH₃NH₂ is 11.93
B. The pH value of the 0.18 M CH₃NH₃Cl is 5.69
C. The pH value of the mixture is 10.644
Which method can be used to calculate the pH values?A. 0.18 M CH₃NH₂
The solution is presented as follows;
CH₃NH₂ + H₂O → CH₃NH₃⁺ + OH⁻
Let x represent the number of moles of CH₃NH₃⁺ and OH⁻ produced, we
have;
The number of moles of CH₃NH₂ remaining = 0.18 - x
Which gives;
[tex]K_b = \mathbf{\dfrac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}}[/tex]
[tex]K_b[/tex] for CH₃NH₂ = 4.167 × 10⁻⁴
Therefore;
[tex]4.167 \times 10^{-4} = \mathbf{\dfrac{x \times x}{0.18 - x}}[/tex]
4.167 × 10⁻⁴ × (0.18 - x) = x²
4.167 × 10⁻⁴ × (0.18 - x) - x² = 0
Which gives;
x = [OH⁻] = 8.455 × 10⁻³
pH = 14 + log[OH⁻]
Which gives;
pH = 14 + log(8.455 × 10⁻³) ≈ 11.93
B. 0.18 M CH₃NH₃Cl
The solution is presented as follows;
CH₃NH₃⁺ → CH₃NH₂ + H⁺
Let x represent the number of moles of CH₃NH₂ and H⁺ produced,
respectively, we have;
The number of moles of CH₃NH₃⁺ remaining = 0.18 - x
Which gives;
[tex]K_a = \mathbf{\dfrac{[CH_3NH_2][H^+]}{[CH_3NH_3^+]}}[/tex]
Kₐ for CH₃NH₃Cl = 2.27 × 10⁻¹¹
Therefore;
[tex]2.27\times 10^{-11} = \dfrac{x \times x}{0.18 - x}[/tex]
2.27 × 10⁻¹¹ × (0.18 - x) = x²
2.27 × 10⁻¹¹ × (0.18 - x) - x² = 0
Which gives;
x = [H⁺] ≈ 2.02 × 10⁻⁶
pH = -log[H⁺]
Which gives;
pH = -log(2.02 × 10⁻⁶) ≈ 5.69
C. For the mixture of 0.18 M CH₃NH₂ and 0.18 M of CH₃NH₃Cl, we have;
Based on the Henderson-Hasselbalch equation, we have;
[tex]pH = \mathbf{ pKa + log\dfrac{[Conjugate \ base]}{[acid ]}}[/tex]
Which gives;
[tex]pH = -log\left(2.27 \times 10^{-11} \right)+ log\dfrac{0.18}{0.18} \approx \underline{10.644}[/tex]
Learn more about Henderson-Hasselbalch equation here:
https://brainly.com/question/13651361
What is the molarity of a solution that contains 0.75 mol Naci in 3.0 L of solution? Select one: O a. 4.0 M O b. 2.3 M O d. 3.8 M O d. 0.25 M Clear my choice
Answer:
[tex]\boxed {\boxed {\sf D. \ 0.25 \ M}}[/tex]
Explanation:
Molarity is a measure of concentration in moles per liter.
[tex]molarity= \frac{moles \ of \ solute}{ liters \ of \ solution}[/tex]
The solution contains 0.75 moles of sodium chloride and has a volume of 3.0 liters.
moles of solute = 0.75 mol NaCl liters of solution = 3.0 LSubstitute these values into the formula.
[tex]molarity= \frac{ 0.75 \ mol \ NaCl}{3.0 \ L}[/tex]
[tex]molarity= 0.25 \ mol \ NaCl/L[/tex]
Molarity has the molar (M) as its unit. 1 molar is equal to 1 mole per liter.
[tex]molarity= 0.25 \ M \[/tex]
The molarity of the solution is 0.25 Molar and Choice D is correct.
Consider the chemical reaction: N2 3H2 yields 2NH3. If the concentration of the reactant H2 was increased from 1.0 x 10-2 M to 2.5 x 10-1 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.
In this equilibrium, the chemical system will shift to the right in order to produce more NH₃.
The equilibrium constant of a reaction is defined as:
"The ratio between equilibrium concentrations of products powered to their reaction quotient and equilibrium concentration of reactants powered to thier reaction quotient".
The reaction quotient, Q, has the same algebraic expressions but use the actual concentrations of reactants.
To solve this question we need this additional information:
For this reaction, K = 6.0x10⁻² and the initial concentrations of the reactants are:
[N₂] = 4.0M; [NH₃] = 1.0x10⁻⁴M and [H₂] = 1.0x10⁻²M
Thus, for the reaction:
N₂ + 3H₂ ⇄ 2NH₃
The equilibrium constant, K, of this reaction, is defined as:
[tex]K = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where [] are concentrations in equilibrium.
And Q, is:
[tex]Q = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where actual concentrations are:
[NH₃] = 1.0x10⁻⁴M
[N₂] = 4.0M
[H₂] = 2.5x10⁻¹M
Replacing:
Q = 1.6x10⁻⁷
As Q < K,
The chemical system will shift to the right in order to produce more NH₃
Learn more about chemical equililbrium in:
https://brainly.com/question/24301138
what is the IUPAC name of 2NaOH(s)
Answer:
NaoH= sodium hydroxide