Assuming the probability of a single sample testing positive is 0.15​, find the probability of a positive result for two samples combined into one mixture. Is the probability low enough so that further testing of the individual samples is rarely​ necessary?

Answers

Answer 1

Answer:

[tex]P(Positive\ Mixture) = 0.2775[/tex]

The probability is not low

Step-by-step explanation:

Given

[tex]P(Single\ Positive) = 0.15[/tex]

[tex]n = 2[/tex]

Required

[tex]P(Positive\ Mixture)[/tex]

First, we calculate the probability of single negative using the complement rule

[tex]P(Single\ Negative) = 1 - P(Single\ Positive)[/tex]

[tex]P(Single\ Negative) = 1 - 0.15[/tex]

[tex]P(Single\ Negative) = 0.85[/tex]

[tex]P(Positive\ Mixture)[/tex] is calculated using:

[tex]P(Positive\ Mixture) = 1 - P(All\ Negative)[/tex] ---- i.e. complement rule

So, we have:

[tex]P(Positive\ Mixture) = 1 - 0.85^2[/tex]

[tex]P(Positive\ Mixture) = 1 - 0.7225[/tex]

[tex]P(Positive\ Mixture) = 0.2775[/tex]

Probabilities less than 0.05 are considered low.

So, we can consider that the probability is not low because 0.2775 > 0.05


Related Questions

[tex]\sqrt{25}[/tex]

Answers

Answer:

5

Step-by-step explanation:

Calculate the square root of 25 and get 5.

5 I just thought of what # gets me to 25

how many distinct permutations can be formed using the letters of the word robberies

Answers

Answer:

45360 arrangements

Step-by-step explanation:

Given the word 'robberies'

Number of letters = 9 letters in total

Repeated letters ; r = 2 ; b = 2 ; e = 2

Therefore, the number of distinct arrangement of letters is :

(total letters)! / repeated letters!

The number of distinct arrangement of letters is :

9! / (2! * 2! * 2!) = (9*8*7*6*5*4*3*2*1) / (2*2*2)

362880 / 8 = 45360 arrangements

Analyze the key features of the graph of the quadratic function f(x) = –x^2 + 4x – 3.
1. Does the parabola open up or down?
2. Is the vertex a minimum or a maximum?
3. Identify the axis of symmetry, vertex and the y-intercept of the parabola.

Answers

9514 1404 393

Answer:

downmaximumx=2; (2, 1), -3

Step-by-step explanation:

1. The negative leading coefficient (-2) tells you the parabola opens downward.

__

2. The fact that the parabola opens downward tells you the vertex is a maximum.

__

3. For quadratic ax^2 +bx +c, the axis of symmetry is x = -b/(2a). For this parabola, that is x = -4/(2(-1)) = 2. The y-value of the vertex is f(2) = -2^2+4(2)-3 = -4+8-3 = 1. The y-intercept is the constant, c = -3.

axis of symmetry: x = 2vertex: (2, 1)y-intercept: (0, -3)

You are dealt two cards successively without replacement from a standard deck of 52 playing cards. Find the probability that the first card is a two and the second card is a ten.

Answers

Answer:

[tex]\frac{4}{52} \times \frac{4}{51} = \frac{16}{2652} = 0.00603 = 0.603\%[/tex]

Step-by-step explanation:

There are 52 cards in a standard deck, and there are 4 suits for each card. Therefore there are 4 twos and 4 tens.

At first we have 52 cards to choose from, and we need to get 1 of the 4 twos, therefore the probability is just

[tex]\frac{4}{52}[/tex]

After we've chosen a two, we need to choose one of the 4 tens. But remember that we're now choosing out of a deck of just 51 cards, since one card was removed. Therefore the probability is

[tex]\frac{4}{51}[/tex]

Now to get the total probability we need to multiply the two probabilities together

[tex]\frac{4}{52} \times \frac{4}{51} = \frac{16}{2652} = 0.00603 = 0.603\%[/tex]

The PTA sells 100 tickets for a raffle and puts them in a bowl. They will randomly pull out a ticket for the first prize and then another ticket for the second prize. You have 10 tickets and your friend has 10 tickets. What is the probability that your friend wins the first prize and you win the second prize?

Answers

Jÿïôò śfrtÿ hjkÿï èrï

Triangles ABC and DEF are similar. Find the missing angles.

Answers

Angle A and D are similar
Angle B and E are similar
Angle C and F are similar

So this means they have congruent angles, meaning whichever angles are similar the angles will also be similar.

So since angle A is 62 degrees, angle D is 62 degrees too.

Since angle E is 80 degrees, angle B has to be 80 degrees as well.

All triangles add up to 180 degrees, so to find the angle measure of angle C and F, do:

180-(62+80)
180-142
= 38 degrees

So angles C and F are 38 degrees

Conclusion:
angles A and D: 62 degrees
angles B and E: 80 degrees
angles C and F: 38 degrees

5x-22 3x +105 x minus 22 3 X + 10 ​

Answers

-291x+10

:)))))) Have fun

Solve x∕3 < 5 Question 5 options: A) x ≥ 15 B) x > 15 C) x < 15 D) x ≤ 15

Answers

Answer:

C

Step-by-step explanation:

Given

[tex]\frac{x}{3}[/tex] < 5 ( multiply both sides by 3 to clear the fraction )

x < 15 → C

Police sometimes measure shoe prints at crime scenes so that they can learn something about criminals. Listed below are shoe print​ lengths, foot​ lengths, and heights of males. Construct a​ scatterplot, find the value of the linear correlation coefficient​ r, and find the​ P-value of r. Determine whether there is sufficient evidence to support a claim of linear correlation between the two variables. Based on these​ results, does it appear that police can use a shoe print length to estimate the height of a​ male? Use a significance level of α=0.01

Answers

It does not appear that police can use a shoe print length to estimate the height of a​ male.

The given parameters are:

[tex]\begin{array}{cccccc}{Shoe\ Print} & {28.6} & {29.4} & {32.2} & {32.4} & {27.3} \ \\ Height (cm) & {172.5} & {176.7} & {188.4} & {170.1} & {179.2} \ \end{array}[/tex]

Rewrite as:

[tex]\begin{array}{cccccc}{x} & {28.6} & {29.4} & {32.2} & {32.4} & {27.3} \ \\ y & {172.5} & {176.7} & {188.4} & {170.1} & {179.2} \ \end{array}[/tex]

See attachment for scatter plot

To determine the correlation coefficient, we extend the table as follows:

[tex]\begin{array}{cccccc}{x} & {28.6} & {29.4} & {32.2} & {32.4} & {27.3} & y & {172.5} & {176.7} & {188.4} & {170.1} & {179.2} & x^2 & {817.96} & {864.36} & {1036.84} & {1049.76} & {745.29} & y^2 & {29756.25} & {31222.89} & {35494.56} & {28934.01} & {32112.64} & x \times y & {4933.5} & {5194.98} & {6066.48} & {5511.24} & {4892.16} \ \end{array}[/tex]

The correlation coefficient (r) is:

[tex]r = \frac{\sum(x - \bar x)(y - \bar y)}{\sqrt{SS_x * SS_y}}[/tex]

We have:

[tex]n =5[/tex]

[tex]\sum xy =4933.5+5194.98+6066.48+5511.24+4892.16 =26598.36[/tex]

[tex]\sum x =28.6+29.4+32.2+32.4+27.3=149.9[/tex]

[tex]\sum y =172.5+176.7+188.4+170.1+179.2=886.9[/tex]

[tex]\sum x^2 =817.96+864.36+1036.84+1049.76+745.29=4514.21[/tex]

[tex]\sum y^2 =29756.25+31222.89+35494.56+28934.01+32112.64=157520.35[/tex]

Calculate mean of x and y

[tex]\bar x = \frac{\sum x}{n} = \frac{149.9}{5} = 29.98[/tex]

[tex]\bar y = \frac{\sum y}{n} = \frac{886.9}{5} = 177.38[/tex]

Calculate SSx and SSy

[tex]SS_x = \sum (x - \bar x)^2 =(28.6-29.98)^2 + (29.4-29.98)^2 + (32.2-29.98)^2 + (32.4-29.98)^2 + (27.3-29.98)^2 =20.208[/tex]

[tex]SS_y = \sum (y - \bar x)^2 =(172.5-177.38)^2 + (176.7-177.38)^2 + (188.4-177.38)^2 + (170.1-177.38)^2 + (179.2-177.38)^2 =202.028[/tex]

Calculate [tex]\sum(x - \bar x)(y - \bar y)[/tex]

[tex]\sum(x - \bar x)(y - \bar y) = (28.6-29.98)*(172.5-177.38) + (29.4-29.98)*(176.7-177.38) + (32.2-29.98)*(188.4-177.38) + (32.4-29.98)*(170.1-177.38) + (27.3-29.98) *(179.2-177.38) =9.098[/tex]

So:

[tex]r = \frac{\sum(x - \bar x)(y - \bar y)}{\sqrt{SS_x * SS_y}}[/tex]

[tex]r = \frac{9.098}{\sqrt{20.208 * 202.028}}[/tex]

[tex]r = \frac{9.098}{\sqrt{4082.581824}}[/tex]

[tex]r = \frac{9.098}{63.90}[/tex]

[tex]r = 0.142[/tex]

Calculate test statistic:

[tex]t = \frac{r}{\sqrt{\frac{1 - r^2}{n-2}}}[/tex]

[tex]t = \frac{0.142}{\sqrt{\frac{1 - 0.142^2}{5-2}}}[/tex]

[tex]t = \frac{0.142}{\sqrt{\frac{0.979836}{3}}}[/tex]

[tex]t = \frac{0.142}{\sqrt{0.326612}}[/tex]

[tex]t = \frac{0.142}{0.5715}[/tex]

[tex]t = 0.248[/tex]

Calculate the degrees of freedom

[tex]df = n - 2 = 5 - 2 = 3[/tex]

The [tex]t_{\alpha/2}[/tex] value at:

[tex]df =3[/tex]

[tex]t = 0.248[/tex]

[tex]\alpha = 0.01[/tex]

The value is:

[tex]t_{0.01/2} = \±5.841[/tex]

This means that we reject the null hypothesis if the t value is not between -5.841 and 5.841

We calculate the t value as:

[tex]t = 0.248[/tex]

[tex]-5.841 < 0.248 < 5.841[/tex]

Hence, we do not reject the null hypothesis because they do not appear to have any correlation.

Read more about regression at:

https://brainly.com/question/18405415

Solve. x+y+z=6 3x−2y+2z=2−2x−y+3z=−4

Answers

Answer:

-4?

hope dis helps ^-^

can some0ne help me?

Answers

Answer:

(x - 2)/3

(x - 4)/-5 or (-x + 4)/5

Step-by-step explanation:

this is an inverse function, and to solve an inverse function you would :

swap x and g(x) without bringing the x coefficient with it, just simply swap the variables. Then, solve for g(x), and that's it

the first question's answer is :

g(x) = 3x + 2

x = 3(g(x)) + 2

x - 2 = 3(g(x))

(x - 2)/3 = g(x)

the second one is:

g(x) = 4 - 5x

x = 4 - 5(g(x))

x - 4 = -5(g(x))

(x-4)/-5 = g(x)

g(x) = 3x + 2

y = 3x + 2

x = 3y + 2

3y = x - 2

y = x/3 - 2/3

inverse g(x) = (x - 2) / 3

g(x) = 4 - 5x

y = 4 - 5x

x = 4 - 5y

5y = 4 - x

y = 4/5 - x/5

inverse g(x) = (4 - x) / 5

Answer this question that is given

Answers

Answer:

See explanation

Step-by-step explanation:

2) (10+4) x 2 = 28

3) (13 + 6) x 2 = 38

4) (8+4) x 2 = 24

5) (11+8) x 2 = 38

Answered by Gauthmath

hlo anyone free .... im bo r ed

d​

Answers

Step-by-step explanation:

Excuse me! Who r u? where r u frm? tell me tht frst.

Answer:

Oop

Step-by-step explanation:

I’m bored

The measure of angle tis 60 degrees.
What is the x-coordinate of the point where the
terminal side intersects the unit circle?
1
2
O
O
Isla Isla
2
DONE

Answers

Answer:

Step-by-step explanation:

Not a clear list of options and/or reference frame

Probably     0.5      if angle t is measured from the positive x axis.

Solve this equation for x. Round your answer to the nearest hundredth.
1 = In(x + 7) ​

Answers

Answer:

[tex]\displaystyle x \approx -4.28[/tex]

General Formulas and Concepts:

Pre-Algebra

Equality Properties

Algebra II

Natural logarithms ln and Euler's number e

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle 1 = ln(x + 7)[/tex]

Step 2: Solve for x

[Equality Property] e both sides:                                                                     [tex]\displaystyle e^1 = e^{ln(x + 7)}[/tex]Simplify:                                                                                                             [tex]\displaystyle x + 7 = e[/tex][Equality Property] Isolate x:                                                                            [tex]\displaystyle x = e - 7[/tex]Evaluate:                                                                                                            [tex]\displaystyle x = -4.28172[/tex]

e^1 = x+7

e - 7 = x

x = -4.28

A shop sells a particular of video recorder. Assuming that the weekly demand for the video recorder is a Poisson variable with the mean 3, find the probability that the shop sells. . (a) At least 3 in a week. (b) At most 7 in a week. (c) More than 20 in a month (4 weeks).

Answers

Answer:

a) 0.5768 = 57.68% probability that the shop sells at least 3 in a week.

b) 0.988 = 98.8% probability that the shop sells at most 7 in a week.

c) 0.0104 = 1.04% probability that the shop sells more than 20 in a month.

Step-by-step explanation:

For questions a and b, the Poisson distribution is used, while for question c, the normal approximation is used.

Poisson distribution:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]

In which

x is the number of successes

e = 2.71828 is the Euler number

[tex]\lambda[/tex] is the mean in the given interval.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

The Poisson distribution can be approximated to the normal with [tex]\mu = \lambda, \sigma = \sqrt{\lambda}[/tex], if [tex]\lambda>10[/tex].

Poisson variable with the mean 3

This means that [tex]\lambda= 3[/tex].

(a) At least 3 in a week.

This is [tex]P(X \geq 3)[/tex]. So

[tex]P(X \geq 3) = 1 - P(X < 3)[/tex]

In which:

[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]

Then

[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]

[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]

[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]

So

[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0498 + 0.1494 + 0.2240 = 0.4232[/tex]

[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 1 - 0.4232 = 0.5768[/tex]

0.5768 = 57.68% probability that the shop sells at least 3 in a week.

(b) At most 7 in a week.

This is:

[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)[/tex]

In which

[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]

[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]

[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]

[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]

[tex]P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680[/tex]

[tex]P(X = 5) = \frac{e^{-3}*3^{5}}{(5)!} = 0.1008[/tex]

[tex]P(X = 6) = \frac{e^{-3}*3^{6}}{(6)!} = 0.0504[/tex]

[tex]P(X = 7) = \frac{e^{-3}*3^{7}}{(7)!} = 0.0216[/tex]

Then

[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 + 0.1008 + 0.0504 + 0.0216 = 0.988[/tex]

0.988 = 98.8% probability that the shop sells at most 7 in a week.

(c) More than 20 in a month (4 weeks).

4 weeks, so:

[tex]\mu = \lambda = 4(3) = 12[/tex]

[tex]\sigma = \sqrt{\lambda} = \sqrt{12}[/tex]

The probability, using continuity correction, is P(X > 20 + 0.5) = P(X > 20.5), which is 1 subtracted by the p-value of Z when X = 20.5.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{20 - 12}{\sqrt{12}}[/tex]

[tex]Z = 2.31[/tex]

[tex]Z = 2.31[/tex] has a p-value of 0.9896.

1 - 0.9896 = 0.0104

0.0104 = 1.04% probability that the shop sells more than 20 in a month.

The probability of the selling the video recorders for considered cases are:

P(At least 3 in a week) = 0.5768 approximately.P(At most 7 in a week) = 0.9881 approximately.P( more than 20 in a month) = 0.0839 approximately.

What are some of the properties of Poisson distribution?

Let X ~ Pois(λ)

Then we have:

E(X) = λ = Var(X)

Since standard deviation is square root (positive) of variance,

Thus,

Standard deviation of X = [tex]\sqrt{\lambda}[/tex]

Its probability function is given by

f(k; λ) = Pr(X = k) = [tex]\dfrac{\lambda^{k}e^{-\lambda}}{k!}[/tex]

For this case, let we have:

X = the number of weekly demand of video recorder for the considered shop.

Then, by the given data, we have:

X ~ Pois(λ=3)


Evaluating each event's probability:

Case 1: At least 3 in a week.

[tex]P(X > 3) = 1- P(X \leq 2) = \sum_{i=0}^{2}P(X=i) = \sum_{i=0}^{2} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 3) = 1 - e^{-3} \times \left( 1 + 3 + 9/2\right) \approx 1 - 0.4232 = 0.5768[/tex]

Case 2: At most 7 in a week.

[tex]P(X \leq 7) = \sum_{i=0}^{7}P(X=i) = \sum_{i=0}^{7} \dfrac{3^ie^{-3}}{i!}\\\\P(X \leq 7) = e^{-3} \times \left( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120 + 729/720 + 2187/5040\right)\\\\P(X \leq 7) \approx 0.9881[/tex]

Case 3: More than 20 in a month(4 weeks)

That means more than 5 in a week on average.

[tex]P(X > 5) = 1- P(X \leq 5) =\sum_{i=0}^{5}P(X=i) = \sum_{i=0}^{5} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 5) = 1- e^{-3}( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120)\\\\P(X > 5) \approx 1 - 0.9161 \\ P(X > 5) \approx 0.0839[/tex]


Thus, the probability of the selling the video recorders for considered cases are:

P(At least 3 in a week) = 0.5768 approximately.P(At most 7 in a week) = 0.9881 approximately.P( more than 20 in a month) = 0.0839 approximately.

Learn more about poisson distribution here:

https://brainly.com/question/7879375

please help me on this

Answers

Answer:

Median

Step-by-step explanation:

Using the median to measure central tendency, rather than the mean, is better for a skewed data set.

Since a skewed data set will have either very high or low extreme data points, the mean will be less representative and accurate when measuring central tendency.

Using the median will measure this better because it is not as vulnerable as the mean when there are extreme data points.

So, the answer is the median.

The answer is median his is because the mean value is depend on the correct media

the number of multiples of a given number is infinite ( )​

Answers

Answer:

make an 8 horizontal

oooookkkk

Answer:

TRUE

The number of multiples of a given number is finite is a false statement. The number of multiples of a given number is infinite.

Examples:

Multiples of 2 = 2,4,6,8,10,…..

Multiples of 3 = 3,6,9,12,15,18,…

Multiples of 4 = 4, 8, 12, 16, 120, 24….

∴ The number of multiples of a given number is infinite .

Answer From Gauth Math

Please help!!

Find BD​

Answers

Answer:  [tex]8\sqrt{2}[/tex]

==========================================================

Work Shown:

Focus entirely on triangle ABD (or on triangle BCD; both are identical)

The two legs of this triangle are AB = 8 and AD = 8. The hypotenuse is unknown, so we'll say BD = x.

Apply the pythagorean theorem.

[tex]a^2 + b^2 = c^2\\\\c = \sqrt{a^2 + b^2}\\\\x = \sqrt{8^2 + 8^2}\\\\x = \sqrt{2*8^2}\\\\x = \sqrt{8^2*2}\\\\x = \sqrt{8^2}*\sqrt{2}\\\\x = 8\sqrt{2}\\\\[/tex]

So that's why the diagonal BD is exactly [tex]8\sqrt{2}\\\\[/tex] units long

Side note: [tex]8\sqrt{2} \approx 11.3137[/tex]

A rectangle has a length of 7 in. and a width of 2 in. if the rectangle is enlarged using a scale factor of 1.5, what will be the perimeter of the new rectangle

Answers

Answer:

27 inch

Step-by-step explanation:

Current perimeter=18

New perimeter=18*1.5=27 in

pls help me asap !!!

Answers

Answer:

11

Step-by-step explanation:

Hopefully you can see that this is an isosceles triangle and remembering the inequality theorem of a triangle (4,4,11 triangle cannot exist).  Iso triangle has two side the same length - as well as two angles the same.

The distance between Ali's house and 1 point
college is exactly 135 miles. If she
drove 2/3 of the distance in 135
minutes. What was her average speed
in miles per hour?

Answers

First we have to figure out how long it would take for the full voyage and that would be 135 + (135 x 1/3) and the answer to that would be 135 + 45 = 180 and that means that 180 is the total minutes it would take to travel the whole trip, now we have to calculate average speed which would be 135(distance)/180(time) which would end up being 135 miles/ 3 hours, now we divide the entire equation by 3 which would be 45/1
CONCLUSION ——————————
Ali would be driving 45 miles per hour

Ali's average speed was 40 miles per hour.

What is an average speed?

The total distance traveled is to be divided by the total time consumed brings us the average speed.

How to calculate the average speed of Ali?

The total distance between the college from Ali's house is 135 miles.

She drove 2/3rd of the total distance in 135 minutes.

She drove =135*2/3miles

=90miles.

Ali can drive 90miles in 135 mins.

Therefore, her average speed is: 90*60/135 miles per hour.

=40 miles per hour.

Learn about average speed here :

https://brainly.in/question/14787217

#SPJ2

a farmer needs 5 men to clear his farm in 10 days. How many men will he need if he must finish clearing the farm in two days if they work at the same rate?

Answers

Answer:

25 workers

Step-by-step explanation:

If you like my answer than please mark me brainliest thanks

,

Doyle Company issued $500,000 of 10-year, 7 percent bonds on January 1, 2018. The bonds were issued at face value. Interest is payable in cash on December 31 of each year. Doyle immediately invested the proceeds from the bond issue in land. The land was leased for an annual $125,000 of cash revenue, which was collected on December 31 of each year, beginning December 31, 2018

Answers

Answer:

f

Step-by-step explanation:

Calculus II Question

Identify the function represented by the following power series.

[tex]\sum_{k = 0}^\infty (-1)^k \frac{x^{k + 2}}{4^k}[/tex]

Answers

With some rewriting, you get

[tex]\displaystyle \sum_{k=0}^\infty (-1)^k\frac{x^{k+2}}{4^k} = x^2 \sum_{k=0}^\infty \left(-\frac x4\right)^k[/tex]

Recall that for |x| < 1, you have

[tex]\displaystyle \frac1{1-x} = \sum_{k=0}^\infty x^k[/tex]

So as long as |-x/4| = |x/4| < 1, or |x| < 4, your series converges to

[tex]\displaystyle x^2 \sum_{k=0}^\infty \left(-\frac x4\right)^k = \frac{x^2}{1-\left(-\frac x4\right)} = \frac{x^2}{1+\frac x4} = \boxed{\frac{4x^2}{4+x}}[/tex]

Based on known expressions from Taylor series, the power series [tex]\sum \limits_{k = 0}^{\infty} (-1)^{k}\cdot \frac{x^{k+2}}{4^{k}}[/tex]Taylor series-derived formula of the rational function [tex]\frac{4\cdot x^{2}}{4+x}[/tex].

How to derive a function behind the approximated formula by Taylor series

Taylor series are polynomic approximations used to estimate values both from trascendental and non-trascendental functions. It is commonly used in trigonometric, potential, logarithmic and even rational functions.

In this question we must use series properties and common Taylor series-derived formulas to infer the expression behind the given series. Now we proceed to find the expression:

[tex]\sum \limits_{k = 0}^{\infty} (-1)^{k}\cdot \frac{x^{k+2}}{4^{k}}[/tex]

[tex]x^{2}\cdot \sum\limits_{k = 0}^{\infty} \left(-\frac{x}{4} \right)^{k}[/tex]

[tex]x^{2}\cdot \left(\frac{1}{1+\frac{x}{4} } \right)[/tex]

[tex]\frac{4\cdot x^{2}}{4+x}[/tex]

Based on power and series properties and most common Taylor series- derived formulas, the power series [tex]\sum \limits_{k = 0}^{\infty} (-1)^{k}\cdot \frac{x^{k+2}}{4^{k}}[/tex] represents a Taylor series-derived formula of the rational function [tex]\frac{4\cdot x^{2}}{4+x}[/tex]. [tex]\blacksquare[/tex]

To learn more on Taylor series, we kindly invite to check this verified question: https://brainly.com/question/12800011

Tyler and Gabe went to the arcade and played the same two games, Tyler played five rounds of each game for 30$. Write two equations for the amounts the two boys spent. Then find the cost for one round each game.

Answers

Equations:

1. (30)(5)= 150

2. 30 + 30 + 30 + 30 + 30 = 150

I round:

30 dollars divided by 5 rounds = 6 dollars per round.

The total amount spent by the two boys is $300.

What is algebraic expression?

An expression in mathematics is a combination of terms both constant and variable. For example, we can write the expressions as -

2x + 3y + 5

2z + y

x + 3y

Given is that Tyler and Gabe went to the arcade and played the same two games. Tyler played five rounds of each game for 30$.

We can write the total amount spent by the two boys as -

total amount = 2 x cost of each game x total number of games played

total amount = 2 x 30 x 5

total amount = 10 x 30

total amount = 300

Therefore, the total amount spent by the two boys is $300.

To solve more questions on equivalent expression, visit the link-

https://brainly.com/question/1041084

#SPJ3

Use the commutative law of multiplication to rewrite 67 x 13.

A. 3 X 671
B. 13 x 67
C.6 X 7 X1 X3
D.80

Answers

Answer:

A. 671*3

B. 67*13

C. 3*1*7*6

D. 1*80

190 of 7
6 7 8 9 10
-3
4
5
6
The slope of the line shown in the graph is
and the intercept of the line is

Answers

Answer:slope 2/3

Y-int 6

Step-by-step explanation:

If a normally distributed population has a mean (mu) that equals 100 with a standard deviation (sigma) of 18, what will be the computed z-score with a sample mean (x-bar) of 106 from a sample size of 9?

Answers

Answer:

Z = 1

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Mean (mu) that equals 100 with a standard deviation (sigma) of 18

[tex]\mu = 100, \sigma = 18[/tex]

Sample of 9:

This means that [tex]n = 9, s = \frac{18}{\sqrt{9}} = 6[/tex]

What will be the computed z-score with a sample mean (x-bar) of 106?

This is Z when X = 106. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{106 - 100}{6}[/tex]

[tex]Z = 1[/tex]

So Z = 1 is the answer.

Một công ty sản xuất ván trượt có thể bán một cái ván trượt với giá $60.

Tổng chi phí cho sản xuất bao gồm chi phí cố định là $1200 và chi phí để sản xuất một cái ván trượt là $35.

Nếu công ty đó bán được 80 cái ván trượt thì công ty đó

Answers

can you translate so I can help you out
Other Questions
How many solutions does the system have? x+y=35x+5y=15 Simplify and Determine the coefficient of: Please help. what is cell specicliztion ? What is the equation of the line that passes through the point (3,-7) and has a undefined slope what is the answer for 7 to the negitive second power. Plzzz helppp due at 7:30 What 2 days did he decrease his walking A 207-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force would have to be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.750 rev/s in 2.00 s Solve for a.5a + 2 - 7-8 = 0What is the root? If there is no root, choose none. lYour friend says, "I have some extra money, but I'm not sure if I should save or invest it." What key questions would you ask your friend to help them figure out what to do? 1 Find the surface area of a rectangular prism with a height of 16 feet, a width of 10 feet, and a length of 13 feet.988 ft2996 ft2980 ft21000 ft2 Which of the following is not a component of internal control?AIntegrationBControl activitiesControl environment.DRisk assessment What is the solution to the system of equations below?2x+3y=6x-3y=9 Will give brainliest to correct answer Which is an example of a demander of U.S. currency? Foreign firms that have sold imported goods in the United States, earned U.S. dollars, and are trying to pay expenses incurred in their home countries Foreign investors who wish to make direct investments in the United States economy U.S. tourists leaving to visit other countries U.S. investors who want to make foreign direct investments in other countries U.S. exporting firms that earned foreign currency and are trying to pay U.S.-based expenses The hypotenuse of a right angled triangle is 8 cm more than its shortest side. The third side is 1 cm shorter than the hypotenuse. Find the three sides of ths is triangle. scientists who believe global warming is happening would agree with which of the following statements?(A) There are few, if any, misconceptions about global warming(B) Most scientists agree that global warming is occuring(C) Human activity is a minor cause of global warming.(D) There is little humans can do to stop global warming melissa has chosen a career in business administration what would be a good job market for melissa.a. a bustling city with many businessesb.a rural area with lots of farmsc.a coastal townd.a concentrated manufacturing district A motorcycle moving with velocity and 30m/s accelerate with 4m/s2 to gain velocity of 6mls. calculate its time to gain that velocity Surface area of triangular prism