Answer:
120.4 gradius Celcius
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!
HELP PLEASE ILL GIVE 25 pointsWhich of the following practices could help reduce erosion of water banks? a. buffer strips b. natural fertilizers and pesticides c. decrease in fossil fuel emissions d. all of the above Please select the best answer from the choices provided A B C D
Answer:
A. Buffer strips
Explanation:
The practice that could help reduce erosion of water banks is buffer strips.
What is erosion?Erosion is the action of surface processes that removes soil, rock or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited.
One of the practices that could be used to reduce the effect of erosion is buffer strips.
What buffer strips do is slow and filter storm runoff while helping to hold soil in place.
Learn more on buffer strips here; https://brainly.com/question/26872640
If a solution has a pOH=12, what is its pH?
Answer:
2
Explanation:
pH+pOH=14
- Hope that helps! Please let me know if you need further explanation.
Answer:
2
Explanation:
Ph+PoH=14
At constant pressure, what generally happens to the solubility of solids and gases when the temperature of a solution is increased?
A. The solubility of solids and gases increases.
B. The solubility of solids and gases decreases.
C. The solubility of solids increases, and the solubility of gases decreases.
D. The solubility of solids decreases, and the solubility of gases increases.
Answer:
C)
Explanation:
JUST DID IT
Answer:
A D E
Explanation:
just did it
A sample of gas at occupies 10m3 at a pressure of 120 kPa. If the volume of the sample is changed to 3m3, what is the new pressure of the gas?
Answer:
400 kPa
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!
Answer:
400 kPa
The answer is right since its from ck12
If an insufficient amount of liquid unknown had been used, how would this have effected the value of the experimental molar mass
Answer:
Actual yield reduces the more.
Explanation:
An actual yield of the course of a chemical reaction is the mass of a product actually obtained from the reaction.
In practice you see it and It is usually less than the theoretical yield.
Various reasons may come up to explain this away but here is one:
• incomplete reactions, simply put here some of the reactants do not react to form the product.
The same applies in the question about the actual yield will reduce significantly in molar mass now that insufficient amount of reagent are used.
The Earth's mantle is
A.
hotter than the crust but cooler than the core.
B.
hotter than both the crust and the core.
C.
cooler than both the crust and the core.
D.
cooler than the crust but hotter than the core.
Answer:
C. cooler than both the crust and the core
Explanation:
It is observed that at the mantle, temperatures range from estimatedly 200 °C (392 °F) around the upper boundary with the crust to approximately 4,000 °C (7,230 °F) at the core-mantle boundary.
So we can say the mantle is cooler than both the crust and the core.
Use the graph to determine which is greater, the heat of fusion or the heat of vaporization. Explain how you used the graph to determine that.
(The substance is water)
Answer:
mdjnibfziedosnninjd.zjcssksskskbsksbivfdlvdxkvfuwhiwhwonsk jsbudwuvsaeigdOhgrauvdslnzarm cxwmvakbxsabxwrifwzpgsdoh
ds
How to make isopropyl alcohol
Answer:
.It is easily synthesized from the reaction of propylene with sulfuric acid, followed by hydrolysis. Isopropyl alcohol (2-propanol) is made by indirect hydration of propylene (CH2CHCH3).… In some cases the hydration of propylene is carried out in one step, using water and a catalyst at high pressure.
Hope it'll help!
stay safe:)
What is the concentration of a solution in which 0.99 g of KOH are dissolved in 500 mL?
Answer:
.00352mol/L
Explanation:
molarity (concentration) = number of moles / volume of solvent (in L)
M = .99g / 56.108g/mol / .5L
M = .0176mol / .5L
M = .00352mol/L
The change in entropy, ΔS∘rxn , is related to the the change in the number of moles of gas molecules, Δngas . Determine the change in the moles of gas for each of the reactions and decide if the entropy increases, decreases, or has little or no change. A. 2H2(g)+O2(g) ⟶ 2H2O(l) Δngas= mol The entropy, ΔS∘rxn , increases. decreases. has little or no change.
Explanation:
Entropy of a reaction ΔS∘rxn is the degree of disoderliness in a system. Gases generally have a higher degree of disorder compared to liquids. Hence for the reaction 2H2(g)+O2(g) ⟶ 2H2O(l), the entropy decreases sice the reactants are in the gaseous state and the products is in the liquid state of matter
Two identical light bulbs are connected to a battery in a series circuit.
An ammeter is wired into the circuit at measures a current of the
battery to be 0.5 Amps. The two light bulbs are then wired in parallel.
The ammeter shows that the current:
Answer:
0.10 amps
Explanation:
Identifying the Body's Responses to
Quick
Check
Which type of response identifies a specific pathogen in the body?
A(n)
response
Answer:
Specific Immune Response
Explanation:
A specific immune response identifies the pathogen which then allows it to produce antibodies that protect against that SPECIFIC pathogen.
Answer:
immuneExplanation:
How many grams do 4.8 x 1026 atoms of silicon
weigh?
Answer in units of g.
CH³C⁴HCOCH³ how many atoms of each element are in one molecule of 2-heptanone
Answer:
- 7 carbon atoms.
- 14 hydrogen atoms.
- 1 oxygen atom.
Explanation:
Hello,
In this case, for the given compound, heptanone, whose chemical formula is:
[tex]CH_3COCH_2CH_2CH_2CH_2CH_3[/tex]
We can write the molecular formula showing the present atoms of each element:
[tex]C_7H_{14}O[/tex]
In such a way we have:
- 7 carbon atoms.
- 14 hydrogen atoms.
- 1 oxygen atom.
Best regards.
18.35 mL of an HCN solution were titrated with 35.4mL of a 0.268M NaOH solution to reach the equivalence point. What is the molarity of the HCN solution
Answer:
0.517
Explanation:
HCN + NaOH → NaCN + H2O [balanced as written]
(35.4 mL) x (0.268 M NaOH) x (1 mol HCN / 1 mol NaOH) / (18.35 mL HCN) = 0.517 M HCN
Answer: 0.517
Explanation:
In a titration, 100 mL of 0.026 M HCl (aq) is neutralized by 13 mL of KOH(aq). Calculate the molarity of KOH (aq).
Answer:
0.2M
Explanation:
Step 1:
Data obtained from the question.
Volume of acid (Va) = 100mL
Molarity of the acid (Ma) = 0.026 M
Volume of base (Vb) = 13mL
Molarity of the base (Mb) =..?
Step 2:
The balanced equation for the reaction. This is given below:
HCl + KOH —> KCl + H2O
From the balanced equation above,
The mole ratio of the acid (nA) = 1
The mole ratio of the base (nB) = 1
Step 3:
Determination of the molarity of the base, KOH. This can be obtained as follow:
MaVa/MbVb = nA/nB
0.026 x100 / Mb x 13 = 1
Cross multiply to express in linear form
Mb x 13 = 0.026 x 100
Divide both side by 13
Mb = 0.026 x 100 / 13
Mb = 0.2M
Therefore, the molarity of the base, KOH is 0.2M
Answer:
0.2M
Explanation:
KOH(aq) + HCl(aq) ⇒ KCl(aq) + H2O(l)
We express the moles of analyte (HCl) and titrant based (KOH) on their molar concentration:
M1 * V1 = M2 * V2
The molarity of the solution is calculated with the following equation:
M2 = V1 x M1 / V2
Where:
V2 = valued sample volume
V1 = volume of titrant consumed (measured with the burette)
M1 = concentration of titrant solution
M2 = concentration of sample
M2 = 100mL * 0.026M / 13mL = 0.2M
What are 3 stages of the water cycle are
Question 17 In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 786. liters per second of dinitrogen are consumed when the reaction is run at 222.°C and 0.35atm. Calculate the rate at which ammonia is being produced. Give your answer in kilograms per second. Round your answer to 2 significant digits.
Answer:
Explanation:
N₂ + 3H₂ = 2 NH₃
1 vol 2 vol
786 liters 1572 liters
786 liters of dinitrogen will result in the production of 1572 liters of ammonia
volume of ammonia V₁ = 1572 liters
temperature T₁ = 222 + 273 = 495 K
pressure = .35 atm
We shall find this volume at NTP
volume V₂ = ?
pressure = 1 atm
temperature T₂ = 273
[tex]\frac{P_1V_1}{T_1} =\frac{P_2V_2}{T_2}[/tex]
[tex]\frac{.35\times 1572}{495} =\frac{1\times V_2}{ 273 }[/tex]
[tex]V_2 =303.44[/tex] liter .
mol weight of ammonia = 17
At NTP mass of 22.4 liter of ammonia will have mass of 17 gm
mass of 303.44 liter of ammonia will be equal to (303.44 x 17) / 22.4 gm
= 230.28 gm
=.23 kg / sec .
Rate of production of ammonia = .23 kg /s .
The glass of a lit 75-watt incandescent bulb is hotter to the touch than the glass of a 25-watt compact fluorescent (CFL) bulb that emits the same amount of light. What could be a reason for this
What is the molarity of sodium hydroxide solution made by combining 2.0 L of 0.60
NaOH With 495 mL 3.0 M NaOH? Assume the volumes of the two solutions to be additive___M
Answer:
[tex]M=1.1M[/tex]
Explanation:
Hello,
In this case, since we are mixing two NaOH solutions, the first step is to compute the total moles once the mixing is done, by using the volumes and concentrations of each solutions and subsequently adding them:
[tex]n_T=2.0L*0.60\frac{mol}{L}+495mL*\frac{1L}{1000mL}*3.0\frac{mol}{L}= 2.7molNaOH[/tex]
Next, we compute the total volume by adding the volume of each solution:
[tex]V_T=2.0L+495mL*\frac{1L}{1000mL}= 2.495L[/tex]
Finally, we compute the molarity of the resulting solution by the division between the total moles and the total volume:
[tex]M=\frac{2.7mol}{2.495L}\\ \\M=1.1M[/tex]
Best regards.
What is the hydronium ion concentration of a 0.100 M acetic acid solution with Ka = 1.8 × 10-5? The equation for the dissociation of acetic acid is: CH3CO2H(aq) + H2O(l) ⇌ H3O+(aq) + CH3CO2-(aq) What is the hydronium ion concentration of a 0.100 M acetic acid solution with Ka = 1.8 × 10-5? The equation for the dissociation of acetic acid is: CH3CO2H(aq) + H2O(l) ⇌ H3O+(aq) + CH3CO2-(aq) 1.3 × 10-2 M 4.2 × 10-2 M 1.3 × 10-3 M 4.2 × 10-3 M
Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:
[tex]CH_3CO_2H(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3CO_2^-(aq)[/tex]
We can write the law of mass action for it:
[tex]Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}[/tex]
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change [tex]x[/tex] due to the dissociation extent, we are able to rewrite it as shown below:
[tex]1.8x10^{-5}=\frac{x*x}{0.100-x}[/tex]
Thus, via the quadratic equation or solve, we obtain the following solutions:
[tex]x_1=-0.00135M\\x_2=0.00133M[/tex]
Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
Answer:
1.3×10^-3 M
Explanation:
Step 1:
Data obtained from the question:
Equilibrium constant (Ka) = 1.8×10^-5
Concentration of acetic acid, [CH3COOH] = 0.100 M
Concentration of hydronium ion, [H3O+] =..?
Step 2:
The balanced equation for the reaction.
CH3CO2H(aq) + H2O(l) ⇌ H3O+(aq) + CH3CO2-(aq)
Step 3:
Determination of concentration of hydronium ion, [H3O+].
This can be obtained as follow:
Ka = [H3O+] [CH3CO2-] / [CH3CO2H]
Initial concentration:
[CH3COOH] = 0.100 M
[H3O+] = 0
[CH3CO2-] = 0
During reaction
[CH3COOH] = – y
[H3O+] = +y
[CH3CO2-] = +y
Equilibrium:
[CH3COOH] = 0.1 – y
[H3O+] = y
[CH3CO2-] = y
Ka = [H3O+] [CH3CO2-] / [CH3CO2H]
1.8×10^-5 = y × y / 0.1
Cross multiply
y^2 = 1.8×10^-5 x 0.1
Take the square root of both side
y = √(1.8×10^-5 x 0.1)
y = 1.3×10^-3 M
[H3O+] = y = 1.3×10^-3 M
Therefore, the concentration of the hydronium ion, [H3O+] is 1.3×10^-3 M
The largest contributed to water pollution is
Answer:
this si from google hope it helps
Explanation:
The Main Causes of Water Pollution in the U.S.
Runoff from Agricultural Operations. Agriculture represents one of the biggest sources of water pollution in the country. ...
Runoff and Nonpoint Source Pollution. ...
Industrial Activities. ...
Leakage from Underground Storage and Piping. ...
Leaking Sewers. ...
Vehicle Emissions. ...
Landfill Leakage. ...
Hazardous Waste.
Answer:
Runoff and Non-point Source Pollution.
Explanation:
it's caused by rainfall or snow-melt moving over and through the ground. As the runoff moves, it picks up and carries away natural and human-made pollutants, finally depositing them into lakes, rivers, wetlands, coastal waters and ground and NPS is it's abbreviation.
Which picture shows how the moon from earth when it’s in the position
Explanation:
This picture shows how the moon from earth when it is in position
4. A taxi ride costs $5 plus .75 cents per mile. If I
ride for 120 miles, how much will be charged?
Answer:
$95
Explanation:
.75 x 120 = 90
90+5 = 95
what is the reaction?
Answer:
A chemical reaction is a process in which one or more substances, also called reactants, are converted to one or more different substances, known as products. ... A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products.
Explanation:
Hopefully this is what you needed
It takes 300 N to move a box 10 meters in 10 seconds. How much power is
required?
A. 30,000 W
B. 100 W
C. 3,000 J
D. 300 W
Plz help
Answer:
Power, P = 300 W
Explanation:
We have,
Force acting on the box to take it is 300 N
It is moved to a distance of 10 m in 10 seconds
It is required to find the power required to move the box. The rate at which work is done is called power required by an object. It can be given by the formula as follows :
[tex]P=\dfrac{W}{t}\\\\P=\dfrac{Fd}{t}\\\\P=\dfrac{300\times 10}{10}\\\\P=300\ W[/tex]
So, the power required is 300 W.
a fertilizer manufacturer makes a batch of 20kg of ammonium nitrate. what mass of ammonia in kg, does the manufacturer need to start with?
Answer:
[tex]m_{NH_3}=4.25kgNH_3[/tex]
Explanation:
Hello,
In this case, for the production of ammonium nitrate we shall consider the following chemical reaction:
[tex]NH_3+HNO_3\rightarrow NH_4NO_3[/tex]
Hence, since the molar mass of ammonium nitrate is 80 g/mol and the molar mass of ammonia is 17 g/mol, we could compute the required mass of ammonia to produce 20 kg of ammonium nitrate by using kilo-based units:
[tex]m_{NH_3}=20kgNH_4NO_3*\frac{1kmol}{80kgNH_4NO_3}*\frac{1kmolNH_3}{1kmolNH_4NO_3}*\frac{17kgNH_3}{1kmolNH_3} \\\\m_{NH_3}=4.25kgNH_3[/tex]
Best regards.
A sample of helium gas at room temperature is compressed from 100 cm3 to 20 cm3. Its new pressure is now 30 cm Hg. What was the original pressure of the gas?
Answer:
6 cm Hg
Explanation:
Boyles Law: P1V1=P2V2
(100 mL)(x)=(20 mL)(30 cm Hg)
x = 6 cm Hg
*Text me at 561-400-5105 for private tutoring if interested: I can do homework, labs, and other assignments :)