Answer: barries
Explanation:
what is the answer to life the universe and everything
(worth 95 points!)
Answer:
In the absence of dark energy, a flat universe expands forever but at a continually decelerating rate, with expansion asymptotically approaching zero; with dark energy, the expansion rate of the universe initially slows down, due to the effects of gravity, but eventually increases, and the ultimate fate of the universe ...
Explanation:
I think it goes on forever.
As part of a heat treatment process, cylindrical, 304 stainless steel rods of 100-mm diameter are cooled from an initial temperature of 500 C by suspending them in an oil bath at 30 C. If a convection coefficient of 500 W/m2 K is maintained by circulation of the oil, how long does it take for the centerline of a rod to reach a temperature of 50 C, at which point it is withdrawn from the bath
Answer:
Explanation:
Given that:
diameter = 100 mm
initial temperature = 500 ° C
Conventional coefficient = 500 W/m^2 K
length = 1 m
We obtain the following data from the tables A-1;
For the stainless steel of the rod [tex]\overline T = 548 \ K[/tex]
[tex]\rho = 7900 \ kg/m^3[/tex]
[tex]K = 19.0 \ W/mk \\ \\ C_p = 545 \ J/kg.K[/tex]
[tex]\alpha = 4.40 \times 10^{-6} \ m^2/s \\ \\ B_i = \dfrac{h(\rho/4)}{K} \\ \\ =0.657[/tex]
Here, we can't apply the lumped capacitance method, since Bi > 0.1
[tex]\theta_o = \dfrac{T_o-T_{\infty}}{T_i -T_\infty}} \\ \\ \theta_o = \dfrac{50-30}{500 -30}} \\ \\ \theta_o = 0.0426\\[/tex]
[tex]0.0426 = c_1 \ exp (- E^2_1 F_o_)\\ \\ \\ 0.0426 = 1.1382 \ exp (-10.9287)^2 \ f_o \\ \\ = f_o = \dfrac{In(0.0374)}{0.863} \\ \\ f_o = 3.81[/tex]
[tex]t_f = \dfrac{f_o r^2}{\alpha} \\ \\ t_f = \dfrac{3.81 \times (0.05)^2}{4.40 \times 10^{-6}} \\ \\ t_f= 2162.5 \\ \\ t_f = 36 mins[/tex]
However, on a single rod, the energy extracted is:
[tex]\theta = pcv (T_i - T_{\infty} )(1 - \dfrac{2 \theta}{c} J_1 (\zeta) ) \\ \\ = 7900 \\times 546 \times 0.007854 \times (500 -300) (1 - \dfrac{2 \times 0.0426}{1.3643}) \\ \\ \theta = 1.54 \times 10^7 \ J[/tex]
Hence, for centerline temperature at 50 °C;
The surface temperature is:
[tex]T(r_o,t) = T_{\infty} +(T_1 -T_{\infty}) \theta_o \ J_o(\zeta_1) \\ \\ = 30 + (500-30) \times 0.0426 \times 0.5386 \\ \\ \mathbf{T(r_o,t) = 41.69 ^0 \ C}[/tex]
MAPP gas, natural gas, propane, and acetylene can be used with oxygen to cut metal.
True
False
Help meeeeeeeee plzzzzz need explanation
the picture is blank for me what does it say i can comment the answer plz mark brainlyist
If it is struck by a rigid block having a weight of 550 lblb and traveling at 2 ft/sft/s , determine the maximum stress in the cylinder. Neglect the mass of the cylinder. Express your answer to three significant figures and include appropriate units.
This question is incomplete, The missing image is uploaded along this answer below;
Answer:
the maximum stress in the cylinder is 3.23 ksi
Explanation:
Given the data in the question and the diagram below;
First we determine the initial Kinetic Energy;
T = [tex]\frac{1}{2}[/tex]mv²
we substitute
⇒ T = [tex]\frac{1}{2}[/tex] × (550/32.2) × (2)²
T = 34.16149 lb.ft
T = ( 34.16149 × 12 ) lb.in
T = 409.93788 lb.in
Now, the volume will be;
V = [tex]\frac{\pi }{4}[/tex]d²L
from the diagram; d = 0.5 ft and L = 1.5 ft
so we substitute
V = [tex]\frac{\pi }{4}[/tex] × ( 0.5 × 12 in )² × ( 1.5 × 12 in )
V = 508.938 in³
So by conservation of energy;
Initial energy per unit volume = Strain energy per volume
⇒ T/V = σ²/2E
from the image; E = 6.48(10⁶) kip
so we substitute
⇒ 409.93788 / 508.938 = σ²/2[6.48(10⁶)]
508.938σ² = 5,312,794,924.8
σ² = 10,438,982.5967
σ = √10,438,982.5967
σ = 3230.9414
σ = 3.2309 ksi ≈ 3.23 ksi { three significant figures }
Therefore, the maximum stress in the cylinder is 3.23 ksi
Which of these parts reduces the amount of pollutants in the engine exhaust?
A. Transmission
B. Catalytic converter
C. Tailpipe
D. Muffler
Answer:
Option B
Explanation:
Catalytic convertor with in the exhaust pipes of any vehicle converts harmful gases (such as hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx)) produced by combustion of fossil fuels (petrol, diesel etc.) into less harmful/toxic pollutants by acting as a catalyst for redox reaction. A catalytic convertor releases some mild gases from the exhaust like less harmful CO2, nitrogen and water vapour (steam)
Hence, option B is correct
In warm climates, a vapor barrier is placed on the exterior side of the insulation, and in cold climates it is installed on the interior side of the
insulation. Which of the following explains this placement of the barrier?
The barrier should always be placed on the side opposite from where the water condenses.
The barrier should always be placed on the side opposite where rain or snow hit.
The barrier should always be placed on the side where rain or snow hit.
The barrier should always be placed on the side where the water condenses
Answer: its c
Explanation:
A 10 cm thick slab (density 8530 kg/m3 , specific heat 380J/kg K, conductivity 110 W/m K) initially at 650C is being cooled by air at 15C (convection coefficient 220 W/m2 K) at left surface. The right surface is insulated. We want to estimate temperature in the slab. a. What will be the temperature of the slab after a very long time
Answer:
The temperature after a long time will return to 15°C
Explanation:
Determine the temperature of the slab after a very long time
First we calculate the heat flow for m^2 area normal to the surface
= q / A = 650°c - 15°C / ( 1 / h + L / K )
= 635°c / ( 1 / 220 + 0.1 / 110 ) = 116.416 kw/m^2
Total heat content in the slab is calculated as
= m* c * ΔT
= 8530 * A * 0.1 * 380 * ( 650 - 15 )
= 205828.9 kJ/m^2
The temperature will return to 15°C after a long time
In the context of mechanical systems, what does the term efficiency mean? OA the factor by which a machine multiplies a force B. the ratio of a machine's power to the force of its input Ос. the rate at which a machine performs work D. the rate at which a machine consumes energy E. the ratio of the work output of a machine to the work input
Answer:
E
Explanation:
I have a big brain and I just took the test and got it correct.
A 4-L pressure cooker has an operating pressure of 175 kPa. Initially, one-half of the volume is filled with liquid and the other half with vapor. If it is desired that the pressure cooker not run out of liquid water for 75 min, determine the highest rate of heat transfer allowed.
Answer:
the highest rate of heat transfer allowed is 0.9306 kW
Explanation:
Given the data in the question;
Volume = 4L = 0.004 m³
V[tex]_f[/tex] = V[tex]_g[/tex] = 0.002 m³
Using Table ( saturated water - pressure table);
at pressure p = 175 kPa;
v[tex]_f[/tex] = 0.001057 m³/kg
v[tex]_g[/tex] = 1.0037 m³/kg
u[tex]_f[/tex] = 486.82 kJ/kg
u[tex]_g[/tex] 2524.5 kJ/kg
h[tex]_g[/tex] = 2700.2 kJ/kg
So the initial mass of the water;
m₁ = V[tex]_f[/tex]/v[tex]_f[/tex] + V[tex]_g[/tex]/v[tex]_g[/tex]
we substitute
m₁ = 0.002/0.001057 + 0.002/1.0037
m₁ = 1.89414 kg
Now, the final mass will be;
m₂ = V/v[tex]_g[/tex]
m₂ = 0.004 / 1.0037
m₂ = 0.003985 kg
Now, mass leaving the pressure cooker is;
m[tex]_{out[/tex] = m₁ - m₂
m[tex]_{out[/tex] = 1.89414 - 0.003985
m[tex]_{out[/tex] = 1.890155 kg
so, Initial internal energy will be;
U₁ = m[tex]_f[/tex]u[tex]_f[/tex] + m[tex]_g[/tex]u[tex]_g[/tex]
U₁ = (V[tex]_f[/tex]/v[tex]_f[/tex])u[tex]_f[/tex] + (V[tex]_g[/tex]/v[tex]_g[/tex])u[tex]_g[/tex]
we substitute
U₁ = (0.002/0.001057)(486.82) + (0.002/1.0037)(2524.5)
U₁ = 921.135288 + 5.030387
U₁ = 926.165675 kJ
Now, using Energy balance;
E[tex]_{in[/tex] - E[tex]_{out[/tex] = ΔE[tex]_{sys[/tex]
QΔt - m[tex]_{out[/tex]h[tex]_{out[/tex] = m₂u₂ - U₁
QΔt - m[tex]_{out[/tex]h[tex]_g[/tex] = m₂u[tex]_g[/tex] - U₁
given that time = 75 min = 75 × 60s = 4500 sec
so we substitute
Q(4500) - ( 1.890155 × 2700.2 ) = ( 0.003985 × 2524.5 ) - 926.165675
Q(4500) - 5103.7965 = 10.06013 - 926.165675
Q(4500) = 10.06013 - 926.165675 + 5103.7965
Q(4500) = 4187.690955
Q = 4187.690955 / 4500
Q = 0.9306 kW
Therefore, the highest rate of heat transfer allowed is 0.9306 kW
A tiger cub has a pattern of stripes on it for that is similar to that of his parents where are the instructions stored that provide information for a tigers for a pattern
probably in it's chromosomes
The evaporator:
A. directs airflow to the condenser.
B. absorbs heat from the passenger compartment.
C. removes moisture from the refrigerant.
D. restricts refrigerant flow.
Answer:
Option B
Explanation:
An evaporator along with cold low pressure refrigerant absorbs heat from the air within the passenger compartment thereby supplying cool air for the occupants.
Hence, option B is correct
A noisy transmission channel has a per-digit error probability p = 0.01.
(a) Calculate the probability of more than one error in 10 received digits?
Answer:
The appropriate answer is "0.0043".
Explanation:
The given values is:
Error probability,
p = 0.01
Received digits,
n = 10
and,
[tex]x\sim Binomial[/tex]
As we know,
⇒ [tex]P(x)=\binom{n}{x}p^xq^{n-x}[/tex]
Now,
⇒ [tex]P(x >1) =1- \left \{ P(x=0)+P(x=1) \right \}[/tex]
⇒ [tex]=1-\left \{\binom{10}{0}(0.01)^0(0.99)^{10-0}+\binom{10}{0}(0.01)^1(0.99)^{10-1} \right \}[/tex]
⇒ [tex]=1-0.9957[/tex]
⇒ [tex]=0.0043[/tex]
Which option identifies the step of the implementation phase represented in the following scenario?
A company in the gaming industry decides to integrate movement controls in its newest hardware release. It sends an online survey to interactive gamers to identify their highest priorities.
establishing a process and budget
using communication tools
building and assembling a team
setting up a change order process
Answer:
Which option identifies the step of the implementation phase represented in the following scenario?
A company in the gaming industry decides to integrate movement controls in its newest hardware release. It sends an online survey to interactive gamers to identify their highest priorities.
establishing a process and budget
using communication tools
building and assembling a team
setting up a change order process
Explanation:
#carryonml
Answer:
using communication tools
Explanation:
The correct answer is using communication tools. Communication tools such as online surveys help project teams identify customers’ wants and needs.
A cylindrical specimen of this alloy 12 mm in diameter and 188 mm long is to be pulled in tension. Assume a value of 0.34 for Poisson's ratio.Calculate the stress (in MPa) necessary to cause a 0.0105 mm reduction in diameter.
This question is incomplete, the missing image in uploaded along this answer below.
Answer:
The required stress is 200 Mpa
Explanation:
Given the data in the question;
diameter D = 12 mm = 12 × 10⁻³ m
Length L = 188 mm = 188 × 10⁻³ m
Poisson's ratio v = 0.34
Reduction in diameter Δd = 0.0105 mm = 0.0105 × 10⁻³ m
The transverse strain will;
εˣ = Δd / D
εˣ = -0.0105 × 10⁻³ / 12 × 10⁻³ m
εˣ = -0.00088
The longitudinal strain will be;
[tex]E^z[/tex] = - ( εˣ / v )
[tex]E^z[/tex] = - ( -0.00088 / 0.34 )
[tex]E^z[/tex] = - ( - 0.002588 )
[tex]E^z[/tex] = 0.0026
Now, Using the values for strain, we get the value of stress from the graph provided in the question, ( first image uploaded below.
From the graph, in the Second image;
The stress is 200 Mpa
Therefore, The required stress is 200 Mpa
Some project managers prefer the PERT chart over the Gantt chart because it clearly illustrates task dependencies. A PERT chart, however, can be much more difficult to interpret, especially on complex projects. Alternatively, some project managers may choose to use both techniques. If you are the project manager of a residential construction project, will you prefer PERT chart to Gantt chart? Explain why?
Answer:
PERT Chart and GANTT Chart
As the project manager of a residential construction project, I will prefer the PERT chart to the GANTT chart because a PERT chart displays task dependencies unlike a Gantt chart. With the PERT chart, the sequence of tasks is clearly mapped out. Dependent tasks are carried out when other tasks that they depend on have been executed.
Explanation:
By definition, a Gantt chart is like a bar chart that lays out project tasks and timelines using bars. On the other hand, a PERT chart follows a structure in the form of flow charts or network diagrams. It displays all the project tasks in separate boxes. The boxes are then connected with arrows which clearly show the task dependencies.