Answer:
(0.5,3)
Hope this helps..Have a good day!!
F is on the bisector of angle BCD. Find the length of FD (with lines over FD)
Answer:
8n-2 = 6n+9
2n-2 = 9
2n = 11
n = 5.5
So C is correct
Let me know if this helps!
Please help I’ll mark as brainlist
Answer:
Ekta and Preyal
Step-by-step explanation:
PLEASE HELP I WILL GIVE BRAINLIEST
Step-by-step explanation:
A natural number is a positive whole number.
A whole number is a positive number with no fractions or decimals.
A interger is a whole number negative or positive.
A rational number is a number that terminates or continue with repeating digits.
A irrational number is a number that doesn't terminate or continue with repeating digits.
1. Rational Number
2. Natural,Whole,Interger,Rational
3. Whole,Rational,Interger
4. Rational
5.Irrational
6.Rational
7.Natural,Whole,Interger,Rational
8.Interger,Rational
9.Irrational
4. a) x2 + xy2 + y 4
Answer:
x2 + xy2 + y 4=(x+y^2)^2-xy^2
Step-by-step explanation:
Find the length of x
Answer:
20
Step-by-step explanation:
Since the triangles are similar then the sides must be proportional
10/6 = x/12 cross multiply expressions
6x = 120 divide both sides by 6
x = 20
If a line has a midpoint at (2,5), and the endpoints are (0,0) and (4,y), what is the value of y? Please explain each step for a better understanding:)
Answer:
y = 10
Step-by-step explanation:
To find the y coordinate of the midpoint, take the y coordinates of the endpoints and average
(0+y)/2 = 5
Multiply each die by 2
0+y = 10
y = 10
Helpppp pleaseeee !!!!!!
Answer:
149 inches squared
Step-by-step explanation:
top rectangle: 25 * 7 = 175
second rectangle: 8 * (25 - 17) = 8^2 = 64
triangle in bottom right: 1/2 * (13 - 8) * (15 - 11) = 10
175 + 64 + 10 = 149 sq in
hopefully got this right!
help lol i forgot everything of the summer time
fill in the table using this function rule
Answer:
hope it help you
Step-by-step explanation:
mark me brailiest answer
What is the area of a rectangle with vertices at (7,3) (12,3) (12,11) (7,11)
Answer:
Area = 5 × 8
= 40 square units
Answer:
40^2
Step by Step Solution:
I counted the difference between the length and the width, which was 5 and 8, then using the formula for area, lw=a^2, I did 5(8)=40^2. Some people leave out the squared part of the area, but 40^2 would be the most correct option if they do not square any of the answers, just put 40 that'll probably be accepted too.
If LM = 9x + 27 and RS = 135, find x.
Answer:
x=12
Step-by-step explanation:
LM = RS
9x+27 = 135
Subtract 27 from each side
9x+27-27 =135-27
9x=108
Divide each side by 9
9x/9 = 108/9
x = 12
the boxes are equivalent so the one with a single dash is equal to the other with a single dash.
the one with 2 dashes is equal to the other with 2 dashes so on and so forth
SR=LM
LM=9x+27
RS=135
9x+27=135
so I solve it in my own weird way but you can solve it differently. 135-27=108
108/9=12
so your answer is 12
find the missing side. Round it the nearest tenth.
Answer: x= 11√3= 19.0525 = 19.1
Step-by-step explanation:
Let the reference angle be 30
so
cos 30 = b/h
√3/2 = x/22
or, 22√3 = 2x
or. x = (22√3)/2
so, x = 11√3
Answer:
x = 19.1 cm
Step-by-step explanation:
→ Find the name of the side you are not given
Opposite
→ Find a formula without opposite in it
Cos = Adjacent ÷ Hypotenuse
→ Rearrange to make adjacent the subject
Adjacent = Cos × Hypotenuse
→ Substitute in the values
Adjacent = Cos ( 30 ) × 22
→ Simplify
Adjacent = 19.1
PLS HELP ME ON THIS QUESTION I WILL MRK YOU AS BRAINLIEST IF YOU KNOW THE ANSWER!!
Which of the following measures is a measure of spread?
A. median
B. range
C. mode
D. mean
Answer:
range
Step-by-step explanation:
Answer:
B. range.
Step-by-step explanation:
others are:
» Standard variation.
» Interquatile range.
» Quatiles, deciles and percentiles.
» variance.
[tex]{ \underline{ \blue{ \sf{christ \: † \: alone}}}}[/tex]
What is the smallest 3-digit palindrome that is divisible by both 3 and 4?
Answer:
252
Step-by-step explanation:
To be divisible by 3, it's digits have to add to a number that is a multiple of 3.
To be divisible by 4 its last 2 digits have to be divisible by 3.
So let's start with 1x1 which won't work because 1x1 is odd. so let's go to 2x2 and see what happens.
212 that's divisible by 4 but not 3
222 divisible by 3 but not 4
232 divisible by 4 but not 3
242 not divisible by either one.
252 I think this might be your answer
The digits add up to 9 which is a multiple of 3 and the last 2 digits are divisible by 4
Given 12 consecutive integers, how many ways can three of these integers be selected to give a sum which divides by 4.
Disclaimer: A lot of points to be given, Full explanation required. Not only answer. Remember the sum of the number must be divisible by 4. I think modular arithmetic is the way to solve it, but who knows???
Answer:
55 waysStep-by-step explanation:
Out of 12 consecutive integers:
3 - divide by 4, so the remainder is 0 3- give remainder of 1 3- give remainder of 2 3 - give remainder of 3Sum of 3 integers will be divisible by 4 if the remainders are:
0 - 0 - 0 ⇒ 1 combination 0 - 1 - 3 ⇒ 3*3 = 9 combinations 0 - 3 - 1 ⇒ 3*3 = 9 combinations 1 - 1 - 2 ⇒ 2*3 = 6 combinations 1 - 2 - 1 ⇒ 2*3 = 6 combinations 2 - 1 - 1 ⇒ 2*3 = 6 combinations 3 - 0 - 1 ⇒ 3*3 = 9 combinations 3 - 1 - 0 ⇒ 3*3 = 9 combinationsSo total number of combinations is:
1 + 9*4 + 6*3 = 553a + 2 = 20
5(b+1) = 10
3 (2y - 3) - 2y = y-3
2+ (2+4p) =6p
Please answer these questions with steps please!
Amy, a nature photographer, randomly sampled photographs she took within the last year. She wanted to find out how many of her photographs contained flowers. The proportion of photographs that had flowers was 0.61, with a margin of error of 0.04. Construct a confidence interval for the proportion of her photographs taken within the last year contained flowers.
The Constructed confidence interval for the proportion of her photographs taken within the last year contained flowers is
[tex]CI\ E(0.57,0.65)[/tex]
From the question we are told that:
The proportion of photographs that had flowers P= 0.61
Margin of error of M.E= 0.04
Generally, the equation for Confidence interval for proportion is mathematically given by
[tex]CI=0.61 \pm 0.04[/tex]P \pm M.E
Therefore Confidence interval is
[tex]CI=0.61 \pm 0.04[/tex]
And can also be written as
[tex]CI\ E((0.61+0.04),0.61-0.04))[/tex]
[tex]CI\ E(0.57,0.65)[/tex]
In conclusion the Confidence interval is
[tex]CI\ E(0.57,0.65)[/tex]
For more information on this visit
https://brainly.com/question/24131141?referrer=searchResults
I NEEDDD HELPPP ITSSSSSS URGENTTTTT!!!
Basically count/add up the total amount of degrees that are include in the angle <FHD.
-- (central angles)
So, 35 + 65 = 100 degrees
SAT/ACT What is the solution of 1,200 – 5(3x + 30) = 600? A 30 B 50 C 150 D 200 E 250
The answer you are looking for is letter A, x=30.
Solution/Explanation:
First, write out the equation,
1200-5(3x+30)=600
Next, using the Distributive Property,
1200-15x-150=600
Simplify the left side of the equation just a little bit more,
1050-15x=600
Reverse order of terms on the left side, to make it a little bit easier to solve,
-15x+1050=600
Now, subtract 1050 from both sides,
-15x+1050-1050=600-1050
Now, simplify this part of the equation,
-15x=-450
Finally, divide both sides by -15,
So, therefore, the final answer is x=30.
I hope this helped you. Enjoy your day, and take care!
Help me! thank you so much
Answer:
Step-by-step explanation:
[tex]\frac{sinxcos^3x-cos xsin^3x}{cos^42x-sin^42x} \\=\frac{sin x cos x(cos^2x-sin ^2 x)}{(cis^2 2x+sin^2 2x)(cos^2 2x-sin ^22x)} \\=\frac{2sin x cos x cos 2x}{2(1)(cos 4x)} \\=\frac{sin 2x cos 2x}{2 cos 4x} \\=\frac{2 sin 2x cos 2x}{4 cos 4x} \\=\frac{sin 4x}{4 cos 4x} \\=\frac{1}{4} tan 4x[/tex]
100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENT
a) Find zw, Write your answer in both polar form with ∈ [0, 2pi] and in complex form.
b) Find z^10. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.
c) Find z/w. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.
d) Find the three cube roots of z in complex form. Give answers correct to 4 decimal
places.
Answer:
See Below (Boxed Solutions).
Step-by-step explanation:
We are given the two complex numbers:
[tex]\displaystyle z = \sqrt{3} - i\text{ and } w = 6\left(\cos \frac{5\pi}{12} + i\sin \frac{5\pi}{12}\right)[/tex]
First, convert z to polar form. Recall that polar form of a complex number is:
[tex]z=r\left(\cos \theta + i\sin\theta\right)[/tex]
We will first find its modulus r, which is given by:
[tex]\displaystyle r = |z| = \sqrt{a^2+b^2}[/tex]
In this case, a = √3 and b = -1. Thus, the modulus is:
[tex]r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2[/tex]
Next, find the argument θ in [0, 2π). Recall that:
[tex]\displaystyle \tan \theta = \frac{b}{a}[/tex]
Therefore:
[tex]\displaystyle \theta = \arctan\frac{(-1)}{\sqrt{3}}[/tex]
Evaluate:
[tex]\displaystyle \theta = -\frac{\pi}{6}[/tex]
Since z must be in QIV, using reference angles, the argument will be:
[tex]\displaystyle \theta = \frac{11\pi}{6}[/tex]
Therefore, z in polar form is:
[tex]\displaystyle z=2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)[/tex]
Part A)
Recall that when multiplying two complex numbers z and w:
[tex]zw=r_1\cdot r_2 \left(\cos (\theta _1 + \theta _2) + i\sin(\theta_1 + \theta_2)\right)[/tex]
Therefore:
[tex]\displaystyle zw = (2)(6)\left(\cos\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right) + i\sin\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right)\right)[/tex]
Simplify. Hence, our polar form is:
[tex]\displaystyle\boxed{zw = 12\left(\cos\frac{9\pi}{4} + i\sin \frac{9\pi}{4}\right)}[/tex]
To find the complex form, evaluate:
[tex]\displaystyle zw = 12\cos \frac{9\pi}{4} + i\left(12\sin \frac{9\pi}{4}\right) =\boxed{ 6\sqrt{2} + 6i\sqrt{2}}[/tex]
Part B)
Recall that when raising a complex number to an exponent n:
[tex]\displaystyle z^n = r^n\left(\cos (n\cdot \theta) + i\sin (n\cdot \theta)\right)[/tex]
Therefore:
[tex]\displaystyle z^{10} = r^{10} \left(\cos (10\theta) + i\sin (10\theta)\right)[/tex]
Substitute:
[tex]\displaystyle z^{10} = (2)^{10} \left(\cos \left(10\left(\frac{11\pi}{6}\right)\right) + i\sin \left(10\left(\frac{11\pi}{6}\right)\right)\right)[/tex]
Simplify:
[tex]\displaystyle z^{10} = 1024\left(\cos\frac{55\pi}{3}+i\sin \frac{55\pi}{3}\right)[/tex]Simplify using coterminal angles. Thus, the polar form is:
[tex]\displaystyle \boxed{z^{10} = 1024\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)}[/tex]
And the complex form is:
[tex]\displaystyle z^{10} = 1024\cos \frac{\pi}{3} + i\left(1024\sin \frac{\pi}{3}\right) = \boxed{512+512i\sqrt{3}}[/tex]
Part C)
Recall that:
[tex]\displaystyle \frac{z}{w} = \frac{r_1}{r_2} \left(\cos (\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)[/tex]
Therefore:
[tex]\displaystyle \frac{z}{w} = \frac{(2)}{(6)}\left(\cos \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right) + i \sin \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)\right)[/tex]
Simplify. Hence, our polar form is:
[tex]\displaystyle\boxed{ \frac{z}{w} = \frac{1}{3} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12}\right)}[/tex]
And the complex form is:
[tex]\displaystyle \begin{aligned} \frac{z}{w} &= \frac{1}{3} \cos\frac{5\pi}{12} + i \left(\frac{1}{3} \sin \frac{5\pi}{12}\right)\right)\\ \\ &=\frac{1}{3}\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right) + i\left(\frac{1}{3}\left(- \frac{\sqrt{6} + \sqrt{2}}{4}\right)\right) \\ \\ &= \boxed{\frac{\sqrt{2} - \sqrt{6}}{12} -\frac{\sqrt{6}+\sqrt{2}}{12}i}\end{aligned}[/tex]
Part D)
Let a be a cube root of z. Then by definition:
[tex]\displaystyle a^3 = z = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]
From the property in Part B, we know that:
[tex]\displaystyle a^3 = r^3\left(\cos (3\theta) + i\sin(3\theta)\right)[/tex]
Therefore:
[tex]\displaystyle r^3\left(\cos (3\theta) + i\sin (3\theta)\right) = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]
If two complex numbers are equal, their modulus and arguments must be equivalent. Thus:
[tex]\displaystyle r^3 = 2\text{ and } 3\theta = \frac{11\pi}{6}[/tex]
The first equation can be easily solved:
[tex]r=\sqrt[3]{2}[/tex]
For the second equation, 3θ must equal 11π/6 and any other rotation. In other words:
[tex]\displaystyle 3\theta = \frac{11\pi}{6} + 2\pi n\text{ where } n\in \mathbb{Z}[/tex]
Solve for the argument:
[tex]\displaystyle \theta = \frac{11\pi}{18} + \frac{2n\pi}{3} \text{ where } n \in \mathbb{Z}[/tex]
There are three distinct solutions within [0, 2π):
[tex]\displaystyle \theta = \frac{11\pi}{18} , \frac{23\pi}{18}\text{ and } \frac{35\pi}{18}[/tex]
Hence, the three roots are:
[tex]\displaystyle a_1 = \sqrt[3]{2} \left(\cos\frac{11\pi}{18}+ \sin \frac{11\pi}{18}\right) \\ \\ \\ a_2 = \sqrt[3]{2} \left(\cos \frac{23\pi}{18} + i\sin\frac{23\pi}{18}\right) \\ \\ \\ a_3 = \sqrt[3]{2} \left(\cos \frac{35\pi}{18} + i\sin \frac{35\pi}{18}\right)[/tex]
Or, approximately:
[tex]\displaystyle\boxed{ a _ 1\approx -0.4309 + 1.1839i,} \\ \\ \boxed{a_2 \approx -0.8099-0.9652i,} \\ \\ \boxed{a_3\approx 1.2408-0.2188i}[/tex]
Jay has a jar of beads. 6 purple beard, 8 blue beads, and 4 yellow beads. If he removes one bead at random, what is the probability that it will not be yellow?
You get a pie chart to do percentages just so you dont cheat you still can do work y'know
Select the correct answer from each drop-down menu.
A company makes cylindrical vases. The capacity, in cubic centimeters, of a cylindrical vase the company produces is given by the
function C() = 6.2873 + 28.26x2, where x is the radius, in centimeters. The area of the circular base of a vase, in square
centimeters, is given by the function A () = 3.14.2
To find the height of the vase, divide
represents the height of the vase.
the expressions modeling functions C(x) and A(z). The expression
Answer:
divide, 2x+9
Step-by-step explanation:
got it right
help me pls??????? :)
Answer:4 in each bad 2 left over
Step-by-step explanation:
Answer:
4 in each bag and 2 left over
Step-by-step explanation:
divide 14 by 3
3 goes into 14, 4 times
14 - 12 = 2
4 in each bag and then 2 left over
help help help help
Answer:
abc is a triangle so ,
a is ( 9,6 )
b is ( 9,3 )
and c is ( 3,3 )
Two observers are 300 ft apart on opposite sides of a flagpole. The angles of
elevation from the observers to the top of the pole are 20°
and 15°. Find the
height of the flagpole.
Determine the sum of the first 33 terms of the following series:
−52+(−46)+(−40)+...
Answer:
1320
Step-by-step explanation:
Use the formula for sum of series, s(a) = n/2(2a + (n-1)d)
The terms increase by 6, so d is 6
a is the first term, -56
n is the terms you want to find, 33
Plug in the numbers, 33/2 (2(-56)+(32)6)
Simplify into 33(80)/2 and you get 1320
What would it be tho 300 doesn’t show up in my options my options are
1/49 -1/49 -49 and 49
Lilian is building a swimming pool in the shape of a right rectangular prism. The area of the base of the swimming pool is 72 square meters. The depth of the swimming pool is 3 meters. What is the volume of the swimming pool?
Answer:
216
Step-by-step explanation:
Volume of a rectangular prism = area of base * depth
Area of base: 72
Depth: 3
Volume = 72 * 3 = 216
Evaluate 4(3 - 1)^2..
Answer:
16
Step-by-step explanation:
4(3 - 1)^2
~Simplify using PEMDAS
4(2)^2
4(4)
16
Best of Luck!
ax^2-y^2-x-y factorize
Answer:
x(ax-1)-y(y+1)
Step-by-step explanation:
you have to group the like terms
ax^2-x-y^2-y
x(ax-1)-y(y+1)
I hope this helps