Answer:
-21
Step-by-step explanation:
4(x+9) = 4x+36
4x+36 = 2x-6
-36 -36
minus 36 from both sides
4x = 2x-42
2x = -42
-42/2 = -21
x = -21
Hi there!
We are given the equation below:
[tex] \large \boxed{4(x + 9) = 2x - 6}[/tex]
1. Expand 4 in the expression.
When expand in the expression, it is like multiply everything in the expression. So when we expand 4 in x+9, it becomes 4(x)+9(4).[tex] \large{(4 \times x) + (9 \times 4) = 2x - 6} \\ \large{(4x) + (36) = 2x - 6}[/tex]
Cancel the brackets.
[tex] \large{4x + 36 = 2x - 6}[/tex]
2. Isolate x-term and solve for the variable.
Think it easy. If you want to isolate x-term then what should you do? Well simply swap sides, and change the operator/sign.[tex] \large{4x - 2x = - 6 - 36}[/tex]
Finally, combine like terms.
[tex] \large{2x = - 42}[/tex]
Then divide both sides by 2 so we can finally leave only x-term.
[tex] \large{ \frac{2x}{2} = \frac{ - 42}{2} } \\ \large \boxed{x = - 21}[/tex]
3. Check the solution if it is right or wrong.
This step is optional but if you are not confident on your answer, this step is recommended.To check the answer, we simply substitute the value of x which is -21 in the equation and see if both sides are equal or not. If both sides are equal then the answer is correct, if not then the answer is wrong. Therefore,
[tex] \large{4(x + 9) = 2x - 6 \longrightarrow 4( - 21 + 9) = 2 ( - 21) - 6} \\ \large{4( - 12) = - 42 - 6} \\ \large{ - 48 = - 48}[/tex]
Since both sides are equal when substitute in x = -21.
4. Answer
Hence, the answer for this equation is x = -21.I hope this helps and let me know if you have any doubts!
4. (a) Find the minimum value of the function below and the values of for which they
occur.
f(x) = 3x2 - 5x - 12
Peter Piper picked a pickled pepper out of a pepper jar. If the probability of drawing a pickled pepper was 2/5,
how many total peppers could be in the jar (psst. you can't have a half of a pepper)?
Answer:
5
Step-by-step explanation:
2/5 pickled peppers means that there are 2 pickled peppers out of 5 total peppers.
4. Write an equation for the line that is parallel to the given line and that passes
through the given point.
y = 5/2x-10;(-6,-29)
Answer:
[tex]y=\frac{5}{2}x-14[/tex]
Step-by-step explanation:
Hi there!
What we need to know:
Linear equations are typically organized in slope-intercept form: [tex]y=mx+b[/tex] where m is the slope and b is the y-intercept (the value of y when x is 0)Parallel lines always have the same slope1) Determine the slope (m)
[tex]y=\frac{5}{2}x-10[/tex]
In the given equation, [tex]\frac{5}{2}[/tex] is in the place of m, making it the slope. Because parallel lines have the same slope, the line we're currently solving for therefore has a slope of [tex]\frac{5}{2}[/tex]. Plug this into [tex]y=mx+b[/tex]:
[tex]y=\frac{5}{2}x+b[/tex]
2) Determine the y-intercept (b)
[tex]y=\frac{5}{2}x+b[/tex]
Plug in the given point (-6,-29) and solve for b
[tex]-29=\frac{5}{2}(-6)+b[/tex]
Simplify -6 and 2
[tex]-29=\frac{5}{1}(-3)+b\\-29=(5)}(-3)+b\\-29=-15+b[/tex]
Add 15 to both sides to isolate b
[tex]-29+15=-15+b+15\\-14=b[/tex]
Therefore, the y-intercept is -14. Plug this back into [tex]y=\frac{5}{2}x+b[/tex]:
[tex]y=\frac{5}{2}x-14[/tex]
I hope this helps!
Consider the following data representing the price of plasma televisions (in dollars).
1325, 1266, 1123, 1233, 1387, 1249, 1120, 1140, 1347, 1337, 1402, 1259, 1421, 1351, 1452, 1277, 1309, 1232, 1112, 1243, 1429
Copy Data Price of Plasma Televisions (in Dollars) Class Frequency Class Boundaries Midpoint Relative Frequency Cumulative Frequency
1067–1126 1127–1186 1187–1246 1247–1306 1307–1366 1367–1426
Determine the class width of the classes listed in the frequency table.
Answer:
[tex]Width = 59[/tex]
Step-by-step explanation:
Given
The above data
Required
The class width
To do this, we simply calculate the difference between the class limits of any one of the classes.
Taking 1187–1246 as a point of reference, the class width is:
[tex]Width = 1246 - 1187[/tex]
[tex]Width = 59[/tex]
Find the coefficient of the t4
term in the expansion of
(4t – 375
a
9514 1404 393
Answer:
-3840t^4
Step-by-step explanation:
The k-th term, counting from k=0, is ...
C(5, k)·(4t)^(5-k)·(-3)^k
Here, we want k=1, so the term is ...
C(5, 1)·(4t)^4·(-3)^1 = 5·256t^4·(-3) = -3840t^4
__
The program used in the attachment likes to list polynomials with the highest-degree term last. The t^4 term is next to last.
What is the domain of the function y=3 sqrt x?
Answer:
Step-by-step explanation:
y=3√x
domain : all real values≥0
2^5 + 10=?????????????
Answer:
Answer is 42
Step-by-step explanation:
2^5 + 10
2*2*2*2*2 + 10
32 + 10
42
In a geometric sequence, the term an+1 can be smaller than the term ar O A. True O B. False
9514 1404 393
Answer:
True
Step-by-step explanation:
In a geometric sequence, the terms a[n+1] and a[n] are related by the common ratio. If the sequence is otherwise unspecified, two sequential terms may have any a relation you like.* Either could be larger or smaller than the other.
__
* If one is zero, the other must be as well. Multiplying 0 by any finite common ratio will give zero as the next term.
Anna's electricity bill costs $21.59 per month plus $4.66 per kilowatt hour. How many kilowatt hours can she use and keep
her bill to no more than $51?
Round your answer to a whole number
Answer:
6 kwh
Step-by-step explanation:
(51 - 21.9)/4.66 = 6.24 => 6 kwh
parabola
Given that tanθ= [tex]-\frac{9}{4}[/tex] and [tex]\frac{\pi }{2\\}[/tex]<θ<π , find the exact values of the trigonometric functions.
9514 1404 393
Answer:
sin(θ) = (9√97)/97cos(θ) = (-4√97)/97csc(θ) = (√97)/9sec(θ) = (-√97)/4cot(θ) = -4/9Step-by-step explanation:
The angle is in the 2nd quadrant, where the sine is positive and the cosine is negative.
tan^2(θ) +1 = sec^2(θ) = (-9/4)^2 +1 = 97/16 ⇒ sec = -(1/4)√97
cot(θ) = 1/tan(θ) = -4/9
csc^2(θ) = cot^2(θ) +1 = (-4/9)^2 +1 = 97/81 ⇒ csc = (1/9)√97
sin(θ) = 1/csc(θ) = (9√97)/97
cos(θ) = 1/sec(θ) = (-4√97)/97
Search
Khan Academy
Dependent probability
In a class of 7, there are 4 students who play soccer.
If the teacher chooses 3 students, what is the probability that none of the three of them play soccer?
Answer:
[tex]\frac{12}{49}[/tex]
Step-by-step explanation:
[tex]\frac{4}{7} *\frac{3}{7} = \frac{12}{49}[/tex]
Hope this helps.
Please help me solve this. I keep getting the answer weong
Answer:
21 is the answer I think sike I lied ik its not im just trying get this over with
You can use this formula to work out the area of a triangle when you know two sides and the angle inbwtween them :
1/2 x a x b x sin(C)
where a and b are the two sides you know and C is the angle in between them.
So here a = 7, b = 14, C = 125.
Area = 1/2 x 7 x 14 x sin(125) = 40.138...
= 40.1 (nearest 10th)
|x+2|+4=11
A) x=5,-9
Answer:
the mod always gives positive answers
so the answer will be
Step-by-step explanation:
x+2+4=11
x+6=11
x=11-6
x=5
answer is x is 5
Answer:
x=5,9
Step-by-step explanation:
|x+2|+4=11
|x+2| = 7
next you get two answers by adding two or subtracting two. SO the right answer should be 5 and 9. A is wrong . I DONT SEE THE OTHER ANSWER CHOICES BUT THIS IS WHAT I GOT.
w= 2hx - 11x Solve for X. Please and Thank you
Answer:
[tex]{ \tt{ w = 2hx - 11x}} \\ \\ { \bf{w = x(2h - 11)}} \\ \\ { \bf{x = \frac{w}{2h - 11} }}[/tex]
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \: x = \frac{w}{(2h - 11)} }}}}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
[tex]w = 2hx - 11x[/tex]
[tex]✒ \: w = x \: (2h - 11)[/tex]
[tex]✒ \: x = \frac{w}{(2h - 11)} [/tex]
[tex]\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘[/tex]
An American tourist visits South Africa with $3000. The exchange rate when she arrives is
$1 = 12.90. She changes all her dollars into rands and then spends R900 per day for seven
days. She changes the rands she has left back into dollars at a rate of $1 = R12.93. How much
does she get in dollars? show your working.
9514 1404 393
Answer:
$2505.80
Step-by-step explanation:
After the first exchange, the tourist has ...
$3000(12.90 R/$) = R38,700
After 7 days, she has ...
R38,700 -7(R900) = R32,400
After the second exchange, she has ...
R32,400 × ($1/R12.93) = $2505.80
She gets $2505.80 at the second exchange.
How is the graph of y = 8x2 − 1 different from the graph of y = 8x2?
It is shifted 1 unit down.
It is shifted 1 unit to the right.
It is shifted 1 unit to the left.
It is shifted 1 unit up.
Answer:
since it's the lhs we are concerned about, i. e., Y axis, so it must be either up or down. now look at the question, it says 8x2 - (1), it means one lower value of y i. e., 1 unit down
Answer:It is shifted 1 unit down.
Step-by-step explanation:
In the last six months, Sonia's family used 529, 499, 651, 652, 1,163, and 310 minutes on their cell phone plan. To save money, Sonia's family wants to keep their mean cell phone usage below 600 minutes per month.
By how many minutes did they go over their goal in the last six months?
Answer:
They went over their goal for the last six months by 34 minutes per month.
Step-by-step explanation:
Mean of a data-set:
The mean of a data-set is the sum of all values in the data-set divided by the size of the data-set.
529, 499, 651, 652, 1,163, and 310 minutes on their cell phone plan.
The mean is:
[tex]M = \frac{529+499+651+652+1163+310}{6} = 634[/tex]
By how many minutes did they go over their goal in the last six months?
The mean was of 634 minutes, and they wanted to keep it below 600. So
634 - 600 = 34
They went over their goal for the last six months by 34 minutes per month.
please calculate this limit
please help me
Answer:
We want to find:
[tex]\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}[/tex]
Here we can use Stirling's approximation, which says that for large values of n, we get:
[tex]n! = \sqrt{2*\pi*n} *(\frac{n}{e} )^n[/tex]
Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
[tex]\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}[/tex]
Now we can just simplify this, so we get:
[tex]\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\[/tex]
And we can rewrite it as:
[tex]\lim_{n \to \infty} \frac{1}{e} *(2*\pi*n)^{1/2n}[/tex]
The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:
[tex]\lim_{n \to \infty} \frac{1}{e} *(2*\pi*n)^{1/2n} = \frac{1}{e}*1 = \frac{1}{e}[/tex]
Hello, please I bed urgent help with this math problem please
Answer:
option C
Step-by-step explanation:
[tex]4c^2 + 7c - 5 = 0 , \ where \ a = 4 , \ b = 7 , \ x = - 5[/tex]
[tex]c = \frac{- b \pm \sqrt{b^2 - 4ax }}{2a} \\\\c = \frac{- 7 \pm \sqrt{49 - ( 4 \times 4 \times - 5 )}}{2 \times 4} \\\\c = \frac{- 7 \pm \sqrt{49 + 80}}{8} \\\\c = \frac{- 7 \pm \sqrt{49 + 80}}{8} \\\\c = \frac{- 7 \pm \sqrt{129}}{8} \\\\[/tex]
Answer:
Option C
Step-by-step explanation:
Quadratic formula:
[tex]4c^{2} +7c-5=0[/tex]
[tex]a=4\\b=7\\x=-5[/tex]
[tex]c=\frac{-b\frac{+}{} \sqrt{b^2-4ax}}{2a}[/tex]
[tex]c=\frac{-7\frac{+}{}49-(4*4*-5) }{2*4}[/tex]
[tex]c=\frac{-7\frac{+}{}\sqrt{129} }{8}[/tex]
hope this helps....
Can someone please help me out?
The difference between two numbers is 16. The first number is three times the other number. What are the numbers?
A. 8 and 25
B. 8 and 24
C. 9 and 24
D. 9 and 25
No links or fake answers pls
9514 1404 393
Answer:
B. 8 and 24
Step-by-step explanation:
There are a number of approaches you can use here. One of them is to choose the only answer that makes any sense in the problem.
The problem tells you the numbers have a ratio of 3, so numbers like 8 and 25, 9 and 24, 9 and 25 cannot be the answer.
The only answer choice that makes any sense is B: 8 and 24.
__
If you want to work the problem, there are different ways you can do that. One of my favorite is to consider ratio units. The ratio of the two numbers is 3:1. The difference of the two numbers is 3-1 = 2 ratio units, which we are told is 16. Then each ratio unit represents 16/2 = 8. Then the numbers are ...
3×8 and 1×8 = 24 and 8.
Or, you can let a variable represent one of the numbers. If x is the first number, then the other number is 1/3x, and their difference is ...
x -1/3x = 16
2/3x = 16
x = 16(3/2) = 24
The numbers are 24 and 24/3 = 8.
__
Additional comment
You need to talk to your teacher about this question. The answer choices list the smaller number first, but the problem statement tells you the first number is 3 times the second number. The correct answer would be 24 and 8.
Pls I’ve been stuck on this
Area of a circle is pi x radius^2
Area = pi x 22 ^2
Area = pi x 484
Area = 1,519.8 mm^2
Answer:
1520.5mm²
Step-by-step explanation:
Area of a circle=πr²
π(22mm)²
π484mm²
1520.5308443374599mm²
to one decimal place
1520.5mm²
-7x - 3 equals 5x + 3
solve for x
Answer:
x = -0.5
Step-by-step explanation:
-7x-3=5x+3
+7x +7x
-3=12x+3
-3 -3
-6=12x
x=-0.5
Use the limit definition of the derivative to find the instantaneous rate of change of
f(x)=5x^2+3x+3 at x=4
[tex]f'(4) = 43[/tex]
Explanation:
Given: [tex]f(x)=5x^2 + 3x + 3[/tex]
[tex]\displaystyle f'(x)= \lim_{h \to 0} \dfrac{f(x+h) - f(x)}{h}[/tex]
Note that
[tex]f(x+h) = 5(x+h)^2 + 3(x+h) + 3[/tex]
[tex]\:\:\;\:\:\:\:= 5(x^2 + 2hx + h^2) + 3x + 3h +3[/tex]
[tex]\:\:\;\:\:\:\:= 5x^2 + 10hx + 5h^2 + 3x + 3h +3[/tex]
Substituting the above equation into the expression for f'(x), we can then write f'(x) as
[tex]\displaystyle f'(x) = \lim_{h \to 0} \dfrac{10hx + 3h + 5h^2}{h}[/tex]
[tex]\displaystyle\:\:\;\:\:\:\:= \lim_{h \to 0} (10x +3 +5h)[/tex]
[tex]\:\:\;\:\:\:\:= 10x + 3[/tex]
Therefore,
[tex]f'(4) = 10(4) + 3 = 43[/tex]
NO LINKS OR ELSE YOU'LL BE REPORTED! Only answer if you're very good at Math.No guessing please.
The sample space,S,of a coin being tossed three times is shown below, where H and T denote the coin landing on heads and tails respectively.
Answer: Bottom left corner
=======================================================
Explanation:
There are only four possible outcomes here
A) we get all tails, ie getting 0 headsB) we get exactly one head (the rest tails)C) we get exactly 2 headsD) we get all three headsBased on this so far, the answer is either the table in the bottom left corner or in the top right corner. It's not possible for X = 4 since we only flipped 3 coins.
The probability of case A happening is 1/8 since we have 1 scenario that's all tails (TTT) out of 8 items in the sample space. Similarly, the probability for case D is the same probability. We only have one HHH out of 8 total items.
The probabilities of cases B and C are the same. Both are 3/8. Note that for case B, we have HTT, THT, TTH which is three occurrences in which we get exactly 1 head. So that explains the 3/8.
ASAP!!! There are three marbles in a bag. One is red and two are black. What is the probability of picking a red marble first, putting it back in the bag and then picking a black marble? Use the following probably need to find the answer.
Answer:
The probability of picking a red marble first then replacing it and getting a black marble is 2/9. (The last option.)
Step-by-step explanation:
Hey there!
The probability of first getting a red marble is 1/3 since we have 1 red marble out of 2 + 1 = 3 total.
We put the marble back. The probability of then choosing a black marble is 2/3, since we have 2 black marbles out of 3 total.
So we get 1/3 * 2/3 = 2/9
The probability of picking a red marble first then replacing it and getting a black marble is 2/9. (The last option.)
Hope this helps, please mark brainliest if possible. Have a nice day. :)
Mô hình quy hồi tuyến tính và ứng dụng
Answer:
where are you from Korea or not
Hope it helps you!
-miraculousfanx-
In 8 days, a group of workers can plant 72 acres.
What is their rate in acres per day
Helppp fastttt
Answer:
Step-by-step explanation:
72/8 = 9 acres per day
Shen started to run on a treadmill after setting its timer for 93 minutes. The display says that he has finished 69% of his run. How many minutes have gone by?
Round your answer to the nearest tenth.
Answer:
64.2 minutes
Step-by-step explanation:
We are given that
Shen set timer to run=93 minutes
He has finished his run=69%
We have to find total number of minutes have gone by.
69% of 93
=[tex]\frac{69}{100}\times 93[/tex]
By using
a%[tex]=\frac{a}{100}[/tex]
69% of 93=[tex]\frac{6417}{100}[/tex]
69% of 93=64.17 min
69% of 93[tex]\approx 64.2min[/tex]
Hence, 64.2 minutes have gone by.
The list price on slacks is $22, and the list price on jumpers is $37. If Petit’s Clothing Store orders 30 pairs of slacks and 40 jumpers at a discount rate of 11%, what is the trade discount on the purchase?
Answer: $235.4
Step-by-step explanation:
Given
Price list on slacks is $22
Price list on jumpers is $37
Store ordered 30 pairs of slacks and 40 Jumpers
Total price becomes
[tex]\Rightarrow 22\times 30+37\times 40\\\Rightarrow \$2140[/tex]
for a discount of 11%
Trade discount is [tex]2140\times 11\%[/tex]
[tex]\Rightarrow 2140\times 0.11\\\Rightarrow \$235.4[/tex]
find the square root of 20 1/4
Answer:
Step-by-step explanation:
[tex]20 \frac{1}{4} =\frac{80+1}{4} =\frac{81}{4} \\\sqrt{\frac{81}{4} } =\frac{9}{2} =4.5[/tex]