calculate horizontal distance travelled by a ball travelling with a speed of 20root2 mper sec without hitting ceiling of height 20 m per sec​

Answers

Answer 1

Calculate the horizontal distance travelled by a ball throw with a velcoity 20 sqrt 2 ms^(-1) without hitting the ceiling of an anditorium of heith 20 m. Use g= 10 ms^(-2). =(20√2)2sin2×45∘10=9800×1)10=80m .

HOPE SO IT HELPS YOU


Related Questions

An ideal parallel plate capacitor with a cross-sectional area of 0.4 cm2 contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2 x 108 V/m. The separation between the plates of the capacitor is 5 mm. What is the maximum electric charge (in nC) that can be stored in the capacitor before dielectric breakdown

Answers

Answer: [tex]283.2\times 10^{-9}\ nC[/tex]

Explanation:

Given

Cross-sectional area [tex]A=0.4\ cm^2[/tex]

Dielectric constant [tex]k=4[/tex]

Dielectric strength [tex]E=2\times 10^8\ V/m[/tex]

Distance between capacitors [tex]d=5\ mm[/tex]

Maximum charge that can be stored before dielectric breakdown is given by

[tex]\Rightarrow Q=CV\\\\\Rightarrow Q=\dfrac{k\epsilon_oA}{d}\cdot (Ed)\quad\quad [V=E\cdot d]\\\\\Rightarrow Q=k\epsilon_oAE\\\\\Rightarrow Q=4\times 8.85\times 10^{-12}\times 0.4\times 10^{-4}\times 2\times 10^8\\\\\Rightarrow Q=28.32\times 10^{-8}\\\\\Rightarrow Q=283.2\times 10^{-9}\ nC[/tex]

Answer:

The maximum charge is 7.08 x 10^-8 C.

Explanation:

Area, A = 0.4 cm^2

K = 4

Electric field, E = 2 x 10^8 V/m

separation, d = 5 mm = 0.005 m

Let the capacitance is C and the charge is q.

[tex]q = CV\\\\q=\frac{\varepsilon o A}{d}\times E d\\\\q = \varepsilon o A E\\\\q = 8.85\times 10^{-12}\times0.4\times 10^{-4}\times 2\times 10^8\\\\q = 7.08\times 10^{-8}C[/tex]

The position of the image obtained by convex lens when object is kept beyond 2F1(F: principal focus of the convex lens)
A. between F2 and 2F2
B. at 2F2
C. beyond 2F2
D. at infinity

Answers

Answer:

Between F2 and 2F2

Explanation:

Diagram attached from Teachoo.

Link to website if you need to refer

https://www.teachoo.com/10838/3118/Convex-Lens---Ray-diagram/category/Concepts/

What is the magnitude of force required to accelerate a car of mass 1.7 * 10 ^ 3 kg by 4.75 m/s

Answers

What is the magnitude of force required to accelerate a car of mass 1.7 × 10³ kg by 4.75 m/s²

Answer:

F = 8.075 N

Explanation:

Formula for force is;

F = ma

Where;

m is mass

a is acceleration

F = 1.7 × 10³ × 4.75

F = 8.075 N

the momentum of a spring coil when the external compressing force is removed b the difference between the final momentum and the initial momentum of the object c the backward momentum felt by an object or person exerting force on another object d the difference between the total momentum of the system after impact and the total momentum of the system before impact

Answers

Answer:

the correct one is b

the difference between the final moment and the initial moment

Explanation:

The momentum is related to the moment

          I = ΔP

          ∫ F dt = p_f - p₀

where p_f and p₀ are the final and initial moments, respectively

When checking the different answers, the correct one is b

the difference between the final moment and the initial moment

If you stand next to a wall on a frictionless skateboard and push the wall with a force of 44 N , how hard does the wall push on you

Answers

Answer:

44 N

Explanation:

Given that,

If you stand next to a wall on a frictionless skateboard and push the wall with a force of 44 N, then we need to find the force the wall push on you.

It is based on Newton's third law of motion which states that for an action there is an equal and opposite reaction. If the you push the wall with a force of 44 N, the wall push on you is 44 N also as it is based on Newton's third law of motion.

1. A turtle and a rabbit are to have a race. The turtle’s average speed is 0.9 m/s. The rabbit’s average speed is 9 m/s. The distance from the starting line to the finish line is 1500 m. The rabbit decides to let the turtle run before he starts running to give the turtle a head start. If the rabbit started to run 30 minutes after the turtle started, can he win the race? Explain.

Answers

Answer:no

Explanation:because 0.9*(30*60)=0.9*1800=1620

The turtle has already won the race

Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours

What will be the speed of the rabbit and the turtle?

It is given

[tex]V_{t} = 0.9 \frac{m}{s}[/tex]

[tex]V_{r} = 9 \frac{m}{s}[/tex]

[tex]D=1500 m[/tex]

Time taken by turtle  

 [tex]T= \dfrac{D}{V_{t} }=\dfrac{1500}{0.9_{} }[/tex]

[tex]T=1666 minutes= 27 hours[/tex]

Time taken by  rabbit

[tex]T= \dfrac{D}{V_{r} }=\dfrac{1500}{9_{} }[/tex]

[tex]T=166 minutes[/tex]

since rabbit started 30 minutes after turtle then

[tex]T= 136+30=196 minutes[/tex]

[tex]T= 3.2 hours[/tex]

Hence Yes rabbit will win the race will distance in 3.2 hours and turtle will cover in 27 hours

To know more about average velocity follow

https://brainly.com/question/6504879

What is the name of the invisible line that runs
down the center of the axial region?

Answers

Answer:

An axis is an invisible line around which an object rotates, or spins. The points where an axis intersects with an object's surface are the object's North and South Poles.

Explanation:

The Earth's axis is represented by the red line. The white circle represents axial precission, the slow "wobble" of the axis.

Calculate the minimum area moment of inertia for a rectangular cross-section with side lengths 6 cm and 4 cm.


52 cm4


72 cm4


32 cm4


24 cm4


2 cm4

Answers

Answer:

Minimum Area of rectangle = 24 centimeter²

Explanation:

Given:

Length of rectangle = 6 centimeter

Width of rectangle = 4 centimeter

Find:

Minimum Area of rectangle

Computation:

Minimum Area of rectangle = Length of rectangle x Width of rectangle

Minimum Area of rectangle = 6 x 4

Minimum Area of rectangle = 24 centimeter²

3. Three blocks of masses m, 2m and 3m are suspended from the ceiling using ropes as shown in diagram. Which of the following correctly describes the tension in the three rope segments?
a. T1< T2 < T3
b. T1< T2 = T3
c. T1 = T2 = T3
d. T1> T2 > T3
please help.show how and which?
see attachment for more detail.​

Answers

Option d (T₁ > T₂ > T₃) correctly describes the tension in the three rope system.    

Let's evaluate each tension.

Case T₃.

[tex] T_{3} - W_{3} = 0 [/tex]

For the system to be in equilibrium, the algebraic sum of the tension force (T) and the weight (W) must be equal to zero. The minus sign of W is because it is in the opposite direction of T.          

[tex] T_{3} = W_{3} [/tex]          

Since W₃ = mg, where m is for mass and g is for the acceleration due to gravity, we have:                

[tex] T_{3} = W_{3} = mg [/tex]  (1)                                                                                                     Case T₂.

[tex] T_{2} - (T_{3} + W_{2}) = 0 [/tex]    

[tex] T_{2} = T_{3} + W_{2} [/tex]   (2)

By entering W₂ = 2mg and equation (1) into eq (2) we have:

[tex] T_{2} = T_{3} + W_{2} = mg + 2mg = 3mg [/tex]

Case T₁.

[tex] T_{1} - (T_{2} + W_{1}) = 0 [/tex]  

[tex] T_{1} = T_{2} + W_{1} [/tex]    (3)

Knowing that W₁ = 3mg and T₂ = 3mg, eq (3) is:

[tex] T_{1} = 3mg + 3mg = 6mg [/tex]        

Therefore, the correct option is d: T₁ > T₂ > T₃.

Learn more about tension and weight forces here: https://brainly.com/question/18770200?referrer=searchResults  

I hope it helps you!

Correct answer: D. [tex]T_{1} > T_{2} > T_{3}[/tex]

First, we must construct the Equations of Equilibrium for each mass based on Newton's Laws of Motion, then we solve the resulting system for every Tension force:

Mass m:

[tex]\Sigma F = T_{3}-m\cdot g = 0[/tex] (1)

Mass 2m:

[tex]\Sigma F = T_{2}-2\cdot m \cdot g -T_{3} = 0[/tex] (2)

Mass 3m:

[tex]\Sigma F = T_{1}-3\cdot m\cdot g - T_{2} = 0[/tex] (3)

The solution of this system is: [tex]T_{3} = m\cdot g[/tex], [tex]T_{2} = 3\cdot m\cdot g[/tex] and [tex]T_{1} = 6\cdot m\cdot g[/tex], which means that [tex]T_{1} > T_{2} > T_{3}[/tex]. (Correct answer: D.)

How does this work?
Why won't it fall?
Why can't you continue building the tower forever?

From what I've been told, if the center of mass leaves it's support area, the object falls.
But the object on the tops center of mass is certainly outside of its support area (the object at the bottom)

Please explain! Thank you in advance. : )

Answers

Answer with explanation:

*Pre-condition: The mass of all blocks are evenly distributed.

As you add more and more blocks, the center of mass of the system changes.

Let the first block be the support. The maximum distance that can be unsupported (hung over) by the second block is equal to half the length of second block.

Why?

Let's take a look at our formula for torque. Torque, [tex]\tau[/tex], is given by:

[tex]\tau=rF\sin \theta[/tex], where [tex]r[/tex] is radius, [tex]F[/tex] is force, and [tex]\theta[/tex] is the angle between the radius and level arm.

[tex]\sin \theta[/tex] is used to calculate the relevant component of a force producing torque. In this case, the only force acting on the object is the force of gravity. Therefore, [tex]\theta =90^{\circ}[/tex] and recall [tex]\sin 90^{\circ}=1[/tex].

Conceptually, it's more important to look at the [tex]r[/tex] term here. From our formula, we can see that if [tex]r=0[/tex], there is no torque.

The point of pivot will be at the center of mass. Here's the important part:

As long as the point of pivot is supported, [tex]r[/tex] will remain zero and no torque will be created from the force of gravity. As you keep stacking blocks, as long as the center of mass of the entire system remains supported from your first support, the tower will not fall.

In the given picture shown, that first block will be your support.

The 6 blocks on top of that first block form a center of mass that is still on that first block, thus allowing the tower to remain standing.

What is inertia of motion?​

Answers

Explanation:

Inertia of motion

It is also known as Newton's first law of motion.

It states that,

An object remains in a state of rest or of uniform motion in a straight line unless compelled to change its state by an applied external force.

A 6.90 kg block is at rest on a horizontal floor. If you push horizontally on the 6.90 kg block with a force of 12.0 N. It just
starts to move.
What is the coefficient of static friction?
Numeric Response

Answers

[tex]\mu = 0.177[/tex]

Explanation:

Let's look at the forces on the two axes:

[tex]x:\:\:\:F - f_n = F - \mu N = 0\:\:\:\:\:\;(1)[/tex]

[tex]y:\:\:\:N - mg = 0\:\:\:\:\:\:\:\:\:(2)[/tex]

Substituting (2) into (1) and solving for [tex]\mu[/tex], we get

[tex]F = \mu mg[/tex]

[tex]\mu = \dfrac{F}{mg} = \dfrac{12.0\:\text{N}}{(6.9\:\text{kg})(9.8\:\text{m/s}^2)} = 0.177[/tex]

A stone is dropped from a bridge. It takes 4s to reach the water below. How high is the bridge above the water?​

Answers

Answer:

height is 78.4m

Explanation:

h=u.t + 0.5.g.t^2

= 0 + 0.5x9.8x4^2

= 78.4m

Why must scientists be careful when studying
nanotechnology?

Answers

Answer:

When studying nanotechnology, scientists must be aware that their ideas may not work out. Their work could be very time consuming and cost a lot of money. Finally, scientists do not yet know all of the effects of nanotechnology on human health.

Hope it helps u:)

Một ống dây điện thẳng dài có lõi sắt, tiết diện ngang của ống S = 20 cm2

, chiều dài
1 m, hệ số tự cảm L = 0,44 H. Cường độ từ trường trong ống dây là H = 0,8.103 A/m. Từ
thông gửi qua tiết diện ngang của ống bằng

3

0
1,6.10 Wb

. Cường độ dòng điện chạy

qua ống dây là

Answers

Answer:

sgsbssbduebubbeeifirjeirneejrbb8m!keoejr

d

iejejjeiie

3. The figure below shows the motion of a car. It starts from the origin, O travels 8m
towards the east and then 12m towards the west.
D
8m.
X
X-8
12m.w
()What is the net displacement D from the origin to the final position?
(ii) What is the total distance travelled by the car?

Answers

Answer:

i. -4m

ii. 20m

Explanation:

The car travels 8m to the east, then travels 12m to the west which is the opposite of the east. Going west, the car travels 8m back to the origin point and then another 4m due west to make 12m. The displacement from the origin point is -4 (the negative sign shows the direction because displacement is a vector quantity)

Total distance = 8m going east + 8m back to origin + 4m west = 20m

find the exit angle relative to the horizontal in an isosceles triangle with 36 °​

Answers

what

what

what

what

sorry

sorrry

sorry

Two point charges, the first with a charge of 4.47 x 10-6 C and the second with a charge of 1.86 x 10-6 C, are separated by 17.4 mm. What is the magnitude of the electrostatic force experienced by charge 2

Answers

Answer: [tex]247.12\ N[/tex]

Explanation:

Given

Magnitude of the charges

[tex]q_1=4.47\times 10^{-6}\ C[/tex]

[tex]q_2=1.86\times 10^{-6}\ C[/tex]

Distance between them [tex]d=17.4\ mm[/tex]

As both charges are of same sign, they must repel each other

Force experienced by second charge is

[tex]\Rightarrow F_{21}=\dfrac{kq_1q_2}{d^2}\\\\\Rightarrow F_{21}=\dfrac{9\times 10^9\times 4.47\times 10^{-6}\times 1.86\times 10^{-6}}{(17.4\times 10^{-3})^2}\\\\\Rightarrow F_{21}=\dfrac{74.82\times 10^{-3}}{302.76\times 10^{-6}}\\\\\Rightarrow F_{21}=0.2471\times 10^3\\\Rightarrow F_{21}=247.12\ N[/tex]

Thus, charge 2 experience a force of [tex]247.12\ N[/tex]

Answer:

The force between the two charges is 247.15 N.

Explanation:

Charge, q = 4.47 x 10^-6 C

charge, q' = 1.86 x 10^-6 C

distance, d = 17.4 mm

Let the force is F.

The force is given by the Coulomb's law:

[tex]F = \frac{K q q'}{r^2}\\\\F =\frac{9\times 10^9\times 4.47\times 10^{-6}\times1.86\times 10^{-6}}{(17.4\times 10^{-3})^2}\\\\F = 247.15 N[/tex]

An evacuated tube uses an accelerating voltage of 55 kV to accelerate electrons to hit a copper plate and produce x rays. Non-relativistically, what would be the maximum speed of these electrons?

Answers

Answer:

v = 4.4 x 10⁷ m/s

Explanation:

The kinetic energy of the electrons will be equal to the energy supplied by the electric voltage:

Kinetic Energy = Electric Energy

[tex]\frac{1}{2}mv^2 = eV[/tex]

where,

m = mass of electron = 9.1 x 10⁻³¹ kg

v = speed of electron = ?

e = charge on electron = 1.6 x 10⁻¹⁹ C

V =Voltage = 55 kV = 55000 V

Therefore,

[tex]\frac{1}{2}(9.1\ x\ 10^{-31}\ kg)(v)^2 = (1.6\ x\ 10^{-19}\ C)(55000\ V)\\\\v^2 = \frac{(2)(8.8\ x\ 10^{-16}\ J)}{9.1\ x\ 10^{-31}\ kg}\\\\v = \sqrt{19.34\ x\ 10^{14}\ m^2/s^2}[/tex]

v = 4.4 x 10⁷ m/s

A bird has a kinetic energy of 3 J and a potential energy of 25 J. What is the mechanical energy of the bird?

Answers

Answer:

28 j

Explanation:

because when you add you get 28

When placed 1.18 m apart, the force each exerts on the other is 11.2 N and is repulsive. What is the charge on each

Answers

Answer:

[tex]q=41.62\ \mu C[/tex]

Explanation:

Given that,

Force between two objects, F = 11.2 N

Distance between objects, d = 1.18 m

We need to find the charge on each objects. The force between charges is as follows :

[tex]F=\dfrac{kq^2}{r^2}\\\\q=\sqrt{\dfrac{Fr^2}{k}} \\\\q=\sqrt{\dfrac{11.2\times (1.18)^2}{9\times 10^9}} \\\\q=41.62\ \mu C[/tex]

So, the charge on each sphere is [tex]41.62\ \mu C[/tex].

A 1030 kg car has four 12.0 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles

Answers

Answer:

The required fraction is 0.023.

Explanation:

Given that

Mass of a car, m = 1030 kg

Mass of 4 wheels = 12 kg

We need to find the fraction of the total kinetic energy of the car is due to rotation of the wheels about their axles.

The rotational kinetic energy due to four wheel is

[tex]=4\times \dfrac{1}{2}I\omega^2\\\\=4\times \dfrac{1}{2}\times \dfrac{1}{2}mR^2(\dfrac{v}{R})^2\\\\=mv^2[/tex]

Linear kinetic Energy of the car is:

[tex]=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times Mv^2[/tex]

Fraction,

[tex]f=\dfrac{mv^2}{\dfrac{1}{2}Mv^2}\\\\f=\dfrac{m}{\dfrac{1}{2}M}\\\\f=\dfrac{12}{\dfrac{1}{2}\times 1030}\\\\=0.023[/tex]

So, the required fraction is 0.023.

A stone dropped from the top of a 80m high building strikes the ground at 40 m/s after falling for 4 seconds. The stone's potential energy with respect to the ground is equal to its kinetic energy … (use g = 10 m/s 2)

A) at the moment of impact.
B) 2 seconds after the stone is released.
C) after the stone has fallen 40 m.
D) when the stone is moving at 20 m/s.

At the moment of impact both Kinetic Energy and Potential Energy should be 0, right? So it can't be A), right? Or is this wrong? Is it indeed A)? Please show work and explain it well.

Answers

Answer:

Explanation:

The answer is C because the building is 80 meters high. Before the stone is dropped, it has ONLY potential energy since kinetic energy involves velocity and a still stone has no velocity. At impact, there is no potential energy because potential energy involves the height of the stone relative to the ground and a stone ON the ground has no height; here there is ONLY kinetic.

From the First Law of Thermodynamics, we know that energy cannot be created or destroyed, it can only change form. Therefore, that means that at the halfway point of 40 meters, half of the stone's potential energy has been lost, and it has been lost to kinetic energy. Here, at 40 meters, there is an equality between PE and KE. It only last for however long the stone is AT 40 meters, which is probably a millisecond of time, but that's where they are equal.

Electric field is always perpendicular to the equipotential surface.

a. True
b. False

Answers

Answer:

a: true.

Explanation:

We can define an equipotential surface as a surface where the potential at any point of the surface is constant.

For example, for a punctual charge, the equipotential surfaces are spheres centered at the punctual charge.

Or in the case of an infinite plane of charge, the equipotential surfaces will be planes parallel to our plane of charge.

Now we want to see if the electric field is always perpendicular to these equipotential surfaces.

You can see that in the two previous examples this is true, but let's see for a general case.

Now suppose that you have a given field, and you have a test charge in one equipotential surface.

So, now we can move the charge along the equipotential surface because the potential in the surface is constant, then the potential energy of the charge does not change. And because there is no potential change, then there is no work done by the electric field as the charge moves along the equipotential surface.

But the particle is moving and the electric field is acting on the particle, so the only way that the work can be zero is if the force (the one generated by the electric field, which is parallel to the electric field) and the direction of motion are perpendiculars.

Then we can conclude that the electric field will be always perpendicular to the equipotential surfaces.

The correct option is a.

At what angle torque is half of the max

Answers

At what angle torque is half of max

1) Consider an electric power transmission line that carries a constant electric current of i = 500 A. The cylindrical copper cable used to transmit this current has a diameter o = 2.00 cm and a length L = 150 km. If there are 8.43x10^28 free electrons per cubic meter (m^3 ) in the cable, calculate how long it would take for an electron to cross the entire length of the transmitter line.

Answers

Answer:  

t = 1.27 x 10⁹ s  

Explanation:  

First, we will find the volume of the wire:

Volume = V = AL  

where,  

A = Cross-sectional area of wire = πr² = π(1 cm)² = π(0.01 m)² = 3.14 x 10⁻⁴ m²  

L = Length of wire = 150 km = 150000 m  

Therefore,    

V = 47.12 m³

 

Now, we will find the number of electrons in the wire:  

No. of electrons = n = (Electrons per unit Volume)(V)  

n = (8.43 x 10²⁸ electrons/m³)(47.12 m³)  

n = 3.97 x 10³⁰ electrons  

Now, we will use the formula of current to find out the time taken by each electron to cross the wire:

[tex]I =\frac{q}{t}[/tex]  

where,  

t = time = ?  

I = current = 500 A  

q = total charge = (n)(chareg on one electron)  

q = (3.97 x 10³⁰ electrons)(1.6 x 10⁻¹⁹ C/electron)  

q = 6.36 x 10¹¹ C  

[tex]500\ A = \frac{6.36\ x\ 10^{11}\ C}{t}\\\\t = \frac{6.36\ x\ 10^{11}\ C}{500\ A}[/tex]

Therefore,

t = 1.27 x 10⁹ s

A 1,071.628 N painter needs to climb d=1.926 m up a ladder (measured along its length from the point where the ladder contacting the ground), without the ladder slipping. The uniform ladder is 12.014 m long and weighs 250 N. It rests with one end on the ground and the other end against a perfectly smooth vertical wall. The ladder rises at an angle of theta=51.96 degrees above the horizontal floor. What is friction force in unit of N that the floor must exert on the ladder? Use g = 10 m/s2 if you need to .

Answers

The frictional force in unit of N that the floor must exert on the ladder is approximately 232.216 N

The known values are;

The weight of the painter = 1,071.628 N

The height to which the painter needs to climb along the ladder = 1.926 m

The length of the ladder = 12.014 m

The weight of the ladder = 250 N

The points where one of the ladder's ends is resting = On the ground

The points where the other end of the ladder is resting = A perfectly smooth wall

The angle with which the ladder rises above the horizontal floor = 51.96°

The acceleration due to gravity, g ≈ 10 m/s²

The unknown values include;

The friction force that the floor must exert on the ladder

The strategy to be used;

At equilibrium, the sum of moments about a point is zero

Finding the moments about the point of contact where the ladder rests on the wall, P, is given as follows;

At equilibrium, the sum of clockwise, [tex]M_{CW}[/tex], moment about P = The sum of the counterclockwise, [tex]M_{CCW}[/tex]moment about P

[tex]\mathbf{M_{CCW}}[/tex] = (12.014 - 1.926) × cos(51.96°) × 1,071.628 + (12.014/2) × cos(51.96°) × 250

[tex]\mathbf{M_{CW}}[/tex] = 12.014 × cos(51.96°) × [tex]\mathbf{F_N}[/tex]

Where;

[tex]\mathbf{F_N}[/tex] = The normal reaction of the of the ground on the end of the ladder that rests on the floor

[tex]\mathbf{M_{CCW}}[/tex] = [tex]\mathbf{M_{CW}}[/tex]

∴ (12.014 - 1.926) × cos(51.96°) × 1,071.628 + (12.014/2) × cos(51.96°) × 250 = 12.014 × cos(51.96°) × [tex]F_N[/tex]

We get;

6,665.3068846 N·m =  7.40316448688 m × [tex]F_N[/tex]

[tex]\mathbf{F_N}[/tex] = 6,665.3068846 N·m/(7.40316448688 m) = 900.332135 N

The normal reaction of the floor on the ladder, [tex]\mathbf{F_N}[/tex] = 900.332135 N

Taking moment about the point the ladder rests on the floor, R, gives;

[tex]M_{CCW}[/tex] = 12.014 × sin(51.96°) × [tex]F_W[/tex]

Where;

[tex]\mathbf{F_W}[/tex] = The normal reaction at the wall

[tex]M_{CW}[/tex] = 1.926 × cos(51.96°) × 1,071.628 + (12.014/2) × cos(51.96°) × 250

At equilibrium, we have, [tex]M_{CCW}[/tex] = [tex]M_{CW}[/tex]

Therefore;

12.014 × sin(51.96°) × [tex]F_W[/tex] = 1.926 × cos(51.96°) × 1,071.628 + (12.014/2) × cos(51.96°) × 250

9.46199511627 m × [tex]F_W[/tex] = 2,197.22861125 N·m

[tex]F_W[/tex] = 2,197.22861125 N·m/(9.46199511627 m)

The reaction of the wall, [tex]\mathbf{F_W}[/tex] = 232.216206 N

We note that also at equilibrium, the sum horizontal forces = 0

The horizontal forces acting  on the ladder = The normal reaction on the, [tex]F_W[/tex] wall and the friction force on the ground, [tex]\mathbf{F_f}[/tex]

∴ At equilibrium; [tex]\mathbf{F_W}[/tex] + [tex]\mathbf{F_f}[/tex] = 0

[tex]\mathbf{F_f}[/tex] = -[tex]\mathbf{F_W}[/tex]

[tex]\mathbf{F_W}[/tex]  = 232.216206 N

Therefore;

The frictional force in unit of N that the floor must exert on the ladder, [tex]\mathbf{F_f}[/tex] = 232.216206 N 232.216 N.

(The coefficient of friction, μ = [tex]\mathbf{F_N}[/tex]/[tex]\mathbf{F_W}[/tex] = 900.332135/232.216206 ≈ 3.877).

Learn more about the force of friction here;

https://brainly.com/question/8859573

https://brainly.com/question/14111224

https://brainly.com/question/23567411

Your forehead can withstand a force of about 6.0 kN before it fractures. Your cheekbone on the other hand can only handle about 1.3 kN before fracturing. If a 140 g baseball hits your head at 30.0 m/s and stops in 0.00150 s,

Required:
a. What is the magnitude of the ball's acceleration?
b. What is the magnitude of the force that stops the baseball?
c. What force does the baseball apply to your head? Explain?
d. Are you in danger of a fracture if the ball hits you in the forehead?

Answers

Answer:

Explanation:

a)

Final velocity v = 0 ; initial velocity u = 30 m/s , time t = .0015 s

v = u + a t

0 = 30 m/s + a x .0015 s

a = - 30 / .0015

= - 20000 m / s²

b )

Magnitude of force = m x a

= .140 kg x 20,000 m / s²

= 2800 N = 2.8 kN.

c )

The force applied by baseball = 2.8 kN .

d )

Since ball can withstand a force of 1.3 kN so it will break if 2.8 kN force acts on it . SO, head will fracture.

Use the image of Potential vs. position in 1D to match each scenario with subsequent motion.

A (+) charge is placed at A and can only move in the x-direction. When it is released, what will happen?
Correct answer:
It will move to the left
A (-) charge is placed at A and can only move in the x-direction. When it is released, what will happen?
Incorrect answer:
It remains at where it was placed.
A (-) charge is placed at B and can only move in the x-direction. When it is released, what will happen?
Correct answer:
It remains at where it was placed.
A (+) charge is placed at B and pushed slightly to the right; it can only move in the x-direction. What will happen?
Correct answer:
It will move to the right.
A (-) charge is placed at B and pushed slightly to the right; it can only move in the x-direction. What will happen?
Correct answer:
It will oscillate around B
Continuing the previous exercise, determine the nature of work (for each force listed, not net force), KE and PE for:


1. A + charge moving away from a + charge, from rest, under field force only.


KE

[ Select ]

0 PE

[ Select ]

0 Work

[ Select ]

0


2. A + charge moving away from a + charge, from rest, with applied force slowing it.


Work is

[ Select ]

0


3. A - charge moving toward a + charge under field force only.


KE

[ Select ]

0 PE

[ Select ]

0 Work is

[ Select ]

0


4. A - charge moving toward a + charge with applied force slowing it.


Work is

[ Select ]

0


5. An applied force pulls a negative charge away from a positive charge.


Work is

[ Select ]


6. An applied force pushes 2 like charges together.


Work is

[ Select ]

Answers

Answer:

incorporators and it is the one you for the delay to get it for now that the new to me to the same as last week to week in my opinion of your

8. A boat moving initially at 6.5 km hr due southwest crosses a river that is flowing due south at 3 km hr.
What is the magnitude and direction of the boat relative to the ground? If the river is 1.5 mi wide how long
does it take the boat to cross?

Answers

Answer:

a)  v = 8,878 km / h, θ’= 238.8º,  b) t = 1890.9 s

Explanation:

a) In this exercise we must find the resulting speed of the boat.

Let's use trigonometry to break down the speed of the boat (v1)

            cos 225 = v₁ₓ / v₁

            sin 225 = v_{1y} / v₁

            v₁ₓ = v₁ soc 225

            v_{1y} = v₁ sin 225

            v₁ₓ = 6.5 cos 225 = -4.596 km / h

            v_{1y} = 6.5 sin 225 = -4.596 km / h

to find the velocity we add each component

           vₓ = v₁ₓ

           vₓ = - 4,596 km / h

           v_y = v_{1y} + v₂

           v_y = -4.596 - 3

           v_y = - 7,596 km / h

Now let's compose the speed

Let's use the Pythagorean theorem for the module

           v = [tex]\sqrt{v_x^2 + v_y^2 }[/tex]

           v = Ra 4.596² + 7.596²

           v = 8,878 km / h

Let's use trigonometry for the direction

          tan θ = v_y / vₓ

          θ = tan⁻¹ v_y / vₓ

          θ = tan⁻¹  ( [tex]\frac{-7.596}{ -4.596}[/tex] )

          θ = 58.8º

measured from the positive side of the x-axis

          θ'= 180 + 58.8

          θ’= 238.8º

b) Let's reduce the river width to the SI system

          x = 1.5 miles (1,609 km / 1 mile) = 2,414 km

to cross the river the speed is on the x axis which is the width of the river

         v = x / t

         t = x / v

         t = 2.414 /4.596

         t = 0.525 h

let's reduce to the SI system

         t = 0.525 h (3600 s / 1h)

         t = 1890.9 s

Other Questions
The beauties of Washington, unique in a hundred ways andsurpassing in dozens of others all cities and parks in the UnitedStates, are now enhanced many-fold by a sight found in Americaonly in the capital city. The cherry trees of Potomac Park and theTidal Basin are now abloom with their billowy clouds of pale andpink blossoms, rivaled only by those in the land of the Mikado.What is the most likely reason why Cobb begins the article withthese sentences? 4.The cost price of a television set was RM 2000. It was marked for sale at 20%higher than its cost price. Later when the model was outdated, it was sold at adiscount of 20%. Find the profit or loss. Bi 3: Cho c cu cult (hnh 3.5) vi cc kch thc ng lAB = 0,5lAC = 0,1m. Khu 3 chu tc dng ca m men M3 = 500 N. C cu trng thi cn bng. Ti thi im khu 1 v tr 1 = 900 hy tnh p lc ti cc khp ng ti B, C v A. Can someone help please giving crown1) At the store, 2 pounds of beans cost $3.15, 5 pounds of rice cost $7.50, 4 pounds of cabbages cost $4.54, and 7 pounds of alfalfa cost $8.95. Which item has the lowest unit price?(A) Beans(B) Rice(C) Cabbages(D) Alfalfa2) Peanuts are sold at the general store in the following quantities: 2 for one peanut; 50 peanuts for 99, 100 peanuts for $1.99, and 50,000 peanuts for $1000. Which quantity has the lowest unit price?(A) 1 peanut(B) 100 peanuts(C) 50 peanuts(D) 50,000 peanuts3)The ratio of trees to shrubs in the garden was 7 to 13. If there were 273 shrubs in the garden, how many trees were there?(A) 420(B) 147(C) 1911(D) 507 rupa did not help the needy peoplechange itni affirmative ___ t a la cafetera ahora? how long will it take the minute hand of a clock to turn through 240 Guided PracticeWhich model is most appropriate for the set of points?(3, 6), (1, 0), (0, 1), (1, 1.5)A.exponentialB.quadraticC.linear Find a solution to the initial value problem,y+12x=0, y(0)=2,y(0)=1. I havent received the letter yet.It might have been sent to the wrong address/Is it passive or active? what is the difference between intermarriage and interracial marriage How are the speakers of "Auspex" and "A Psalm of Life" similar? Find the volume of the figure. Round to the nearest tenth if necessary. 3. In a short essay, identify how two characters from A Raisin in the Sun serve as symbols ofat least one of the play's themes. Describe in detail how these symbols support the theme orthemes. Also analyze the effects of this symbolism on the reader's experience. Be sure toinclude examples from the text to support your answer. PLEASE HHELP!!! Bring the fraction:b/7a^2c to a denominator of 35a^3c^3a/a-4 to a denominator of 16-a^2 Given the function f(x) = 7x^2 2x + 5. Calculate the following values: Emily says that the lengths of the sides of her prism are 6 inches 5 inchesand 3 inches. Is Emily correct? Use words and numbers to explain why orwhy not. A monochromatic light falls on two narrow slits that are 4.50 um apart. The third destructive fringes which are 35 apart were formed at a screen 2m from the light source. The light source is 0.30 m from the slits. () Calculate Ym. (4 marks) Compute the wavelength of the light. (4 marks) hy pht hin 1 lun im sai v tn ti x hi