Calculate the answers to the appropriate number of significant
12.21 x 9.19 =

Answers

Answer 1
the answer for 12.22 times 9.29 is 112.2099

Related Questions

Based on the passage, why is it important that different ethnic groups worked together on the strike? The groups needed to avoid speaking to one another because they wouldn’t understand. The different ethnic groups believed in being separate. The groups needed to trick the owners. They needed to be able to unite even though they spoke different languages.

Answers

Answer:D

Explanation:I got it right

Answer:

They needed to be able to unite even though they spoke different languages.

Explanation:

Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/3 its former area. What are the pressure and velocity of the water after the contraction

Answers

Answer:

the pressure after contraction is 2×10^5 Pa

the speed after contraction is 15m/s

Explanation:

We were given Pressure P to be 3.5 x 10^5 that is Flowing with speed of 5.0 m/s,

For us to calculate pressure we need to calculate the area first as;

Let initial Area = A₁

And Final area A₂

We were told that in a horizontal pipe it contracts to 1/3 its former area. Which means

A₂= A₁/3.................

V₁ is the speed

the pressure and speed of the water after the contraction can be calculated using equation of continuity below

A₂V₂ = A₁V₁

But

If we substitute given value in the expresion we have

V₂ = (3A *5)/A

V₂ = 15m/s

Therefore, the speed after contraction is 15m/s

Now we can calculate the pressure using

Bernoulli's equation

p₁ + ½ρv₁² + ρgh₁ = p₂ + ½ρv₂² + ρgh₂

But we know that the pipe is horizontal, then "h" terms cancel out then

p₁ + ½ρv₁² = p₂ + ½ρv₂²

Making P₂ subject of formula we have

p₂ = 0.5ρ( V ₁² - v₂² ) + P₁

P₂=. 0.5 × 1000 (5² -15² ) + 3*10^5

=2×10^5 Pa

Therefore, the pressure after contraction is 2×10^5 Pa

(a)  the final speed of the water after contraction is 15 m/s.

(b) The final pressure of the water after contraction is 2.5 x 10⁵ Pa.

The given parameters;

initial pressure, P₁ = 3.5 x 10⁵ Painitial speed, v₁ = 5 m/sdensity of water, ρ = 1000 kg/m³

Let the initial area of the pipe = A₁

Apply the continuity equation to determine the final speed of the water after contraction as follows;

[tex]A_1 V_1 = A_2 V_2\\\\V_2 = \frac{A_1V_1}{A_2} \\\\V_2 = \frac{A_1 \times 5}{\frac{1}{3} A_1 } \\\\V_2 = 15 \ m/s[/tex]

The final pressure of the water after contraction is determined by applying Bernoulli's equation for horizontal pipe;

[tex]P_1 + \frac{1}{2} \rho V_1^2= P_2 + \frac{1}{2} \rho V_2^2\\\\P_2 = \frac{1}{2} \rho (V_1^2 - V_2^2) + P_1\\\\P_2 = \frac{1}{2} \times 1000(5^2 - 15^2) + 3.5 \times 10^5\\\\P_2 = 2.5 \times 10^5 \ Pa[/tex]

Learn more here:https://brainly.com/question/19566865

A 137 kg horizontal platform is a uniform disk of radius 1.53 m and can rotate about the vertical axis through its center. A 68.7 kg person stands on the platform at a distance of 1.19 m from the center, and a 25.9 kg dog sits on the platform near the person 1.45 m from the center. Find the moment of inertia of this system, consisting of the platform and its population, with respect to the axis.

Answers

Answer:

The moment of inertia is  [tex]I= 312.09 \ kg \cdot m^2[/tex]

Explanation:

From the question we are told that

    The  mass of the platform is   m =  137 kg

     The radius is  r  =  1.53 m

    The mass of the person is  [tex]m_p = 68.7 \ kg[/tex]

    The distance of the person from the center is  [tex]d_c =1.19 \ m[/tex]

    The mass of the dog is  [tex]m_d = 25.9 \ kg[/tex]

     The distance of the dog from the person [tex]d_d = 1.45 \ m[/tex]

Generally the moment of inertia of the system is mathematically represented as

      [tex]I = I_1 + I_2 + I_3[/tex]

Where [tex]I_1[/tex] is the moment of inertia of the platform which mathematically represented as

          [tex]I_1 = \frac{m * r^2}{2}[/tex]

substituting values

           [tex]I_1 = \frac{ 137 * (1.53)^2}{2}[/tex]

           [tex]I_1 = 160.35 \ kg\cdot m^2[/tex]

Also  [tex]I_2[/tex]  is the moment of inertia of the person about the axis which is mathematically represented as

          [tex]I_2 = m_p * d_c^2[/tex]

substituting values

          [tex]I_2 = 68.7 * 1.19^2[/tex]

          [tex]I_2 = 97.29 \ kg \cdot m^2[/tex]

Also  [tex]I_3[/tex]  is the moment of inertia of the dog about the axis which is mathematically represented as

          [tex]I_3 = m_d * d_d^2[/tex]

substituting values

          [tex]I_3 = 25.9 * 1.45^2[/tex]

          [tex]I_3 = 54.45 \ kg \cdot m^2[/tex]

Thus  

        [tex]I= 160.35 + 97.29 + 54.45[/tex]

        [tex]I= 312.09 \ kg \cdot m^2[/tex]

1. What was the Michelson-Morley experiment designed to do?2. When was the Michelson-Morley experiment done?3. What was the ether?4. What does the speed of a wave depend on?5. How many light beams are used in Michelson’s interferometer?6. What sort of problems did Michelson have with his first interferometer?7. How many times more sensitive was Michelson’s second interferometer?8. What did the new interferometer float on?9. What was the surprising outcome of the Michelson-Morley experiment?10. What were the implications of the experiment?11. What is the principle behind relativity?12. Who became the first American to win the Nobel Prize?13. Did Einstein base his Theory of Relativity on the Michelson-Morley experiment?

Answers

Answer:

1) designed to measure the difference in speed of light in different directions , 1887

Explanation:

1) This experiment was designed to measure the difference in speed of light in different directions and therefore find the speed of the ether.

2) was made in 1887

3) At that time it was assumed that it was the medium in which light traveled and it is everywhere

4) the speed of the wave depends on the characteristics of the medium where it travels,

for the one in a string depends on the tension and density

for an electromagnetic wave of the permittivity and permeability of the vacuum

5) In this type of interferometer the beam is divided into two rays

6) In his interrupter, he had to accurately measure the displacement of the fringes in a telescope, for which he had to minimize vibrations, he had problems in the movement of one of the arms, changes in temperature

7) In Michelsom's second experiment, the apparatus could measure 0.01 fringes by increasing the length of the arms by 11 m

8) The new interferometer floated on a bed of mercury

9) Couldn't measure any difference in speed of light in different directions

10) Physics was forced to eliminate the concept of ETHER

11) One of the principles of relativities that the speed of light is constant in all inertial efficiency systems

12) Michelson in 1907

13) It seems that Einstein did not know the results of this experiment

A block of ice with mass 5.50 kg is initially at rest on a frictionless, horizontal surface. A worker then applies a horizontal force F⃗ to it. As a result, the block moves along the x-axis such that its position as a function of time is given by x(t)=αt2+βt3, where α = 0.210 m/s2 and β = 2.04×10−2 m/s3 .
A. Calculate the velocity of the object at time t = 4.50 s .
B. Calculate the magnitude of F⃗ at time t = 4.50 s .
Express your answer to three significant figures.
C. Calculate the work done by the force F⃗ during the first time interval of 4.50 s of the motion.
Express your answer to three significant figures.

Answers

Answer:

A) 3.13 m/s

B) 5.34 N

C) W = 26.9 J

Explanation:

We are told that the position as a function of time is given by;

x(t) = αt² + βt³

Where;

α = 0.210 m/s² and β = 2.04×10^(−2) m/s³ = 0.0204 m/s³

Thus;

x(t) = 0.21t² + 0.0204t³

A) Velocity is gotten from the derivative of the displacement.

Thus;

v(t) = x'(t) = 2(0.21t) + 3(0.0204t²)

v(t) = 0.42t + 0.0612t²

v(4.5) = 0.42(4.5) + 0.0612(4.5)²

v(4.5) = 3.1293 m/s ≈ 3.13 m/s

B) acceleration is gotten from the derivative of the velocity

a(t) = v'(t) = 0.42 + 2(0.0612t)

a(4.5) = 0.42 + 2(0.0612 × 4.5)

a(4.5) = 0.9708 m/s²

Force = ma = 5.5 × 0.9708

F = 5.3394 N ≈ 5.34 N

C) Since no friction, work done is kinetic energy.

Thus;

W = ½mv²

W = ½ × 5.5 × 3.1293²

W = 26.9 J

Which is a “big idea” for space and time? Energy can be transferred but not destroyed. Forces describe the motion of the universe. The universe is very big and very old. The universe consists of matter.

Answers

Answer:

Explanation:

That Universe Consists of Matter

A certain resistor dissipates 0.5 W when connected to a 3 V potential difference. When connected to a 1 V potential difference, this resistor will dissipate:

Answers

Answer:

0.056 W

Explanation:

[tex]Power = IV[/tex]

From ohms law we know that

[tex]V= IR\\\\I= \frac{V}{R} \\\\Power= \frac{V}{R}*V\\\\Power= \frac{V^2}{R}[/tex]

Given data

P1 = 0.5 Watt

P2 = ?

V1= 3 Volts

V2= 1 Volt

Thus we can solve for the power dissipated as follows

[tex]P1= \frac{V1^2}{R1}\\\\P2= \frac{V2^2}{R2}[/tex]

[tex]\frac{P1}{P2} = \frac{V1^2}{V2^2}\\\\ P2=\frac{ V2^2}{ V1^2} *P1\\\\ P2=\frac{ 1^2}{ 3^2} *0.5= 0.055= 0.056 W[/tex]

The  resistor will dissipate 0.056 Watt

A windmill on a farm rotates at a constant speed and completes one-half of a rotation in 0.5 seconds. What is its rotation speed

Answers

Answer:

v = 6.28 m/s

Explanation:

It is given that,

A windmill on a farm rotates at a constant speed and completes one-half of a rotation in 0.5 seconds,

Number of revolution is half. It means angular velocity is 3.14 radians.

Let v is the angular speed. So,

[tex]v=\dfrac{\omega}{t}\\\\v=\dfrac{3.14}{0.5}\\\\v=6.28\ m/s[/tex]

So, the rotation speed is 6.28 m/s.

The angular velocity is the rotation speed, which is the angle of rotation

of the windmill per second, which is 2·π radians.

Response:

The rotation speed is 2·π rad/s

How can the rotational speed of the windmill be calculated?

The given parameter are;

The angle of rotation the windmill rotates in 0.5 seconds = One-half a

rotation.

Required:

The rotational speed (angular velocity)

Solution:

The angle of one rotation = 2·π radians

Angle of one-half ration = [tex]\frac{1}{2}[/tex] × 2·π radians = π radians

[tex]Rotational \ speed = \mathbf{\dfrac{Angle \ of \ rotation}{Time}}[/tex]

Which gives;

[tex]Rotational \ speed, \omega = \dfrac{\pi}{0.5 \ s} = \mathbf{2 \cdot \pi \ rad/s}[/tex]

The rotation speed is 2·π rad/s

Learn more about rotational speed here:

https://brainly.com/question/6969329

Equal currents of magnitude I travel into the page in wire M and out of the page in wire N. The direction of the magnetic field at point P which is at the same distance from both wires is

Answers

Answer:

The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.

Explanation:

Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.

3. What are the first steps that you should take if you are unable to get onto the Internet? (1 point)
O Check your router connections then restart your router.
O Plug the CPU to a power source and reboot the computer.
O Adjust the display properties and check the resolution.
Use the Control Panel to adjust the router settings.​

Answers

Answer:

Check your router connections then restart your router.

Explanation:

Answer:

Check your router connections then restart your router.

Explanation:

Most internet access comes from routers so the problem is most likely the router.

Two identical planets orbit a star in concentric circular orbits in the star's equatorial plane. Of the two, the planet that is farther from the star must have

Answers

Answer:

The planet that is farther from the star must have a time period greater.

Explanation:

We can determine the ratio of the period's planet with the radius of the circular orbit in the star's equatorial plane:

[tex] T = 2\pi*\sqrt{\frac{r^{3}}{GM}} [/tex]     (1)

Where:

r: is the radius of the circular orbit of the planet and the star

T: is the period

G: is the gravitational constant

M: is the mass of the planet

From equation (1) we have:

[tex] T = 2\pi*\sqrt{\frac{r^{3}}{GM}} = k*r^{3/2} [/tex]   (2)          

Where k is a constant

From equation (2) we have that of the two planets, the planet that is farther from the star must have a time period greater.

I hope it helps you!

A long, thin solenoid has 450 turns per meter and a radius of 1.17 cm. The current in the solenoid is increasing at a uniform rate did. The magnitude of the induced electric field at a point which is near the center of the solenoid and a distance of 3.45 cm from its axis is 8.20×10−6 V/m.
Calculate di/dt
di/dt = _________.

Answers

Answer:

[tex]\frac{di}{dt} = 7.31 \ A/s[/tex]

Explanation:

From the question we are told that  

     The  number of turns is  [tex]N = 450 \ turns[/tex]

      The  radius is  [tex]r = 1.17 \ cm = 0.0117 \ m[/tex]

       The  position from the center consider is  x =  3.45 cm  =  0.0345 m

       The  induced emf is  [tex]e = 8.20 *10^{-6} \ V/m[/tex]

Generally according to Gauss law

        [tex]\int\limits { e } \, dl = \mu_o * N * \frac{di}{dt } * A[/tex]

=>    [tex]e * 2\pi x = \mu_o * N * \frac{d i }{dt } * A[/tex]

Where A is the  cross-sectional area of the solenoid which is mathematically represented as

                [tex]A = \pi r ^2[/tex]

=>      [tex]e * 2\pi x = \mu_o * N * \frac{d i }{dt } * \pi r^2[/tex]

=>       [tex]\frac{di}{dt} = \frac{2e * x }{\mu_o * N * r^2}[/tex]ggl;

Here  [tex]\mu_o[/tex] is the permeability of free space with value

          [tex]\mu_o = 4\pi * 10^{-7} \ N/A^2[/tex]

=>     [tex]\frac{di}{dt} = \frac{2 * 8.20*10^{-6} * 0.0345 }{ 4\pi * 10^{-7} * 450 * (0.0117)^2}[/tex]

=>      [tex]\frac{di}{dt} = 7.31 \ A/s[/tex]

The value of di/dt from the given values of the solenoid electric field is;

di/dt = 7.415 A/s

We are given;

Number of turns; N = 450 per m

Radius; r = 1.17 cm = 0.0117 m

Electric Field; E = 8.2 × 10⁻⁶ V/m

Position of electric field; r' = 3.45 cm = 0.0345 m

According to Gauss's law of electric field;

∫| E*dl | = |-d∅/dt |

Now, ∅ = BA = μ₀niA

where;

n is number of turns

i is current

A is Area

μ₀ = 4π × 10⁻⁷ H/m

Thus;

E(2πr') = (d/dt)(μ₀niA)  (negative sign is gone from the right hand side because we are dealing with magnitude)

Since we are looking for di/dt, then we have;

E(2πr') = (di/dt)(μ₀nA)

Making di/dt the subject of the formula gives;

di/dt = E(2πr')/(μ₀nA)

Plugging in the relevant values gives us;

di/dt = (8.2 × 10⁻⁶ × 2 × π × 0.0345)/(4π × 10⁻⁷ × 450 × π × 0.0117²)

di/dt = 7.415 A/s

Read more at; https://brainly.com/question/14003638

If a disk rolls on a rough surface without slipping, the acceleration of the center of gravity (G) will _ and the friction force will b

Answers

Answer:

Will be equal to alpha x r; less than UsN

A 2100 kg truck traveling north at 38 km/h turns east and accelerates to 55 km/h. (a) What is the change in the truck's kinetic energy

Answers

Answer:

Change in kinetic energy (ΔKE) = 12.8 × 10⁴ J

Explanation:

Given:

Mass of truck(m) = 2,100 kg

Initial speed(v1) = 38 km/h = 38,000 / 3600 = 10.56 m/s

Final speed(v2) = 55 km/h = 55,000 / 3600 = 15.28 m/s

Find:

Change in kinetic energy (ΔKE)

Computation:

Change in kinetic energy (ΔKE) = 1/2(m)[v2² - v1²]

Change in kinetic energy (ΔKE) = 1/2(2100)[15.28² - 10.56²]

Change in kinetic energy (ΔKE) = 1,050[233.4784 - 111.5136]

Change in kinetic energy (ΔKE) = 1,050[121.9648]

Change in kinetic energy (ΔKE) = 128063.04

Change in kinetic energy (ΔKE) = 12.8 × 10⁴ J

A block of mass M rests on a block of mass M1 which is on a tabletop. A light string passes over a frictionless peg and connects the blocks. The coefficient of kinetic friction between the blocks and between M1 and the tabletop is the same. A force F pulls the upper block to the left and the lower block to the right. The blocks are moving at a constant speed.
Determine the mass of the upper block. (Express your answer to three significant figures.)

Answers

Answer:

M = F/3μ g - M₁/3

Explanation:

To solve this exercise we must use the equilibrium conditions translations

         ∑ F = 0

In the attachment we can see a free body diagram of each block

Block M (upper)

X axis

      fr₁ + F₂ -F = 0

      F = fr₁ + F₂              (1)

axis

     N₁-W = 0

     N₁ = Mg

the friction force has the formula

     fr₁ = μ N₁

     F = μ Mg + F₂

bottom block

X axis

     F₂ - fr₁ - fr₂ = 0

     F₂ = fr₁ + fr₂

Y axis

     N - W₁ -W = 0

     N = g (M + M₁)

we substitute

       F₂ = μ Mg + μ (M + M1) g

       F₂ = μ g (2M + M₁)

we substitute in 1

      F = μ M g + μ g (2M + M₁)

      F = μ g (3M + M₁)

we look for mass M    

      M = (F -  μ g M₁)/ 3μ g

      M = F/3μ g - M₁/3

the exercise does not have numerical data

A rigid container holds 4.00 mol of a monatomic ideal gas that has temperature 300 K. The initial pressure of the gas is 6.00 * 104 Pa. What is the pressure after 6000 J of heat energy is added to the gas?

Answers

Answer:

The final pressure of the monoatomic ideal gas is 8.406 × 10⁶ pascals.

Explanation:

When a container is rigid, the process is supposed to be isochoric, that is, at constant volume. Then, the equation of state for ideal gases can be simplified into the following expression:

[tex]\frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}}[/tex]

Where:

[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Initial and final pressures, measured in pascals.

[tex]T_{1}[/tex], [tex]T_{2}[/tex] - Initial and final temperatures, measured in Kelvins.

In addtion, the specific heat at constant volume for monoatomic ideal gases, measured in joules per mole-Kelvin is given by:

[tex]\bar c_{v} = \frac{3}{2}\cdot R_{u}[/tex]

Where:

[tex]R_{u}[/tex] - Ideal gas constant, measured by pascal-cubic meters per mole-Kelvin.

If [tex]R_{u} = 8.314\,\frac{Pa\cdot m^{3}}{mol\cdot K}[/tex], then:

[tex]\bar c_{v} = \frac{3}{2}\cdot \left(8.314\,\frac{Pa\cdot m^{2}}{mol\cdot K} \right)[/tex]

[tex]\bar c_{v} = 12.471\,\frac{J}{mol\cdot K}[/tex]

And change in heat energy ([tex]Q[/tex]), measured by joules, by:

[tex]Q = n\cdot \bar c_{v}\cdot (T_{2}-T_{1})[/tex]

Where:

[tex]n[/tex] - Molar quantity, measured in moles.

The final temperature of the monoatomic ideal gas is now cleared:

[tex]T_{2} = T_{1} + \frac{Q}{n\cdot \bar c_{v}}[/tex]

Given that [tex]T_{1} = 300\,K[/tex], [tex]Q = 6000\,J[/tex], [tex]n = 4\,mol[/tex] and [tex]\bar c_{v} = 12.471\,\frac{J}{mol\cdot K}[/tex], the final temperature is:

[tex]T_{2} = 300\,K + \frac{6000\,J}{(4\,mol)\cdot \left(12.471\,\frac{J}{mol\cdot K} \right)}[/tex]

[tex]T_{2} = 420.279\,K[/tex]

The final pressure of the system is calculated by the following relationship:

[tex]P_{2} = \left(\frac{T_{2}}{T_{1}}\right) \cdot P_{1}[/tex]

If [tex]T_{1} = 300\,K[/tex], [tex]T_{2} = 420.279\,K[/tex] and [tex]P_{1} = 6.00\times 10^{4}\,Pa[/tex], the final pressure is:

[tex]P_{2} = \left(\frac{420.279\,K}{300\,K} \right)\cdot (6.00\times 10^{4}\,Pa)[/tex]

[tex]P_{2} = 8.406\times 10^{4}\,Pa[/tex]

The final pressure of the monoatomic ideal gas is 8.406 × 10⁶ pascals.

A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60

Answers

Answer:

-0.73mA

Explanation:

Using amphere's Law

ε =−dΦB/ dt

=−(2.6T)·(7.30·10−4 m2)/ 1.00 s

=−1.9 mV

Using ohms law

ε=V =IR

I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA

Polarized light passes through a polarizer. If the electric vector of the polarized light is horizontal what, in terms of the initial intensity I0, is the intensity of the light that passes through a polarizer if the polarizer is tilted 22.5° from the horizontal?

Answers

Answer: I0*0.853

Explanation:

Ok, the Malus's law says that:

If you have light polarized along a given line with an intensity I0, and it passes through a polaroid which axis of polarization forms an angle θ with respect to the polarization of the light, then the intensity of the resulting beam is:

I(θ) = I0*cos^2(θ)

For example, if the axis of the polaroid is exactly the same as the axis of polarization of the light beam that will impact it, then we have θ = 0°, and the equation above says that the intensity of the beam will not change.

In this particular case, we have that the intensity of the light is I0, and the angle is θ = 22.5°

Then:

I(22.5°) = I0*cos^2(22.5°) = I0*0.853

A string of holiday lights has 15 bulbs with equal resistances. If one of the bulbs
is removed, the other bulbs still glow. But when the entire string of bulbs is
connected to a 120-V outlet, the current through the bulbs is 5.0 A. What is the
resistance of each bulb?

Answers

Answer:

Resistance of each bulb = 360 ohms

Explanation:

Let each bulb have a resistance r .

Since, even after removing one of the bulbs, the circuit is closed and the other bulbs glow. Therfore, the bulbs are connected in Parallel connection.

[tex] \frac{1}{r(equivalent)} = \frac{1}{r1} + \frac{1}{r2} + + + + \frac{1}{r15} [/tex]

[tex] \frac{1}{r(equivalent)} = \frac{15}{r} [/tex]

R(equivalent) = r/15

Now, As per Ohms Law :

V = I * R(equivalent)

120 V = 5 A * r/15

r = 360 ohms

At what temperature (degrees Fahrenheit) is the Fahrenheit scale reading equal to:_____
(a) 3 times that of the Celsius and
(b) 1/5 times that of the Celsius

Answers

Answer:

C = 26.67° and F = 80°C = -20° and F = -4°

Explanation:

Find:

3 times that of the Celsius and 1/5 times that of the Celsius

Computation:

F = (9/5)C + 32

3 times that of the Celsius

If C = x

So F = 3x

So,

3x = (9/5)x + 32

15x = 9x +160

6x = 160

x = 26.67

So, C = 26.67° and F = 80°

1/5 times that of the Celsius

If C = x

So F = x/5

So,

x/5 = (9/5)x + 32

x = 9x + 160

x = -20

So, C = -20° and F = -4°

on which principle does water pump work ?​

Answers

Answer:

The working principle of a water pump mainly depends upon the positive displacement principle as well as kinetic energy to push the water.

Explanation:

it mainly depends upon the positive displacement principle and also kinetic energy to push water. hope this hepls!

Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/2 its former radius. a. What are the pressure and velocity of the water after the contraction

Answers

Answer:

Explanation:

Using the Continuity equation

v X A = v' xA'

so if A is 1/2of A' then A velocity must be 2 times the A'

after-contraction v = 2 x 5.0m/s = 10m/s

Using the Bernoulli equation

p₁ + ½ρv₁² + ρgh₁ = p₂ + ½ρv₂² + ρgh₂

, the "h" terms cancel

3.5 x 10^ 5Pa + ½ x 1000kg/m³x (5.0m/s)² = p₂ + ½ x 1000kg/m³ x (10m/s)²

p₂ = 342500pa

When an ideal gas undergoes a slow isothermal expansion, A : the work done by the environment is the same as the energy absorbed as heat. B : the increase in internal energy is the same as the work done by the environment. C : the work done by the gas is the same as the energy absorbed as heat. D : the increase in internal energy is the same as the heat absorbed. E : the increase in internal energy is the same as the work done by the gas.

Answers

Explanation:

When an ideal gas undergoes a slow isothermal expansion, following phenomenon occur

1. Work done bu the gas = Energy absorbed as heat.

2. Work done by environment = Energy absorbed as heat.

3. Increase in internal energy= Heat absorbed= work done by gas = work done by environment.

Hence all option are correct.

Increase in internal energy is equal to the heat absorbed or work done by gas or environment. All the statements are correct.

If an ideal gas undergoes a slow isothermal expansion,

Work done by the gas is directly proportional energy absorbed as heat.

Work done by environment  is directly proportional energy  absorbed as heat.

Increase in internal energy is equal to the heat absorbed or work done by gas or environment.

To know more about the Ideal gas,

https://brainly.com/question/8711877

A rollercoaster is not moving and has 50,000 J of GPE at the top of a hill. How much kinetic energy will it have halfway down the hill, assuming there is no friction

Answers

Answer:

The kinetic energy is 25000 J

Explanation:

At the top of the hill, the potential energy = 50000 J

the potential energy = mgh

where m is the mass

g is the acceleration due to gravity

h is the vertical height at the top of the hill

Note the mass of the roller coaster and acceleration due to gravity will always remain constant, so that halfway down the hill, only the height changes by half its initial value.

This means that at halfway down the hill, the potential energy of the roller coaster is

PE = [tex]mg\frac{h}{2}[/tex] = 50000/2 = 25,000 J

We also know that the total mechanical energy of a system is given as

ME = KE + PE = constant

where

ME is the mechanical energy of the system

PE is the potential energy of the system

KE is the kinetic energy of the system

Let us now analyse.

At the top of the hill, all the mechanical energy of the roller coaster is equal to its potential energy due to the height on the hill above ground, since the roller coaster is not moving (kinetic energy is energy due to motion). Halfway down, the mechanical energy of the roller coaster is due to both the kinetic energy and the potential energy, since the roller coaster is moving down, and is still at a given height above the ground. Having all these in mind, we can proceed and say that at halfway down the hill, ignoring friction,

ME = KE + PE = constant

50000 = KE + 25000

therefore

KE = 25000 J

Two football teams, the Raiders and the 49ers are engaged in a tug-of-war. The Raiders are pulling with a force of 5000N. Which of the following is an accurate statement?
A. The tension in the rope depends on whether or not the teams are in equilibrium.
B. The 49ers are pulling with a force of more than 5000N because of course they’d be winning.
C. The 49ers are pulling with a force of 5000N.
D. The tension in the rope is 10,000N.
E. None of these statements are true.

Answers

Answer:

E. None of these statements are true.

Explanation:

We can't say the exact or approximate amount of tension on the rope, since we do know for sure from the statement who is winning.

for A, the tension on the rope does not depend on if both teams pull are in equilibrium.

for B, the 49ers would be pulling with a force more than 5000 N, if they were winning. The problem is that we can't say with all confidence that they'd be winning.

for C, we don't know how much tension exists on the rope, and its direction, so we can't work out how much tension the 49ers are pulling the rope with.

for D,  just as for C above, we can't work out how much tension there is on the rope, since we do not know how much force the 49ers are pulling with.

we go with option E.

A 78.5-kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.

Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?

Answers

Answer:

A) V_air = 1.295 L

B) Volume is not reasonable

Explanation:

A) Let;

m be total mass of the man

m_p be the mass of the man that pulled out of the water because of the buoyant force that pulled out of the lung

m_3 be the mass above the water with the empty lung

m_5 be the mass above the water with full lung

F_b be the buoyant force due to the air in the lung

V_a be the volume of air inside man's lungs

w_p be the weight that the buoyant force opposes as a result of the air.

Now, we are given;

m = 78.5 kg

m_3 = 3.2% × 78.5 = 2.512 kg

m_5 = 4.85% × 78.5 = 3.80725 kg

Now, m_p = m_5 - m_3

m_p = 3.80725 - 2.512

m_p = 1.29525 kg

From archimedes principle, we have the formula for buoyant force as;

F_b = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

F_b = w_p = 1.29525 × 9.81

F_b = 12.7064 N

As earlier said,

F_b = (ρ_water × V_air × g)

Thus;

V_air = F_b/(ρ_water × × g)

V_air = 12.7064/(1000 × 9.81)

V_air = 1.295 × 10^(-3) m³

We want to convert to litres;

1 m³ = 1000 L

Thus;

V_air = 1.295 × 10^(-3) × 1000

V_air = 1.295 L

B) From research, the average lung capacity of an adult human being is 6 litres of air.

Thus, the calculated lung volume is not reasonable

The Milky Way has a diameter (proper length) of about 1.2×105 light-years. According to an astronaut, how many years would it take to cross the Milky Way if the speed of the spacecraft is 0.890 c?

Answers

Answer:

t = 134834.31 years

Explanation:

First we find the speed of the ship:

v = 0.890 c

where,

v = speed of the ship = ?

c = speed of light = 3 x 10⁸ m/s

Therefore, using the values, we get:

v = (0.89)(3 x 10⁸ m/s)

v = 2.67 x 10⁸ m/s

Now, we find the distance in meters:

Distance = s = (1.2 x 10⁵ light years)(9.461 x 10¹⁵/1 light year)

s = 11.35 x 10²⁰ m

Now, for the time we use the following equation:

s = vt

t = s/v

t = (11.35 x 10²⁰ m)/(2.67 x 10⁸ m/s)

t = (4.25 x 10¹² s)(1 h/3600 s)(1 day/24 h)(1 year/365 days)

t = 134834.31 years

An unpolarized beam of light with an intensity of 4000 W/m2 is incident on two ideal polarizing sheets. If the angle between the two polarizers is 0.429 rad, what is the emerging light intensity

Answers

Answer:

The intensity is  [tex]I_2 = 1654 \ W/m^2[/tex]

Explanation:

From the question we are told that

    The intensity of the unpolarized light is  [tex]I_o = 4000 \ W/m^2[/tex]

    The  angle between the ideal polarizing sheet is  [tex]\theta = 0.429 \ rad = 0.429 * 57.296 = 24.58^o[/tex]

Generally the intensity of  light emerging from the first polarizer is mathematically represented as

               [tex]I_2 = \frac{I_o}{2}[/tex]

substituting values

               [tex]I_1 = \frac{4000}{2}[/tex]

                [tex]I_1 = 2000 \ W/m^2[/tex]

Then the intensity of  incident light emerging from the second polarizer is mathematically represented by Malus law as

                 [tex]I_2 = I_1 cos^2 (\theta )[/tex]

substituting values

                [tex]I_2 = 2000 * [cos (24.58)]^2[/tex]

                [tex]I_2 = 1654 \ W/m^2[/tex]

Two blocks A and B have a weight of 11 lb and 5 lb , respectively. They are resting on the incline for which the coefficients of static friction are μA = 0.16 and μB = 0.23. Determine the incline angle θ for which both blocks begin to slide. Also find the required stretch or compression in the connecting spring for this to occur. The spring has a stiffness of k = 2.1 lb/ft .

Answers

Answer:

[tex]\theta=10.20^{\circ}[/tex]  

[tex]\Delta l=0.10 ft[/tex]    

Explanation:

First of all, we analyze the system of blocks before starting to move.

[tex]\Sum F_{x}=P_{A}sin(\theta)+P_{B}sin(\theta)-F_{fA}-F_{fB}=0[/tex]  

[tex]\Sum F_{x}=11sin(\theta)+5sin(\theta)-0.16N_{A}-0.23N_{B}=0[/tex]

[tex]11sin(\theta)+5sin(\theta)-0.16P_{A}cos(\theta)-0.23P_{B}cos(\theta)=0[/tex]

[tex]11sin(\theta)+5sin(\theta)-0.16*11cos(\theta)-0.23*5cos(\theta)=0[/tex]

[tex]11sin(\theta)+5sin(\theta)-0.16*11cos(\theta)-0.23*5cos(\theta)=0[/tex]  

[tex]16sin(\theta)-2.91cos(\theta)=0[/tex]  

[tex]tan(\theta)=0.18[/tex]  

[tex]\theta=arctan(0.18)[/tex]  

[tex]\theta=10.20^{\circ}[/tex]  

Hence, the incline angle θ for which both blocks begin to slide is 10.20°.

Now, if we do a free body diagram of block A we have that after the block moves, the spring force must be taken into account.  

[tex]P_{A}sin(\theta)-F_{fA}-F_{spring}=0[/tex]

Where:

[tex]F_{spring} = k\Delta l=2.1\Delta l[/tex]

[tex]P_{A}sin(\theta)-0.16*11cos(\theta)-2.1\Delta l=0[/tex]

[tex]\Delta l=\frac{11sin(\theta)-0.16*11cos(\theta)}{2.1}[/tex]

[tex]\Delta l=0.10 ft[/tex]    

Therefore, the required stretch or compression in the connecting spring is 0.10 ft.

I hope it helps you!

(a) The inclined angle for which both blocks begin to slide is 10.3⁰.

(b) The compression of the spring is 0.22 ft.

The given parameters;

mass of block A, = 11 lbmass of block B, = 5 lbcoefficient of static friction for A, = 0.16coefficient of static friction for B, = 0.23 spring constant, k = 2.1 lb/ft

The normal force on block A and B:

[tex]F_n_A = m_Agcos \ \theta\\\\F_n_B = m_Bgcos \ \theta[/tex]

The frictional force on block A and B:

[tex]F_f_A = \mu_s_AF_n_A \\\\F_f_B = \mu_s_BF_n_A[/tex]

The net force on the blocks when they starts sliding;

[tex](m_Ag sin \theta+ m_Bgsin\theta) - (F_f_A + F_f_B) = 0\\\\m_Ag sin \theta+ m_Bgsin\theta = F_f_A + F_f_B\\\\m_Ag sin \theta+ m_Bgsin\theta = \mu_Am_Agcos\theta \ + \ \mu_Bm_Bgcos\theta\\\\gsin\theta(m_A + m_B) = gcos\theta (\mu_Am_A + \mu_Bm_B)\\\\\frac{sin\theta}{cos \theta} = \frac{\mu_Am_A\ + \ \mu_Bm_B}{m_A\ + \ m_B} \\\\tan\theta = \frac{(0.16\times 11) \ + \ (0.23 \times 5)}{11 + 5} \\\\tan\theta = 0.1819\\\\\theta = tan^{-1}(0.1819)\\\\\theta = 10.3 \ ^0[/tex]

The change in the energy of the blocks is the work done in compressing the spring;

[tex]\Delta E = W\\\\F_A (sin \theta )d- \mu F_n d= \frac{1}{2} kd^2\\\\F_A sin\theta \ - \ \mu F_A cos\theta = \frac{1}{2} kd\\\\d = \frac{2F_A(sin\theta - \mu cos \theta) }{k} \\\\d = \frac{2\times 11(sin \ 10.3\ - \ 0.16\times cos \ 10.3) }{2.1} \\\\d = 0.22 \ ft[/tex]

Learn more here:https://brainly.com/question/16892315

"A soap film is illuminated by white light normal to its surface. The index of refraction of the film is 1.33. Wavelengths of 479 nm and 798 nm and no wavelengths between are intensified in the reflected beam. The thickness of the film is"

Answers

Answer:

 t = 8.98 10⁻⁷ m

Explanation:

This is an exercise in interference by reflection, let's analyze what happens on each surface of the film.

* When the light ray shifts from a medium with a lower refractive index to a medium with a higher refractive index, the reflected ray has a reflection of 180

* The beam when passing to the middle its wavelength changes

           λ = λ₀ / n

if we take this into account, the constructive interference equation for normal incidence is

            2t = (m + ½) λ₀ / n

let's apply this equation to our case

     

for λ₀ = 479 nm = 479 10⁻⁹ m

             t = (m + ½) 479 10⁻⁹ / 1.33

             (m + ½) = 1.33 t / 479 10⁻⁹

for λ₀ = 798 nm = 798 10⁻⁹ m

             t = (m' + ½) 798 10⁻⁹ /1.33

               

            (m' + ½) = 1.33 t / 798 10⁻⁹

as they tell us that no other constructive interference occurs between the two wavelengths, the order of interference must be consecutive, let's write the two equat⁻ions

             

               (m + ½) = 1.33 t / 479 10⁻⁹

             ((m-1) + ½) = 1.33 t / 798 10⁻⁹

             (m + ½) = 1.33 t / 798 10⁻⁹ +1

resolve

             1.33 t / 479 10⁻⁹ = 1.33 t / 798 10⁻⁹ +1

             

             1.33 t / 479 10⁻⁹ = (1.33t + 798 10⁻⁹) / 798 10⁻⁹

             1.33t = (1 .33t + 798 10⁻⁹) 479/798

             1.33t = (1 .33t + 798 10⁻⁹) 0.6

             1.33 t = 0.7983 t + 477.6 10⁻⁹

             t (1.33 - 0.7983) = 477.6 10⁻⁹

             t = 477.6 10⁻⁹ /0.5315

             t = 8.98 10⁻⁷ m

Other Questions
PLEASE HELPPPPA standard I.Q. test produces normally distributed results with a mean of 100 and a standard deviation of 15 for the city of New York. Out of approximately 8,400,000 citizens, how many of these people would have I.Q.s below 67? Choose the option that completes the sentence and describes the image using the impersonal se. Me alegro mucho porque en esta tienda, s ________ (vender) helado. no se venden se venden no se vende se vende The temperature difference between the inside and the outside of a house on a cold winter day is 33F. (a) Express this difference on the Celsius scale. 0.55 Incorrect: Your answer is incorrect. C (b) Express this difference on the Kelvin scale. 273.7 Incorrect: Your answer is incorrect. K Sarah has $20 saved. She gets $10 per week for her allowance, and she saves her allowance for the next 3 weeks. At the end of the week, she gets $150 in birthday money. How much money will she have after the 3 weeks? Which of the following sets of equations represents this problem? If a company is experiencing increasing pressures for cost reduction for its products, which of the following courses of action should it consider?a. sell licenses to produce the products internationally. b. explore opportunities for exporting or create a wholly-owned subsidiary within a country. c. establish a joint venture with a foreign company. d. pursue a franchising model for the company. Solve without calculator log54 base 10 completa con los pronombres demostrativos: a)...son mis libros(menos cerca)b)... es mi hermana(lejos) c)... es mi sobrina(cerca) d)... es mi casa(menos cerca) e)...es su bolso(lejos) f)... es mi perro(cachorro) (cerca) On one day, the stock of Seraj Food Technologies went up by $30\%.$ The next day, the stock fell by $30\%.$ Over the two days, the stock fell overall by $x$ percent. What is $x$? Ano ang pinagkaiba ng salawikain at kasabihan? Question 17 of 502 PointsWhich type of selection is the most likely to result in Speciation?A. Stabilizing selectionB. Directional selectionOC. Disruptive selectionD. Artificial selectionReset Selection What number could be added to 0.40 mL for the level pf precision to be 0.01mL? PLEASE HELP WITH THIS QUESTION what important connections can you make between civic responsibility and possible career paths? The top speed of this coaster is128 mph. What is the tallest peakof this coaster?** Hint... convert mph into m/s.* 2. According to this article, whathappens to a person's sense ofindividuality when they follow alarger group?A It shuts down.B It grows weaker.C It grows stronger.D It remains the same. 8) The perimeter of a rectangle is 20x2 + xy - 7y2 and one of it's sides is7x2 - xy. Find the other side. what is negative 20 plus negative 15 How can you define a solution to an equation? The area of a rectangle is x^2 + 4x - 5. If we factored this out, we would get the lengths and widths of the sides of the rectangle. For what value(s) of x would these side lengths not make any sense? Why? A student estimated the sum 7.95 + 8.11 + 78.5 + 8.05 + 79.4 + 0.815 as: All the numbers begin with a 7 or 8, so use cluster estimation. 8 + 8 + 80 + 8 + 80 + 0.8 = 184.8 1. What is the difference between an exponential growth and exponential decay? 2. What is an example equation for expoential growth and an example equation for exponential decay?