Answer:
Force = 25 N
Explanation:
Given:
Work done = 50 J
Displacement = 2 m
Find:
Force
Computation:
Work done = Force x displacement
50 = Force x 2
Force = 25 N
According to Newton's first law, an object at rest will _____.
never move
stay at rest forever
start moving
stay at rest unless moved by force
Calculate the kinetic energy of an 80,000 kg airplane that is flying with a velocity of 167 m/s.
Answer:
1115560000 J
Explanation:
1/2 * 80,000 * 167^2 m/s = 1115560000 J
if the water measures -5 feet at low tide and 3ft at high tide what is the tidal range
Answer:
8 feet
................
At the base of a hill, a 90 kg cart drives at 13 m/s toward it then lifts off the accelerator pedal). If the cart just barely makes it to the top of this hill and stops, how high must the hill be?
Answer:
8.45 m
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 90 Kg
Initial velocity (u) = 13 m/s
Final velocity (v) = 0 m/s
Height (h) =?
NOTE: Acceleration due to gravity (g) = 10 m/s²
The height of the hill can be obtained as follow:
v² = u² – 2gh (since the cart is going against gravity)
0² = 13² – (2 × 10 × h)
0 = 169 – 20h
Rearrange
20h = 169
Divide both side by 20
h = 169/20
h = 8.45 m
Therefore, the height of the hill is 8.45 m
2. A uniform wire of resistance R is stretched until its length doubles. Assuming its density and resistivity remain constant, what is its new resistance
Answer:
Resistance is quadrupled.
Explanation:
Solving this requires us to use the formula of resistivity.
Resistivity is usually said to be the measure of the resistance of a particular size of any given material to the electrical conduction. It is mathematically represented as
ρ = RA/L, where
ρ = the resistivity of the given material
R = the resistance of the material
A = the area of the material
L = length of the material.
From the question, we're told that the length is doubled with the resistivity and density remaining constant. If the density is constant, this makes the volume constant as well.
Volume, V = A * L. We're then told that the length is doubled. If the length is doubled, for the volume to remain constant, then the area must be halved.
Volume, V = A/2 * 2L
Making, Resistance R, subject of the formula, we have
R = ρL/A.
Since resistivity is constant and the area is halved, we then have
R = 2L / (1/2A)
R = 4L / A
If the length is doubled, we have the resistance to be quadrupled
Which time interval has the greatest speed?
Answer:
es la 2
Explanation:
epero que te curva
An 5 kg object moving at 10 m/s will have a momentum equaling ____________.
15 kg m/s/s
15 kg m/s
Answer:
50Kgm/s
Explanation:
Momentum=Mass*Velocity
P=mv
Given Mass=5Kg. Given Velocity=10m/s
Momentum=5*10=50Kgm/s
On a 10 kg cart (shown below), the cart is brought up to speed with 50N of force for 7m, horizontally. At this point (A), the cart begins to experience an average frictional force of 15N throughout the ride.
Find:
a) The total energy at (A)
b) The velocity at (B)
c) The velocity at (C)
d) Can the cart make it to Point (D)? Why or why not?
Highest density of electrostatic charges in a metal is found where
I don't know the answer but I just want points sorry
A student's backpack has a mass of 9.6 kg. The student applies a force of 94.08 N [up] while walking through 1.4 km [E] to get to school. Calculate the work done by the student on the backpack
The student does zero work on the backpack because the upward force applied by the student is acting perpendicular to the backpack's displacement parallel to the ground.
(will give brainliest to whoever is correct and shows reasoning) What is the acceleration of an object that has a velocity of 60m/s and is moving in a circle of radius 50m?
Answer:
5.0/s
Explanation:
Answer:
b and a it is this that abewsr
Rhodium is in period 5 of the periodic table. What does this tell you about this element
Answer:
. It is an extraordinarily rare, silvery-white, hard, corrosion-resistant, and chemically inert transition metal. It is a noble metal and a member of the platinum group.
Explanation:
A ball is sitting at the top of a ramp. As the ball rolls down the ramp, the potential energy of the ball decreases, what happens to the potential energy as the ball moves
Answer:
the potential energy decreases as it is converted to kinetic energy.
Explanation:
As things move, their potential energy converts to kinetic energy to power them along. When a ball rolls down the top of a ramp, all the potential energy it accumulated at the top of the ramp converts to kinetic energy to help it roll down. In other words, its potential energy decreases as its kinetic energy increases.
Kevin decides to soup up his car by replacing the car's wheels with ones that have 1.4 times the diameter of the original wheels. Note that the speedometer in a car is calibrated based on the tire's diameter and on the distance the tire covers in each revolution. (a) Will the reading of the speedometer change
Answer:
No.
Explanation:
Given that Kevin decides to soup up his car by replacing the car's wheels with ones that have 1.4 times the diameter of the original wheels. Note that the speedometer in a car is calibrated based on the tire's diameter and on the distance the tire covers in each revolution. (a) Will the reading of the speedometer change ?
Considering the formula
V = wr
Where
V = linear speed
W = angular speed
r = radius of the wheel.
But W = 2πrf
Where the the 2 and pi are constant. The radius of the first wheel will be small but counter balance with the larger frequency.
While the radius of the second wheel may be large but it will be of a small frequency.
We can therefore conclude that the reading on the speedometer will not change. Because speedometer will read the linear speed V.
If an observer on Earth sees a total lunar eclipse, Group of answer choices everyone on the nighttime side of Earth is seeing it. someone elsewhere on Earth must be seeing a partial lunar eclipse. someone elsewhere on Earth must be seeing a total solar eclipse
Answer:
everyone on the nighttime side of Earth is seeing it.
Explanation:
A lunar eclipse is a phenomenon that occurs when the Earth comes between the Moon and the Sun thereby causing it to cover the Moon with its shadow.
Simply stated, lunar eclipse takes place when the Moon passes or moves through the Earth's shadow thereby blocking any ray of sunlight from reaching the Moon. Thus, the full moon appears deep red (blood moon).
Also, a lunar eclipse would occur only when the Sun, Earth, and Moon are closely aligned to form a straight line known as the syzygy.
There are three (3) types of lunar eclipse and these are;
1. Total lunar eclipse.
2. Partial lunar eclipse.
3. Penumbra lunar eclipse.
Generally, if an observer on Earth sees a total lunar eclipse, everyone on the nighttime side of Earth is seeing it because it's quite easy to see a total lunar eclipse while the full moon passes through the innermost part of the shadow of the earth.
Calculate the momentum of a 10 kg bowling ball rolling at 2m/s towards north.
Answer:
momentum=mass x velocity= 10 x 2 = 20kgm/s
Define Mechanical advantage
fe effort of 2125N is used to lift a Lead of 500N
through a Verticle high of 2.N using a buly System
if the distance Moved by the effort is 45m
Calculate 1. Work done on the load
2. work done by the effort
3. Efficiency of the System
Answer:
1) 1000Nm
2) 95,625Nm
3) 1.05%
Explanation:
Mechanical Advantage is the ratio of the load to the effort applied to an object.
MA = Load/Effort
1) Workdone on the load = Force(Load) * distance covered by the load
Workdone on the load = 500N * 2m
Workdone on the load = 1000Nm
2) work done by the effort = Effort * distance moves d by effort
work done by the effort = 2125 * 45
work done by the effort = 95,625Nm
3) Efficiency = Workdone on the load/ work done by the effort * 100
Efficiency = 1000/95625 * 100
Efficiency = 1.05%
Hence the efficiency of the system is 1.05%
A long, uninsulated steam line with a diameter of 100 mm and a surface emissivity of 0.8 transports steam at 150°C and is exposed to atmospheric air and large surroundings at an equivalent temperature of 20°C. (a) Calculate the rate of heat loss per unit length for a calm day. (b) Calculate the rate of heat loss on a breezy day when the wind speed is 8
Answer:
Heat loss per unit length = 642.358 W/m
The heat loss per unit length on a breezy day during 8 m/s speed is = 1760.205 W/m
Explanation:
From the information given:
Diameter D [tex]= 100 mm = 0.1 m[/tex]
Surface emissivity ε = 0.8
Temperature of steam [tex]T_s[/tex] = 150° C = 423K
Atmospheric air temperature [tex]T_{\infty} = 20^0 \ C = 293 \ K[/tex]
Velocity of wind V = 8 m/s
To calculate average film temperature:
[tex]T_f = \dfrac{T_s+T_{\infty}}{2}[/tex]
[tex]T_f = \dfrac{423+293}{2}[/tex]
[tex]T_f = \dfrac{716}{2}[/tex]
[tex]T_f = 358 \ K[/tex]
To calculate volume expansion coefficient
[tex]\beta= \dfrac{1}{T_f} \\ \\ \beta= \dfrac{1}{358} \\ \\ \beta= 2.79 \times 10^{-3} \ K^{-1}[/tex]
From the table of "Thermophysical properties of gases at atmospheric pressure" relating to 358 K of average film temperature; the following data are obtained;
Kinematic viscosity (v) = 21.7984 × 10⁻⁶ m²/s
Thermal conductivity k = 30.608 × 10⁻³ W/m.K
Thermal diffusivity ∝ = 31.244 × 10⁻⁶ m²/s
Prandtl no. Pr = 0.698
Rayleigh No. for the steam line is determined as follows:
[tex]Ra_{D} = \dfrac{g \times \beta (T_s-T_{\infty}) \times D_b^3}{\alpha\times v}[/tex]
[tex]Ra_{D} = \dfrac{9.8 \times (2.79 *10^{-3})(150-20) \times (0.1)^3}{(31.244\times 10^{-6}) \times (21.7984\times 10^{-6})}[/tex]
[tex]Ra_{D} = 5.224 \times 10^6[/tex]
The average Nusselt number is:
[tex]Nu_D = \Big \{ 0.60 + \dfrac{0.387(Ra_D)^{1/6}}{[ 1+ (0.559/Pr)^{9/16}]^{8/27}} \Big \}^2[/tex]
[tex]Nu_D = \Big \{ 0.60 + \dfrac{0.387(5.224\times 10^6)^{1/6}}{[ 1+ (0.559/0.698)^{9/16}]^{8/27}} \Big \}^2[/tex]
[tex]Nu_D = \Big \{ 0.60 + \dfrac{5.0977}{[ 1.8826]^{8/27}}\Big \}^2[/tex]
[tex]Nu_D = \Big \{ 0.60 + 4.226 \Big \}^2[/tex]
[tex]Nu_D = 23.29[/tex]
However, for the heat transfer coefficient; we have:
[tex]h_D = \dfrac{Nu_D\times k}{D_b} \\ \\ h_D = \dfrac{(23.29) \times (30.608 \times 10^{-3} )}{0.1}[/tex]
[tex]h_D = 7.129 \ Wm^2 .K[/tex]
Hence, Stefan-Boltzmann constant [tex]\sigma = 5.67 \times 10^{-8} \ W/m^2.K^4[/tex]
Now;
To determine the heat loss using the formula:
[tex]q'_b = q'_{ev} + q'_{rad} \\ \\ q'_b = h_D (\pi D_o) (T_t-T_{\infty})+\varepsilon(\pi D_b)\sigma (T_t^4-T_{\infty }^4)[/tex]
[tex]q'_b = (7.129)(\pi*0.1) (423-293) + (0.8) (\pi*0.1) (5.67 *10^{-8}) (423^4-293^4) \\ \\ q'_b = 291.153 + 351.205 \\ \\ \mathbf{q'_b = 642.258 \ W/m}[/tex]
Now; here we need to determine the Reynold no and the average Nusselt number:
[tex]Re_D = \dfrac{VD_b}{v } \\ \\ Re_D = \dfrac{8 *0.1}{21.7984 \times 10^{-6}} \\ \\ Re_D = 3.6699 \times 10^4[/tex]
However, to determine the avg. Nusselt no by using Churchill-Bernstein correlation, we have;
[tex]Nu_D = 0.3 + \dfrac{0.62 \times Re_D^{1/2}* Pr^{1/3}}{[1+(0.4/Pr)^{2/3}]^{1/4}} [1+ (\dfrac{Re_D}{282000})^{5/8}]^{4/5}[/tex]
[tex]Nu_D = 0.3 + \dfrac{0.62 \times (3.6699*10^4)^{1/2}* (0.698)^{1/3}}{[1+(0.4/0.698)^{2/3}]^{1/4}} [1+ (\dfrac{3.669*10^4}{282000})^{5/8}]^{4/5}[/tex]
[tex]Nu_D = (0.3 +\dfrac{105.359}{1.140}\times 1.218) \\ \\ Nu_D = 112.86[/tex]
SO, the heat transfer coefficient for forced convection is determined as follows afterward:
[tex]h_D = \dfrac{Nu_{D}* k}{D_b} \\ \ h_D = \dfrac{112.86*30.608 *10^{-3}}{0.1} \\ \\ h_D = 34.5 \ W/m^2 .K[/tex]
Finally; The heat loss per unit length on a breezy day during 8 m/s speed is:
[tex]q'b = h_D (\pi D_b) (T_s-T_{\infty}) + \varepsilon (\pi D_b) \sigma (T_s^4-T_ {\infty}^4) \\ \\ q'b = (34.5) (\pi *0.1) (423-293) + (0.8) (\pi*0.1) (5.67*10^{-8}) (423^4 - 293^4) \\ \\ = 1409 +351.205 \\ \\ \mathbf{q'b = 1760.205 \ W/m}[/tex]
A projectile is fired with an initial velocity of 120.0 m/s at an angle, θ, above the horizontal. If the projectile’s initial horizontal speed is 55 meters per second, then angle θ measures approximately
Answer:
algm sabe tô precisando muito
(a) What do you mean by rest?
A reaction occurs when a compound breaks down. This reaction has one reactant and two or more products. Energy, as from a battery, is usually needed to break the compound apart.
Answer:
decomposition
Explanation:
The knee extensors insert on the tibia at an angle of 30 degrees (from the longitudinal axis of the tibia), at a distance of 3 cm from the axis of rotation at the knee. How much force must the knee extensors exert to produce an angular acceleration at the knee of 1 rad/s2 , given a mass of the lower leg and foot of 4.5 kg, and a radius of gyration of 23 cm
Answer:
the knee extensors must exert 15.87 N
Explanation:
Given the data in the question;
mass m = 4.5 kg
radius of gyration k = 23 cm = 0.23 m
angle ∅ = 30°
∝ = 1 rad/s²
distance of 3 cm from the axis of rotation at the knee r = 3 cm = 0.03 m
using the expression;
ζ = I∝
ζ = mk²∝
we substitute
ζ = 4.5 × (0.23)² × 1
ζ = 0.23805 N-m
so
from; ζ = rFsin∅
F = ζ / rsin∅
we substitute
F = 0.23805 / (0.03 × sin( 30 ° )
F = 0.23805 / (0.03 × 0.5)
F F = 0.23805 / 0.015
F = 15.87 N
Therefore, the knee extensors must exert 15.87 N
How fast were both runners traveling after 4 seconds?
40
Distance (in yards)
30
20
10
1
2.
3
0
Time in seconds
Answer:
they were fast ⛷⛷
which causes magnets to stick to metal
Answer:
Steel
Explanation:
Steel is a metal that magnets stick to because iron can be found inside steel
Answer:Magnets stick to any metal that contains iron, cobalt or nickel.
Explanation:Iron is found in steel, so steel attracts a magnet and sticks to it. Stainless steel, however, does not attract a magnet.
How much work is done when 100 N of force is applied to a rock to move it 20 m
Answer: 2000 J
Explanation: work W = F s
1. A perspex box has a 10 cm square base and contains water to a height of 10 cm. A piece of rock of mass 600g is lowered into the water and the level rises to 12 cm.
(a) What is the volume of water displaced by the rock?
(b) What is the volume of the rock?
(c) Calculate the density of the rock
Answer:
(a) The volume of water is 100 cm³
(b) The volume of the rock is 20 cm³
(c) The density of the rock is 30 g/cm³
Explanation:
The given parameters of the perspex box are;
The area of the base of the box, A = 10 cm²
The initial level of water in the box, h₁ = 10 cm
The mass of the rock placed in the box, m = 600 g
The final level of water in the box, h₂ = 12 cm
(a) The volume of water in the box, 'V', is given as follows;
V = A × h₁
∴ The volume of water in the box, V = 10 cm² × 10 cm = 100 cm³
The volume of water in the box, V = 100 cm³
(b) When the rock is placed in the box the total volume, [tex]V_T[/tex], is given by the sum of the rock, [tex]V_r[/tex], and the water, V, is given as follows;
[tex]V_T[/tex] = [tex]V_r[/tex] + V
[tex]V_T[/tex] = A × h₂
∴ [tex]V_T[/tex] = 10 cm² × 12 cm = 120 cm³
The total volume, [tex]V_T[/tex] = 120 cm³
The volume of the rock, [tex]V_r[/tex] = [tex]V_T[/tex] - V
∴ [tex]V_r[/tex] = 120 cm³ - 100 cm³ = 20 cm³
The volume of the rock, [tex]V_r[/tex] = 20 cm³
(c) The density of the rock, ρ = (Mass of the rock, m)/(The volume of the rock)
∴ The density of the rock, ρ = 600 g/(20 cm³) = 30 g/cm³
A class is learning about states of matter. The students set up the investigation in the diagram.
Which kinds of energy are needed in this investigation to change the state of matter of the owl made of wax?
3. Two bullets have masses of 0.003 kg and 0.006 kg, respectively. Both are fired with a speed of 40.0 m/s.
A. Which bullet has more kinetic energy?
B. When you double the mass, what happens to the kinetic energy?
Answer:
A. The bullet with 0.006kg has more energy
B. When the mass is doubled the kinetic energy increases
Explanation:
Kinetic energy increases when mass increases
kinetic energy increases when velocity increases
During which phase is the moon not visible?
A) Full Moon
B) First quarter
C) New moon
D) Waxing crescent
Answer:
they are right it is a new moon
Explanation:
took the test
Mechanical energy is the most concentrated form of energy.
a. true
b. false