Answer:
pH=10.88
Explanation:
Hello,
In this case, since potassium hydroxide is completely dissociated as shown below:
[tex]KOH\rightarrow K^++OH^-[/tex]
For which we understand it is a base, more specifically, a strong base; it means that the concentration of the OH⁻ equals the concentration of the potassium hydroxide, that is 0.000765M, for that reason we can directly compute the pOH:
[tex]pOH=-log([OH^-])=-log(0.000765)=3.12[/tex]
Finally, since the pOH and the pH are related by:
[tex]pOH+pH=14[/tex]
The pH turns out:
[tex]pH=14-3.12\\pH=10.88[/tex]
Best regards.
In a titration, 100 mL of 0.026 M HCl (aq) is neutralized by 13 mL of KOH(aq). Calculate the molarity of KOH (aq).
Answer:
0.2M
Explanation:
Step 1:
Data obtained from the question.
Volume of acid (Va) = 100mL
Molarity of the acid (Ma) = 0.026 M
Volume of base (Vb) = 13mL
Molarity of the base (Mb) =..?
Step 2:
The balanced equation for the reaction. This is given below:
HCl + KOH —> KCl + H2O
From the balanced equation above,
The mole ratio of the acid (nA) = 1
The mole ratio of the base (nB) = 1
Step 3:
Determination of the molarity of the base, KOH. This can be obtained as follow:
MaVa/MbVb = nA/nB
0.026 x100 / Mb x 13 = 1
Cross multiply to express in linear form
Mb x 13 = 0.026 x 100
Divide both side by 13
Mb = 0.026 x 100 / 13
Mb = 0.2M
Therefore, the molarity of the base, KOH is 0.2M
Answer:
0.2M
Explanation:
KOH(aq) + HCl(aq) ⇒ KCl(aq) + H2O(l)
We express the moles of analyte (HCl) and titrant based (KOH) on their molar concentration:
M1 * V1 = M2 * V2
The molarity of the solution is calculated with the following equation:
M2 = V1 x M1 / V2
Where:
V2 = valued sample volume
V1 = volume of titrant consumed (measured with the burette)
M1 = concentration of titrant solution
M2 = concentration of sample
M2 = 100mL * 0.026M / 13mL = 0.2M
6. Find the partial pressures of the gases in a mixture with a total pressure of 101.3 kPa, if there are 7.8 mole of
Ng, 2.1 mole of 0, 0.090 mole of Ar, and 0.010 mol of Co,
3:20
5/10/2
19
110
112
Pause
break
16
X
14
&
*
A
%
7
9
5
6
O
8
4
{
о
Р
Answer:
Explanation:
Total mole of gases = 7.8 + 2.1 + .09 + .01 = 10
the partial pressures of the gases in a mixture
= mole fraction x Total pressure
mole fraction = mole of a gas in the mixture / total mole
partial pressure of Ng = [tex]\frac{7.8}{10} \times 101.3 kPa[/tex]
= 79.014 kPa
partial pressure of O = [tex]\frac{2.1}{10} \times 101.3 kPa[/tex]
= 21.273 kPa .
partial pressure of Ar = [tex]\frac{.09}{10} \times 101.3 kPa[/tex]
= .9117 kPa .
partial pressure of Co = [tex]\frac{.01}{10} \times 101.3 kPa[/tex]
= .1013 k Pa .
If you start with 6 mol of nitrogen gas (N2+) what mass (g) of ammonia (NH4) will be produced?
Answer:
204g of NH3
Explanation:
The balanced equation for the reaction is given below:
N2 + 3H2 —> 2NH3
Next, we shall determine the number of mole NH3 produced by reacting 6moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 6 moles of N2 will react to produce = 6 x 2 = 12 moles of NH3.
Finally, we shall convert 12 moles of NH3 to grams. This is illustrated below:
Number of mole of NH3 = 12 moles.
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Mass of NH3 =..?
Mass = mole x molar mass
Mass of NH3 = 12 x 17
Mass of NH3 = 204g.
Therefore, 204g of NH3 will be produced from the reaction.
2. What happens to the pH when you add more H+ ions to a solution that has no buffers?
The temperature of a 350. mL sample of gas increases from 27 °C to 227 °C. What is the final volume of the sample of gas, if the pressure and amount of gas in the container is kept constant?
Group of answer choices
Answer:
[tex]V_2=583.3mL[/tex]
Explanation:
Hello,
In this case, for the given constant amount and pressure of the, we apply the Charles' law which allows us to understand the volume-pressure behavior as a directly proportional relationship:
[tex]\frac{V_1}{T_1} =\frac{V_2}{T_2}[/tex]
Thus, since we need to compute the volume after the temperature increase (which must be expressed in absolute Kelvins), we obtain V2 as:
[tex]V_2=\frac{V_1T_2}{T_1} =\frac{350.0mL*(227+273.15)K}{(27+273.15)K}\\ \\V_2=583.3mL[/tex]
Best regards.
You weighed out 0.020 g of your crude aspirin product in order to determine the amount of salicylic acid impurity. Following the procedure outlined in the manual, you dissolved the solid and diluted the solution to a final volume of 10.0 mL. If the absorbance of your sample solution was 1.07, what was the percent salicylic acid in your product
Answer:
The correct answer is 7.8 percent.
Explanation:
As mentioned in the given question, the absorbance (A) of the sample solution is 1.07. To find the concentration of aspirin, Beer's law is used, that is, A = ebc
Here, e is the extinction coefficient, which is equal to 139.322 M^-1cm^-1 as per the standard value for salicylic acid, b is the pathlength, which is equivalent to 1 cm. Now putting the values we get,
A = ebc
c = A / (eb)
c = 1.07 / (139.322 × 1)
c = 0.00768 M
Now to determine the percent salicylic acid in the sample, there is a need to compare the value of concentration determined with the concentration of aspirin given initially.
0.02 grams is the initial concentration of aspirin mentioned in the question. The molar mass of aspirin is 240 g/mol.
Therefore, the moles of aspirin will be,
0.02 / 240 = 8.33 × 10^-5 moles
The final volume of the diluted solution given is 10 ml or 0.01 liters.
The molarity of aspirin in the diluted solution will be,
c1 = 8.33 × 10^-5 / 0.01 = 8.33 × 10^-3 M or 0.00833 M
Now, the percent of salicylic acid in the product will be,
c1 - c / c1 × 100
(0.00833 - 0.00768) / 0.00833 × 100 = 7.8 %
Absorbance is directly proportional to the concentration of the solution. The absorbance can be calculated if the molar absorptivity, path length, and concentration of the absorbing species are known.
The percent of salicylic acid in the solution is 7.8%
Given that:
Absorbance of the solution is = 1.07
Path length = 1 cm.
Applying Beer's Law,
A = ε b c
where,
c = concentration, A = absorbance, ε = constant, and b = path length
Now, putting the values in above equation
c = [tex]\dfrac{\text{A}}{\text {(e b)}}[/tex]
c = [tex]\dfrac{1.07}{139.32 \times 1}[/tex] ( ε = 139.32)
c = 0.00768 M
Now, to calculate the percent of the salicylic acid in the solution, we will compare the given concentration of the aspirin.
As we know:
Given mass of aspirin = 0.02 g
Molar mass of aspririn = 240
Number of moles of aspirin = 0.02 / 240 = 8.33 x 10⁻⁵
Now, the molarity of aspirin is:
[tex]\text{Molarity}&= \dfrac{8.33 \times 10^{-5}}{0.01}\\\\\text{Molarity}&= 8.33 \times 10^{-5}[/tex]
Now, the percent of the salicylic acid is:
[tex]\dfrac{\text {C}_1 - \text C}{\text {C}_1 \times 100}[/tex]
[tex]\dfrac{(0.00833 - 0.00768)}{0.00833 \times 100}[/tex]
Percent of Salicyclic acid = 7.8%.
Thus, the percentage of the salicylic acid in the given solution is 7.8%.
To know more about Absorbance, refer to the following link:
https://brainly.com/question/17062521
State whether the following is an example of a physical or chemical change:! 21. Burning a log: ________________________________! 22. Folding a piece of paper: _________________________! 23. Freezing water: _________________________! 24. Bending a copper wire. _________________________!
Answer:
Physical change
Explanation:
Because it doesn't require any chemical to change
Answer:
Physical change
Physical change
Physical change
Physical change
Explanation:
Which shows an isomer of the molecule below?
Answer:
D
Explanation:
An isomer is a molecule with the same number of atoms as another compound, but they differ in arrangement of the atoms.
Answer:
D
Explanation:
A P E X
Gaseous butane will react with gaseous oxygen to produce gaseous carbon dioxide and gaseous water . Suppose 42. g of butane is mixed with 150. g of oxygen. Calculate the maximum mass of carbon dioxide that could be produced by the chemical reaction. Round your answer to significant digits.
Answer:
127 grams of carbon dioxide
Explanation:
We need to determine the chemical equation first. Butane has a chemical formula of [tex]C_4H_{10}[/tex], oxygen is [tex]O_2[/tex], carbon dioxide is [tex]CO_2[/tex], and water is [tex]H_2O[/tex]. The reactants are butane and oxygen and the products are carbon dioxide and water. So we write:
[tex]C_4H_{10}+O_2[/tex] ⇒ [tex]CO_2+H_2O[/tex]
But remember! We need to balance this. Currently, there are 4 carbon atoms (C), 10 hydrogen atoms (H), and 2 oxygen atoms (O) on the left, while there are 1 carbon atom (C), 2 hydrogen atoms (H), and 3 oxygen atoms (O) on the right. Let's place a coefficient of 4 in front of the carbon dioxide and a coefficient of 5 on the water, so that we have equal numbers of carbon and hydrogen atoms on each side:
[tex]C_4H_{10}+O_2[/tex] ⇒ [tex]4CO_2+5H_2O[/tex]
However, we need to ensure that there are equal numbers of O atoms, as well. On the left, we have 2 and on the right we have 13, so let's put a coefficient of 6.5 on the oxygen:
[tex]C_4H_{10}+6.5O_2[/tex] ⇒ [tex]4CO_2+5H_2O[/tex]
Finally, multiply everything by 2 to get whole number coefficients:
[tex]2C_4H_{10}+13O_2[/tex] ⇒ [tex]8CO_2+10H_2O[/tex]
Ah, now we can actually get to the problem!
We need to determine the limiting reactant, so let's convert the 42 g of butane and 150 g of oxygen into moles of any product, say, carbon dioxide. To convert to moles, we need to find the molar mass of each compound.
The molar mass of butane is 4 * 12.01 + 10 * 1.01 = 58.14 g/mol, while the molar mass of oxygen is 2 * 16 = 32 g/mol. We can now set up the equations:
[tex]42 gC_4H_{10}*\frac{1molC_4H_{10}}{58.14gC_4H_{10}} *\frac{8molCO_2}{2molC_4H_{10}} =2.8896molCO_2[/tex]
[tex]150 gO_2*\frac{1molO_2}{32gO_2} *\frac{8molCO_2}{13molO_2} =2.8846molCO_2[/tex]
Clearly, we see that 2.8846 < 2.8896, which means that oxygen is the limiting reactant. In other words, the most products can be made when the oxygen is all used up.
Now let's finally convert moles of carbon dioxide into grams by multiplying by its molar mass, which is 12.01 + 2 * 16 = 44.01 g/mol:
[tex]2.8846molCO_2*\frac{44.01gCO_2}{1molCO_2} =127gCO_2[/tex]
Notice that we have 3 significant figures because we had 3 significant figures at the start with 150. grams of oxygen.
~ an aesthetics lover
CH³C⁴HCOCH³ how many atoms of each element are in one molecule of 2-heptanone
Answer:
- 7 carbon atoms.
- 14 hydrogen atoms.
- 1 oxygen atom.
Explanation:
Hello,
In this case, for the given compound, heptanone, whose chemical formula is:
[tex]CH_3COCH_2CH_2CH_2CH_2CH_3[/tex]
We can write the molecular formula showing the present atoms of each element:
[tex]C_7H_{14}O[/tex]
In such a way we have:
- 7 carbon atoms.
- 14 hydrogen atoms.
- 1 oxygen atom.
Best regards.
How is a niche different than a habitat?
A habitat is more than a physical place; it's a species' role in a specific place and it can change from niche to niche.
A niche is more than a physical place; it's a species' role in a specific place and it can change from habitat to habitat.
A niche and a habitat are the same.
A niche is just a physical place; a habitat is a species' role in a specific place.
Answer:
A niche is more than a physical place; it's a species' role in a specific place and it can change from habitat to habitat.
Explanation:
Niche: In biology, the term "niche" is described as a process through which different organisms tends to fit-in into a specific ecosystem or an ecological community. However, a niche is considered as the "evolutionary result" of a specific species behavioral, morphological, and physiological adaptations associated with its surroundings.
Habitat: In biology, the term "habitat" is described as an environmental or ecological area that is being inhabited by a specific species of plants, animals, or other organisms.
Therefore, a niche is entirely different from a habitat because an organism's niche tends to explain every different aspect of its life whereas its habitat explains the place it lives.
Lifting a box off the floor is an example of what type of force?
A). Natural
B).applied
C).frictional
D).gravitational
Answer:
It would be applied force.
Explanation:
Hope it helps:)
What should happen if a good experiment is replicated?
The results will decrease.
The results will increase.
The results will be different.
The results will be similar.
Answer:
The results will be similar.
Plants remove carbon to the atmosphere during
Answer:
respiration
Explanation:
Plants give out carbon dioxide not only at night but during the day too. It happens because of the process of respiration in which plants take in oxygen and give out carbon dioxide. As soon as the sun rises another process called photosynthesis starts, in which carbon dioxide is taken in and oxygen is given out.
Plants use photosynthesis to capture carbon dioxide and then release half of it into the atmosphere through respiration. Plants also release oxygen into the atmosphere through photosynthesis
0.5 moles of CO2 have a volume of 50 L and a pressure of 0.8210 atm. What must be the temperature of the gas?
Answer:
1000 K
Explanation:
Given data
Moles of carbon dioxide (n): 0.5 molesVolume of carbon dioxide (V): 50 litersPressure of carbon dioxide (P): 0.8210 atmospheresTemperature of carbon dioxide (T): ?We can find the temperature of carbon dioxide using the ideal gas equation.
[tex]P \times V = n \times R \times T\\T = \frac{P \times V}{n \times R} = \frac{0.8210atm \times 50L}{0.5mol \times \frac{0.08206atm.L}{mol.K} }=1000 K[/tex]
The temperature of the gas is 1000 K.
Creatinine, �!�!�!�, is a by-product of muscle metabolism, and creatinine levels in the body are known to be a fairly reliable indicator of kidney function. The normal level of creatinine in the blood for adults is approximately 1.0mg per deciliter (dL) of blood. If the density of blood is 1.025g/mL, calculate the molality of a normal creatinine level in a 10.0mL blood sample. What is the osmotic pressure (in atm) of this solution at 25.0°C?
Answer:
Explanation:
molecular weight of creatinine = 131
1 mg of creatinine = 1 x 10⁻³ / 131 = 7.63 x 10⁻⁶ mole of creatinine.
volume of solution = .1 L
mass of blood solution = .1 x 1025
= 102.5 g
mass of solvent = 102.5 g approximately
= .1025 kg
molality = mole of solute / mass of solvent in kg
= 7.63 x 10⁻⁶ / .1025 kg
= 74.44 x 10⁻⁶ .
Osmotic pressure :---
π V / T = nR π is osmotic pressure , V is volume of solution in liter , T is absolute temperature , n is molality .
π x .1 / 298 = 74.44 x 10⁻⁶ x .082
π = 18.19 x 10⁻³ atm
Question 17 In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 786. liters per second of dinitrogen are consumed when the reaction is run at 222.°C and 0.35atm. Calculate the rate at which ammonia is being produced. Give your answer in kilograms per second. Round your answer to 2 significant digits.
Answer:
Explanation:
N₂ + 3H₂ = 2 NH₃
1 vol 2 vol
786 liters 1572 liters
786 liters of dinitrogen will result in the production of 1572 liters of ammonia
volume of ammonia V₁ = 1572 liters
temperature T₁ = 222 + 273 = 495 K
pressure = .35 atm
We shall find this volume at NTP
volume V₂ = ?
pressure = 1 atm
temperature T₂ = 273
[tex]\frac{P_1V_1}{T_1} =\frac{P_2V_2}{T_2}[/tex]
[tex]\frac{.35\times 1572}{495} =\frac{1\times V_2}{ 273 }[/tex]
[tex]V_2 =303.44[/tex] liter .
mol weight of ammonia = 17
At NTP mass of 22.4 liter of ammonia will have mass of 17 gm
mass of 303.44 liter of ammonia will be equal to (303.44 x 17) / 22.4 gm
= 230.28 gm
=.23 kg / sec .
Rate of production of ammonia = .23 kg /s .
Identifying the Body's Responses to
Quick
Check
Which type of response identifies a specific pathogen in the body?
A(n)
response
Answer:
Specific Immune Response
Explanation:
A specific immune response identifies the pathogen which then allows it to produce antibodies that protect against that SPECIFIC pathogen.
Answer:
immuneExplanation:
dentify the missing information for each atom or ion. Note that the atoms and ions are not necessarily neutral. A Se ion has a mass number of 78 and a charge of −2 . Determine the number of neutrons, protons, and electrons in this ion. number of neutrons: 44 number of protons: 34 number of electrons: 36 An ion has a mass number of 65, 36 neutrons, and a charge of +1 . Identify the element symbol, and determine the number of protons and electrons in this ion. element symbol: Cu number of protons: 30 number of electrons: 29 An atom or ion has 43 neutrons , 36 protons, and 36 electrons. Identify the element symbol, and determine the mass number and charge for this atom or ion. element symbol: Au mass number: 79 charge: 0
Answer:
Check the explanation
Explanation:
1)
Atomic number of Se = 34
So, number of proton = 34
use:
charge = number of proton - number of electron
-2 = 34 - number of electron
number of electron = 36
number of neutron = mass number - atomic number
= 78 - 34
= 44
Answer:
44
34
36
2)
number of proton = mass number - number of neutron
= 65 - 36
= 29
29 is atomic number for Cu
use:
charge = number of proton - number of electron
+1 = 29 - number of electron
number of electron = 28
Answer:
Cu
29
28
3)
Atomic number is 36 for Kr
use:
charge = number of proton - number of electron
= 36 - 36
= 0
use:
mass number = number of proton + number of neutron
= 36 + 42
= 78
Answer:
Kr
78
0
Free radical mono-halogenation of an alkane is typically conducted using bromine versus chlorine because A.the bromine radical is more reactive and therefore more selective. B.the chlorine radical is more reactive and therefore more selective. C.the chlorine radical is less reactive and therefore more selective. D.the bromine radical is less reactive and therefore more selective. E.none of these choices.
Answer:Free radical mono-halogenation of an alkane is typically conducted using bromine versus chlorine because the bromine radical is less reactive and therefore more selective.
Explanation: Halogenation occurs when a halogen replaces one or more hydrogen atoms in an organic compound ie chlorine or bromine with the reactivity of the halogens decreasing in the order of F2 > Cl2 > Br2 > I2
Since fluorine reacts explosively making it is difficult to control, and iodine is unreactive. Free radical mono-halogenation of an alkane is typically conducted using bromine versus chlorine with Chlorination ie chlorine radical being more reactive and not selective and the Bromination of alkanes ie bromine radical occurring similarly but slower and less reactive but more selective which is due to the fact that a bromine atom is less reactive in the hydrogen abstraction than a chlorine atom evidence in the higher bond energy of H-Cl than H-Br.
Please help! BRAINLIEST to correct answer!!!!
Answer:
Exothermic ProcessExplanation:
Changes in pressure can have a large effect on equilibrium systems containing gaseous components.
1. changing the concentration of gaseous components
2. adding an inert gas has no effect since the gas does not take part in the reaction, all partial pressures stay the same
3.changing the volume of the reaction vessel. This will cause a shift in the equilibrium position if the number of moles of gas is different on the reactant and product side (so Δn = n products - n reactants)
How would you change the volume for each of the following reactions to increase the yield of the product(s)?1. CaCO3(s) ⇋ CaO(s) + CO2(g) (increase, decrease, no change)2. S(s) + 3F2(g) ⇋ SF6(g) (increase, decrease, no change)3. Cl2(g) + I2(g) ⇋ 2ICl(g) (increase, decrease, no change)
Answer:
The correct option is 1, since by changing the partial pressures the gas pressures change, the gases go from the zones of higher partial pressure to the zones of lower partial pressure, an example of this is the homeostasis of the human pulmonary alveolus in gas exchange with CO2 and O2.
Explanation:
In the first it increases, in the second the volume is maintained, and in the third reaction it decreases.
Answer:
1. Increase volume.
2. No change.
3. No change.
Explanation:
Hello,
In this case, if we want to shift the reaction rightwards, based on the Le Chatelier's principle we would have to:
1. For this reaction:
[tex]CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)[/tex]
- Increase the volume or decrease the pressure, since there are more gaseous moles at the products.
2. For this reaction:
[tex]S(s) + 3F_2(g) \rightleftharpoons SF_6(g)[/tex]
- Do nothing since it is not possible to achieve it as we have the same number of gaseous moles at both reactants and products.
3. For this reaction:
[tex]Cl_2(g) + I_2(g)\rightleftharpoons 2ICl(g)[/tex]
- Do nothing since it is not possible to achieve it as we have the same number of gaseous moles at both reactants and products.
Regards.
The percent yield of a reaction in which 52 grams of a reactant is expected to yield 30 grams of product is 25%. What is the actual yield of the reaction? A) 13 grams B) 120 grams C) 208 grams D) 7.5 grams
Answer:
D) 7.5 grams
Explanation:
Hello,
In this case, since the percent yield is defined by:
[tex]Y=\frac{m^{actual}}{m^{theoretical}} *100\%[/tex]
In such a way, since the percent yield is up to 25% and the expected or theoretical amount is 30 g of the product, the actual yield of the reaction is:
[tex]m^{actual}=\frac{Y*m^{theoretical}}{100\%} =\frac{25\%*30g}{100\%} \\\\m^{actual}=7.5g[/tex]
Therefore the answer is D) 7.5 grams.
Best regards.
Use the nuclear decay reaction in the picture to answer the following question.
i. How does the reaction demonstrate the laws of conservation of charge and conservation of nucleon number?
ii. What is the binding energy of one mole of atomic mass: 234, number of proton: 90, Thorium if the mass defect is 1.908 g/mol?
Answer:
1a. Both sides of the decay reaction have the same charge.
b. The number of nucleons on both sides are the same.
2. The binding energy of one mole of the atom is 17.172 × [tex]10^{16}[/tex] J.
Explanation:
1a. Considering the two sides of the decay reaction and with respect to the law of conservation of charge, it can be observed that both sides have the same charge. Charge can not be created or destroyed in the process.
b. The number of nucleons on both sides are equal. No nucleon is created or destroyed in the process.
2. Binding energy is the minimum energy required to separate an atom into its nucleons. From Einstein's energy equation;
E = Δm[tex]c^{2}[/tex]
Where E is the binding energy of the atom, Δm is the mass defect and c is the speed of light.
Given that: Δm = 1.908 g/mol and c = 3 × [tex]10^{8}[/tex]. So that:
E = 1.908 × [tex](3*10^{8}) ^{2}[/tex]
= 1.908 × 9 × [tex]10^{16}[/tex]
= 17.172 × [tex]10^{16}[/tex] J
The binding energy of one mole of the atom is 17.172 × [tex]10^{16}[/tex] J.
What is another term for anode?
Answer:positive electrode
Explanation:
Anode can also be referred to as positive electrode in a cell
a fertilizer manufacturer makes a batch of 20kg of ammonium nitrate. what mass of ammonia in kg, does the manufacturer need to start with?
Answer:
[tex]m_{NH_3}=4.25kgNH_3[/tex]
Explanation:
Hello,
In this case, for the production of ammonium nitrate we shall consider the following chemical reaction:
[tex]NH_3+HNO_3\rightarrow NH_4NO_3[/tex]
Hence, since the molar mass of ammonium nitrate is 80 g/mol and the molar mass of ammonia is 17 g/mol, we could compute the required mass of ammonia to produce 20 kg of ammonium nitrate by using kilo-based units:
[tex]m_{NH_3}=20kgNH_4NO_3*\frac{1kmol}{80kgNH_4NO_3}*\frac{1kmolNH_3}{1kmolNH_4NO_3}*\frac{17kgNH_3}{1kmolNH_3} \\\\m_{NH_3}=4.25kgNH_3[/tex]
Best regards.
What amount of heat will raise the temperature of 78g liquid water from 20 C to 80 C?
Answer:
19656J
Explanation:
Step 1:
Data obtained from the question.
Mass (M) = 78g
Initial temperature (T1) = 20°C
Final temperature (T2) = 80°C
Change in temperature (ΔT) = T2 – T1 =
80°C – 20°C = 60°C
Specific heat capacity (C) = 4.2J/g°C
Heat (Q) =...?
Step 2:
Determination of the heat required for the reaction.
Q = MCΔT
Q = 78 x 4.2 x 60
Q = 19656J
Therefore, 19656J of heat is required.
what is the reaction?
Answer:
A chemical reaction is a process in which one or more substances, also called reactants, are converted to one or more different substances, known as products. ... A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products.
Explanation:
Hopefully this is what you needed
How many kilograms of solvent (water) must 0.71 moles of KI be dissolved in to produce a 1.93 m solution?
Answer: kg= 0.37
Explanation:
Use the molality formula.
M= m/kg
A characteristic that describe a plant that can make its own food is
Answer:
Photosynthesis
this is correct