Subtracting 10 from the original equation will shift the graph down 10 units
The answer is D.
4. Lynn can walk two miles intenta
24 minutes. At this rate, how long will
it take her to walk 6 miles?
What are the x-intercepts for the function ƒ(x) = -x(x − 4)?
A 0
B -1, 4
C 4
D 0, 4
What are the solutions to the quadratic equation 4x2 − x − 3 = 0?
Answer:
D
Step-by-step explanation:
f(x)=-x(x-4)
f(x)=-x²+4x
-x²+4x=0
x(-x+4)=0
x=0, x=4
(2)
4x²-x-3=0
(4x²+3x)-(4x-3)=0
x(4x+3)-1(4x+3)=0
x=1, x=-3/4
A 10-ft ladder, whose base is sitting on level ground, is leaning at an angle against a vertical wall when its base starts to slide away from the vertical wall. When the base of the ladder is 6 ft away from the bottom of the vertical wall, the base is sliding away at a rate of 4 ft/sec. At what rate is the vertical distance from the top of the ladder to the ground changing at this moment?
Answer:
2.5/ft per sec
Step-by-step explanation:
its vertica.
The height of the ladder is decreasing at a rate of 24 ft/sec.
What is the Pythagorean theorem?Pythagorean theorem states that for a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
We can apply this theorem only in a right triangle.
Example:
The hypotenuse side of a triangle with the two sides as 4 cm and 3 cm.
Hypotenuse side = √(4² + 3²) = √(16 + 9) = √25 = 5 cm
We have,
Let's denote the distance between the base of the ladder and the wall by x.
The length of the ladder = L.
Now,
L = 10 ft
dx/dt = 4 ft/sec
x = 6 ft.
The rate of change of the height of the ladder with respect to time.
Using the Pythagorean theorem, we have:
L² = x² + y²
Differentiating both sides with respect to time t, we get:
2L (dL/dt) = 2x(dx/dt) + 2y(dy/dt)
Substituting L = 10 ft, x = 6 ft, and dx/dt = 4 ft/sec.
20(dL/dt) = 12(4) + 2y(dy/dt)
Simplifying and solving for dy/dt.
dy/dt = (20/2y)(dL/dt) - 24
Now,
The height of the ladder.
Using the Pythagorean theorem again, we have:
y² = L² - x²
= 100 - 36
= 64
y = 8
Now,
Substituting y = 8 ft, dL/dt = 0
(since the length of the ladder is constant), and dx/dt = 4 ft/sec.
dy/dt
= (20/2(8))(0) - 24
= -24 ft/sec
Therefore,
The height of the ladder is decreasing at a rate of 24 ft/sec.
Learn more about the Pythagorean theorem here:
https://brainly.com/question/14930619
#SPJ2
Find an equation of a plane containing the line r=⟨0,4,4⟩+t⟨−3,−2,1⟩ which is parallel to the plane 1x−1y+1z=−5 in which the coefficient of x is 1.
..?.. = 0.
The plane you want is parallel to another plane, x - y + z = -5, so they share a normal vector. In this case, it's ⟨1, -1, 1⟩.
The plane must also pass through the point (0, 4, 4) since it contains r(t). Then the equation of the plane is
⟨x, y - 4, z - 4⟩ • ⟨1, -1, 1⟩ = 0
x - (y - 4) + (z - 4) = 0
x - y + z = 0
find the value of the trigonometric ratio. make sure to simplify the fraction if needed
Answer:
Sin A = o/h
= 9/41
Step-by-step explanation:
since Sin is equal to opposite over hypotenuse, from the question, the opposite angle of A is 9 and hypotenuse angle of A is 41. Thus the answer for Sin A= 9/41
help! due august 12th
Solve the following formula for a.
Answer:
B is correct .trust me
Step-by-step explanation:
Please answer this and show the work/explain
2/7m - 1/7 = 3/14
(2/7)m - (1/7) = 3/14
2m/7 =(3/14) + (1/7)
2m/7 = (3/14) + 2(1/7)
here we are multiplying 2 with 1/7 to make the denominator same for addition.
2m/7 = (3/14) +(2/14)
2m/7 = (3 + 2)/14
2m/7 = 5/14
2m = (5 *7)/14
2m = 35/14
2m = 5/2
m = 5/4
m = 1.25
So the value of "m" is 1.25
Will give brainliest answer
Mrs. Gomez has two kinds of flowers in her garden. The ratio of lilies to daisies in the garden is 5:2
If there are 20 lilies, what is the total number of flowers in her garden?
Answer:
28
Step-by-step explanation:
5 : 2
since this is a simplified ratio, they have a common factor. let's say it is 'x'
so now :
5x : 2x
we know that 5x is lilies, and we also know that she has 20 lilies, so:
5x = 20
x = 4
the daisies would be 2x so 2*4 = 8
total flowers is 20 + 8
28
could anyone help me solve this? I’ve had several questions like this and I don’t understand how to solve it. I’ll give brainliest:)
Answer:
-2, - 1, - 2 and - 3
Step-by-step explanation:
As the graph depicts an odd function, it will follow the rule f(-x) = - f(x)
Please Answer This!!! I NEEEDDD TOOO KNOWWWWW ANSWER!!!
Answer:
77.5
Step-by-step explanation:
Its rising at a constant rate between +10-15 each hour, so we if we were to add 25 or so to the 50, it would be close to 77.5, so I would assume the answer was B
I need to know the answer please
Focusing on the center point of f(x) (0,0), we can see that it has moved to the left 4 units and up 3 units.
g(x) = [tex](\sqrt[3]{x + 4}) + 3[/tex]
Option C
Hope this helps!
I need the answer explained
Answer:
1.33
Step-by-step explanation:
62 can only be subtracted from 82 once. So 82.46-62 would be 20.46. Since you can't subtract anymore you put a decimal point. 62x3=186 and 20.46-186=1.86 and you can subtract 186-186=0.
Please help!
The quantities x and y are proportional.
x: 4 5 10
y: 10 12.5 25
Find the constant of proportionality (r) in the equation y=rx.
9514 1404 393
Answer:
r = 2.5
Step-by-step explanation:
The constant of proportionality can be found by solving the equation for r:
r = y/x
Then any corresponding values of x and y can be used to find r:
r = 25/10 = 2.5
The constant of proportionality is 2.5.
Help me out!! Anyone
Answer:
4:10
Step-by-step explanation:
if they have to wait for plane B and it arrives every 10 mins then 4:10 is the anser
Is u=−12 a solution of 8u−1=6u?
Answer:
No, -12 is not a solution.
Step-by-step explanation:
8u-1=6u
8(-12)-1=6(-12)
-96-1=-72
-97=-72
Untrue, to it’s not a solution
Scientists have steadily increased the amount of grain that farms can produce each year. The yield for farms in France is given by y=−2.73x2+11000x−11000000 where x is the year and y is the grain yield in kilograms per hectare (kg/ha).
What does the y-intercept of this function represent?
9514 1404 393
Answer:
the yield in year 0
Step-by-step explanation:
The y-value is the yield for farms in France in year x. The y-value when x=0 is the yield for farms in France in year 0.
_____
Additional comment
The reasonable domain for this function is approximately 1843 ≤ x ≤ 2186. The function is effectively undefined for values of x outside this domain, so the y-intercept is meaningless by itself.
What is the image of -8 ,8 after a dilation by a scale factor of one fourth centered at the origin?
Answer:
(-2, 2)
Step-by-step explanation:
If you have a point (x, y) and you do a dilation by a scale factor K centered at the origin, the new point will just be (k*x, k*y)
So, if the original point is (-8, 8)
And we do a dilation by a scale factor k = 1/4
Then the image of the point will be:
(-8*(1/4), 8*(1/4))
(-8/4, 8/4)
(-2, 2)
please explain it step by step
Triangle DEF has sides of length x, x+3, and x−1. What are all the possible types of DEF?
Triangle DEF is scalene
Must click thanks and mark brainliest
The triangle DEF will be a scalene triangle as all the sides of the triangle are unequal.
What is a scalene triangle?A scalene triangle is a type of triangle which have all the sides to be unequal and similarly, all the angles will also be unequal to each other.
Given that:-
Triangle DEF has sides of length x, x+3, and x−1it is given that all the sides of the triangle are x, x+3, and x−1 we can clearly see that for any value of x all the three sides will have different values. we can conclude from this that the triangle DEF is a scalene triangle.
Therefore triangle DEF will be a scalene triangle as all the sides of the triangle are unequal.
To know more about the scalene triangle follow
https://brainly.com/question/16589630
#SPJ2
Which of the following graphs represents a one-to-one function? On a coordinate plane, a function has two curves connected to a straight line. The first curve has a maximum of (negative 6, 4) and a minimum of (negative 4.5, negative 1). The second curve has a maximum of (negative 3.5, 2) and a minimum of (negative 2.5, 0.5). The straight line has a positive slope and starts at (negative 2, 1) and goes through (1, 2). On a coordinate plane, a circle intersects the x=axis at (negative 2, 0) and (2, 0) and intercepts the y-axis at (0, 4) and (0, negative 4). On a coordinate plane, a v-shaped graph is facing up. The vertex is at (0,0) and the function goes through (negative 4, 4) and (4, 4). A coordinate plane has 7 points. The points are (negative 4, 1), (negative 3, 4), (negative 1, 3), (1, negative 3), (3, negative 4), (4, negative 2), (5, 3). Mark this and return
Answer:
d. this graph
Step-by-step explanation:
1. In the past, Sam cashed his paycheck each month at Ready Cash, a check cashing service that
charges a 5% fee. He recently opened a checking account at Bank of America so he can now
deposit and/or cash his paycheck without a fee. If Sam is making $28,500 per year, how much will
he save by not going to Ready Cash anymore?
Step-by-step explanation:
28000 ÷ 100
=280
280 × 5
=1400
what is an example of a quintic bionomial?
I need help on this problem
9514 1404 393
Answer:
see attached
Step-by-step explanation:
(a) The graph is scaled by a factor of 2, and shifted up 1 unit. The scaling moves each point away from the x-axis by a factor of 2. The points on the x-axis stay there. The translation moves that scaled figure up 1 unit.
__
(b) The graph is reflected across the x-axis and shifted right 4 units. The point on the x-axis stays on the x-axis.
A triangle has base of 7 1/8 feet and height 6 1/4 feet. Find the area of a triangle as a mixed number.
Answer: The area is 22 17/64.
Step-by-step explanation:
base = 7 1/8 = 57/8
height = 6 1/4 = 25/4
area = 1/2*b*h
= 1/2*57/8*25/4
= 1425/64
= 22 17/64
If a and b are positive numbers, find the maximum value of f(x) = x^a(2 − x)^b on the interval 0 ≤ x ≤ 2.
Answer:
The maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Step-by-step explanation:
Answer:
Step-by-step explanation:
We are given the function:
[tex]\displaystyle f(x) = x^a (2-x)^b \text{ where } a, b >0[/tex]
And we want to find the maximum value of f(x) on the interval [0, 2].
First, let's evaluate the endpoints of the interval:
[tex]\displaystyle f(0) = (0)^a(2-(0))^b = 0[/tex]
And:
[tex]\displaystyle f(2) = (2)^a(2-(2))^b = 0[/tex]
Recall that extrema occurs at a function's critical points. The critical points of a function at the points where its derivative is either zero or undefined. Thus, find the derivative of the function:
[tex]\displaystyle f'(x) = \frac{d}{dx} \left[ x^a\left(2-x\right)^b\right][/tex]
By the Product Rule:
[tex]\displaystyle \begin{aligned} f'(x) &= \frac{d}{dx}\left[x^a\right] (2-x)^b + x^a\frac{d}{dx}\left[(2-x)^b\right]\\ \\ &=\left(ax^{a-1}\right)\left(2-x\right)^b + x^a\left(b(2-x)^{b-1}\cdot -1\right) \\ \\ &= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right] \end{aligned}[/tex]
Set the derivative equal to zero and solve for x:
[tex]\displaystyle 0= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right][/tex]
By the Zero Product Property:
[tex]\displaystyle x^a (2-x)^b = 0\text{ or } \frac{a}{x} - \frac{b}{2-x} = 0[/tex]
The solutions to the first equation are x = 0 and x = 2.
First, for the second equation, note that it is undefined when x = 0 and x = 2.
To solve for x, we can multiply both sides by the denominators.
[tex]\displaystyle\left( \frac{a}{x} - \frac{b}{2-x} \right)\left((x(2-x)\right) = 0(x(2-x))[/tex]
Simplify:
[tex]\displaystyle a(2-x) - b(x) = 0[/tex]
And solve for x:
[tex]\displaystyle \begin{aligned} 2a-ax-bx &= 0 \\ 2a &= ax+bx \\ 2a&= x(a+b) \\ \frac{2a}{a+b} &= x \end{aligned}[/tex]
So, our critical points are:
[tex]\displaystyle x = 0 , 2 , \text{ and } \frac{2a}{a+b}[/tex]
We already know that f(0) = f(2) = 0.
For the third point, we can see that:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(2- \frac{2a}{a+b}\right)^b[/tex]
This can be simplified to:
[tex]\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Since a and b > 0, both factors must be positive. Thus, f(2a / (a + b)) > 0. So, this must be the maximum value.
To confirm that this is indeed a maximum, we can select values to test. Let a = 2 and b = 3. Then:
[tex]\displaystyle f'(x) = x^2(2-x)^3\left(\frac{2}{x} - \frac{3}{2-x}\right)[/tex]
The critical point will be at:
[tex]\displaystyle x= \frac{2(2)}{(2)+(3)} = \frac{4}{5}=0.8[/tex]
Testing x = 0.5 and x = 1 yields that:
[tex]\displaystyle f'(0.5) >0\text{ and } f'(1) <0[/tex]
Since the derivative is positive and then negative, we can conclude that the point is indeed a maximum.
Therefore, the maximum value of f(x) occurs at:
[tex]\displaystyle x = \frac{2a}{a+b}[/tex]
And is given by:
[tex]\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b[/tex]
Help please!??!!?!?
9514 1404 393
Answer:
a) CP = SP/1.1
b) CP = $59.50
c) GST = $5.95
Step-by-step explanation:
a) Divide by the coefficient of CP.
SP = 1.1×CP
CP = SP/1.1
__
b) Use the formula with the given value.
CP = $65.45/1.1 = $59.50
__
c) You can do this two ways: subtract CP from SP, or multiply CP by 0.1.
GST = SP -CP = $65.45 -59.50 = $5.95
GST = CP×0.10 = $59.50 × 0.10 = $5.95
Write the equation of the line that passes through the points (0, 4) and (- 4, - 5) . Put your answer in fully reduced slope intercept form , unless it is a vertical or horizontal line
Answer:
y=9/4x+4
Step-by-step explanation:
Start by finding the slope
m=(-5-4)/(-4-0)
m=-9/-4 = 9/4
next plug the slope and the point (-4,-5) into point slope formula
y-y1=m(x-x1)
y1=-5
x1= -4
m=9/4
y- -5 = 9/4(x - -4)
y+5=9/4(x+4)
Distribute 9/4 first
y+5=9/4x + 9
subtract 5 on both sides
y=9/4x+4
Surface Area of cones
Instructions: Find the surface area of each figure. Round your answers to the nearest tenth, if necessary.
9514 1404 393
Answer:
64.1 ft²
Step-by-step explanation:
The area of the cone is given by ...
A = πr(r +h) . . . . for radius r and slant height h
A = π(2 ft)(2 ft +8.2 ft) ≈ 64.1 ft²