Answer:
0.0177
Explanation:
Cystic fibrosis is an autosomal recessive disease, thereby an individual must have both copies of the CFTR mutant alleles to have this disease. The Hardy-Weinberg equilibrium states that p² + 2pq + q² = 1, where p² represents the frequency of the homo-zygous dominant genotype (normal phenotype), q² represents the frequency of the homo-zygous recessive genotype (cystic fibrosis phenotype), and 2pq represents the frequency of the heterozygous genotype (individuals that carry one copy of the CFTR mutant allele). Moreover, under Hardy-Weinberg equilibrium, the sum of the dominant 'p' allele frequency and the recessive 'q' allele frequency is equal to 1. In this case, we can observe that the frequency of the homo-zygous recessive condition for cystic fibrosis (q²) is 1/3200. In consequence, the frequency of the recessive allele for cystic fibrosis can be calculated as follows:
1/3200 = q² (have two CFTR mutant alleles) >>
q = √ (1/3200) = 1/56.57 >>
- Frequency of the CFTR allele q = 1/56.57 = 0.0177
- Frequency of the dominant 'normal' allele p = 1 - q = 1 - 0.0177 = 0.9823
What are three techniques that can be used to show that the electron transport chain is found on the matrix side of the inner mitochondrial membrane. Select all that apply.
Answer:
Explanation:
Step 1: Generating a Proton Motive Force
The hydrogen carriers (NADH and FADH2) are oxidised and release high energy electrons and protons
The electrons are transferred to the electron transport chain, which consists of several transmembrane carrier proteins
As electrons pass through the chain, they lose energy – which is used by the chain to pump protons (H+ ions) from the matrix
The accumulation of H+ ions within the intermembrane space creates an electrochemical gradient (or a proton motive force)
Step Two: ATP Synthesis via Chemiosmosis
The proton motive force will cause H+ ions to move down their electrochemical gradient and diffuse back into matrix
This diffusion of protons is called chemiosmosis and is facilitated by the transmembrane enzyme ATP synthase
As the H+ ions move through ATP synthase they trigger the molecular rotation of the enzyme, synthesising ATP
Step Three: Reduction of Oxygen
In order for the electron transport chain to continue functioning, the de-energised electrons must be removed
Oxygen acts as the final electron acceptor, removing the de-energised electrons to prevent the chain from becoming blocked
Oxygen also binds with free protons in the matrix to form water – removing matrix protons maintains the hydrogen gradient
In the absence of oxygen, hydrogen carriers cannot transfer energised electrons to the chain and ATP production is halted
Which is true if energy in ecosystem
Explanation:
energy flows in only one direction through an ecosystem.
the flowers of the ____ bloom with sunrise and close with sunset.
The energy source for active transport is ________ , while the force driving facilitated diffusion is ________.
Answer:
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
Explanation: