9514 1404 393
Answer:
left 1 unitdown 2 unitsStep-by-step explanation:
The transformation g(x) = f(x -h) +k is a translation of f(x) to the right by h units and up k units.
1. h = -1, so the graph of g(x) is the graph of f(x) shifted left 1 unit. (blue)
__
2. k = -2, so the graph of g(x) is the graph of f(x) shifted down 2 units. (green)
Under which transformation can the image be a different size than the original
figure?
A. translation
B. rotation
C. dilation
D. reflection
C. Dilation.
Dilation can resize the image.
Translation will shift the imagine's position but won't change its actual size.
Rotation will mangle with image's orientation but also won't change its size.
Reflection is just a type of rotation which as established, also won't change its size.
Hope this helps.
Anthony steps on a bathroom scale that records his weight at 195 pounds. He immediately steps back onto the same scale, which records his weight at 205 pounds. It is MOST accurate to describe these scales as:
Answer:
Moving upwards with an acceleration.
Step-by-step explanation:
weight of the person = 195 pounds
Apparent weight = 205 pounds
As the weight increases so the scale is moving upwards with some acceleration.
The scale is in elevator which is moving upwards.
Suppose 50.7 liters of water came out of a faucet today. If 2.6 liters of water come out each minute, for how many minutes was the faucet on?
...............................................................
determine a simplified expression
Answer:
For Task B: [tex]3x^4 - 2x^3[/tex]
Step-by-step explanation:
Given that Volume = l*w*h, we can plug in the values on the diagram, so we get the equation (3x-2)([tex]\frac{1}{2}x[/tex])([tex]2x^2[/tex]) = [tex](\frac{3}{2} x^2 - x)(2x^2) = 3x^4-2x^3[/tex]. Hope this helps!!!
A die is rolled 20 times and the number of twos that come up is tallied. Find the probability of getting the given result. [Binomail Probability] Less than four twos
Answer:
0.5665 = 56.65% probability of less than four twos.
Step-by-step explanation:
For each roll, there are only two possible outcomes. Either it is a two, or it is not a two. The probability of a roll ending up in a two is independent of any other roll, which means that the binomial probability distribution is used.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A die is rolled 20 times
This means that [tex]n = 20[/tex]
One out of six sides is 2:
This means that [tex]p = \frac{1}{6} = 0.1667[/tex]
Probability of less than four twos:
This is:
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{20,0}.(0.1667)^{0}.(0.8333)^{20} = 0.0261[/tex]
[tex]P(X = 1) = C_{20,1}.(0.1667)^{1}.(0.8333)^{19} = 0.1043[/tex]
[tex]P(X = 2) = C_{20,2}.(0.1667)^{2}.(0.8333)^{18} = 0.1982[/tex]
[tex]P(X = 3) = C_{20,3}.(0.1667)^{3}.(0.8333)^{17} = 0.2379[/tex]
So
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0261 + 0.1043 + 0.1982 + 0.2379 = 0.5665[/tex]
0.5665 = 56.65% probability of less than four twos.
A professor has learned that nine students in her class of 35 will cheat on the exam. She decides to focus her attention on ten randomly chosen students during the exam. a. What is the probability that she finds at least one of the students cheating
Answer:
[tex]\frac{73,331}{75,516}\approx 97.11\%[/tex]
Step-by-step explanation:
The probability that she will find at least one student cheating is equal to the probability that she finds no students cheating subtracted from 1.
Each time she randomly chooses a student the probability she will catch a cheater is equal to the number of cheaters divided by the number of students.
Therefore, for the first student she chooses, there is a [tex]\frac{9}{35}[/tex] chance that the student chosen is a cheater and therefore a [tex]\frac{26}{35}[/tex] chance she does not catch a cheater. For the second student, there are only 34 students to choose from. If we stipulate that the first student chosen was not a cheater, then there is a [tex]\frac{9}{34}[/tex] chance she will catch a cheater and a [tex]\frac{25}{34}[/tex] chance she does not catch the cheater.
Therefore, the probability she does not catch a single cheater after randomly choosing ten students is equal to:
[tex]\frac{26}{35}\cdot \frac{25}{34}\cdot \frac{24}{33}\cdot \frac{23}{32}\cdot \frac{22}{31}\cdot \frac{21}{30}\cdot \frac{20}{29}\cdot \frac{19}{28}\cdot \frac{18}{27}\cdot \frac{17}{26}[/tex]
Subtract this from one to get the probability she finds at least one of the students cheating after randomly selecting nine students. Let event A occur when the professor finds at least one student cheating after randomly selecting ten students from a group of 35 students.
[tex]P(A)=1-\frac{26}{35}\cdot \frac{25}{34}\cdot \frac{24}{33}\cdot \frac{23}{32}\cdot \frac{22}{31}\cdot \frac{21}{30}\cdot \frac{20}{29}\cdot \frac{19}{28}\cdot \frac{18}{27}\cdot \frac{17}{26},\\\\P(A)=1-\frac{2,185}{75,516},\\\\P(A)=\boxed{\frac{73,331}{75,516}}\approx 0.97106573441\approx \boxed{97.11\%}[/tex]
Last question pls help me
Answer:
Step-by-step explanation:
684 dollars
Denver's elevation is 5280 feet above sea level. Death Valley is -282 feet. Is Death Valley located above sea level or below sea level???
(plz answer, due date is semtemper)
9514 1404 393
Answer:
below
Step-by-step explanation:
When signed numbers are used to represent elevation with respect to sea level, positive signs are used for values above sea level, and negative signs are used for values below sea level. The given elevation of Death Valley indicates it is 282 feet below sea level.
write the equation of a line of a line passing through the points (3,1) and (6,3).
Answer:
i think its 2 1
Step-by-step explanation:
Answer:
y =2/3x-1
Step-by-step explanation:
First find the slope
m = ( y2-y1)/(x2-x1)
= ( 3-1)/ (6-3)
= 2/3
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 2/3x +b
Using a point
3 = 2/3(6)+b
3 = 4+b
3-4 =b
-1=b
y =2/3x-1
Clear parentheses by applying the distributive property.
-(-4s + 9t + 7)
Answer:
4s-9t-7
Step-by-step explanation:
multiply the negative one with all terms inside the bracket, since they are all unlike terms the answer remains the same
(c³d)a(cd⁷)a
Simplify
Answer:
= c^4 d^8 a^2
Step-by-step explanation:
Apply exponent rule: aa= a^2
= c^3 da^2 cd^7
= c^4 da^2 d^7
= c^4 d^8 a^2
Write a linear equation in point slope form that passes through the points (-2,18) and (1,9)
Answer:
y-18=-3(x+2)
Step-by-step explanation:
The Slope-intercept form is -3x+12
The starting salaries of individuals with an MBA degree are normally distributed with a mean of $40,000 and a standard deviation of $5,000. What percentage of MBA's will have starting salaries of $34,000 to $46,000
Answer:
The correct answer is "76.98%".
Step-by-step explanation:
According to the question,
⇒ [tex]P(34000<x<46000) = P[\frac{34000-40000}{5000} <\frac{x- \mu}{\sigma} <\frac{46000-40000}{5000} ][/tex]
[tex]=P(-1.2<z<1.2)[/tex]
[tex]=P(z<1.2)-P(z<-1.2)[/tex]
[tex]=0.8849-0.1151[/tex]
[tex]=0.7698[/tex]
or,
[tex]=76.98[/tex]%
The wholesale price of 6 oz plastic bottles is 6 cents how many plastic bottles can be purchased for $98.41
Answer:
1640
Step-by-step explanation:
Take the total amount and divide by the amount for one
Make sure to write 6 cent in dollar form (.06)
98.41 / .06
1640.1666
Round down since we need to buy whole bottles
1640
Question 4 4 pts Lori buys a $1500 certificate of deposit (CD) that earns 6% interest that compounds monthly. How much will the CD be worth in: 5 years? 10 years? 486 months?
Answer:
Step-by-step explanation:
5 years
[tex]1500(1+\frac{.06}{12})^{12*5}=2023.275229[/tex]
10 years
[tex]1500(1+\frac{.06}{12})^{10*12}=2729.095101[/tex]
486 months:
[tex]1500(1+\frac{.06}{12})^{486}=16935.47074[/tex]
round those as you please
HELP PLEASE I CANNOT FAIL PLEASE!!!!!!!
Which statement correctly compares the two functions?
A.
They have the same y-intercept and the same end behavior as x approaches ∞.
B.
They have the same x- and y-intercepts.
C.
They have the same x-intercept but different end behavior as x approaches ∞.
D.
They have different x- and y-intercepts but the same end behavior as x approaches ∞.
Answer:
B
Step-by-step explanation:
they have the same intercepts
The director of research and development is testing a new medicine. She wants to know if there is evidence at the 0.02 level that the medicine relieves pain in more than 384 seconds. For a sample of 41 patients, the mean time in which the medicine relieved pain was 387 seconds. Assume the population standard deviation is 23. Find the P-value of the test statistic.
Answer:
The p-value of the test statistic is 0.2019.
Step-by-step explanation:
Test if there is evidence at the 0.02 level that the medicine relieves pain in more than 384 seconds.
At the null hypothesis, we test if it relieves pain in at most 384 seconds, that is:
[tex]H_0: \mu \leq 384[/tex]
At the alternative hypothesis, we test if it relieves pain in more than 384 seconds, that is:
[tex]H_1: \mu > 384[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
384 is tested at the null hypothesis:
This means that [tex]\mu = 384[/tex]
For a sample of 41 patients, the mean time in which the medicine relieved pain was 387 seconds. Assume the population standard deviation is 23.
This means that [tex]n = 41, X = 387, \sigma = 23[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{387 - 384}{\frac{23}{\sqrt{41}}}[/tex]
[tex]z = 0.835[/tex]
P-value of the test:
The p-value of the test is the probability of finding a sample mean above 387, which is 1 subtracted by the p-value of z = 0.835.
Looking at the z-table, z = 0.835 has a p-value of 0.7981.
1 - 0.7981 = 0.2019
The p-value of the test statistic is 0.2019.
PLEASE i need the answers!!!!!!!!!
I have no time please if you know the answer please tell MEEE!!!!!!!!!!!
Answer:
5x^2(2-3x)
(n+4)(x+y)
Step-by-step explanation:
If P(x) = 2x2 – 3x + 7 and Q(x) = 8 - x), find each function value.
15. P(-3)
16. Q(2)
17. P(4)
18. Q(-3)
Answer:
15. 52
16. 6
17. 59
18. 11
Step-by-step explanation:
help I was never taught how to do this im confused
Answer:
36
Step-by-step explanation:
Area of a triangle = (bh)/2
Where b = base length and h = height
Given base length: 18ft
Given height: 4ft
This being known let's define the variables
b = 18
h = 4
Now to find the area we simply plug in these values into the formula
Area = (18)(4)/2
Simplify multiplication 18 * 4 = 72
Area = 72/2
Simplify division
Area = 36
A university professor asked his class of 42 students when they had studied for his class the previous weekend. There responses were. please answer part a, b and c
ANSWERS:
a) 16 students
b) 25 students
c) 2 students
STEP BY STEP:
There are 42 students in total. This question can be solved by "Principal of Inclusion and Exclusion"
Question a)
The students that studied on Sunday in total with overlaps is 30. To figure out the students that ONLY studied on Sunday you need to first minus the overlaps in the combos:
the combos:
3, 10, 6, 2
Since the last combo included all of the other dates, we need to minus it:
1, 8, 4, 2
Now we can use the total of Sunday and minus the combos that includes Sunday:
30 - (4 + 2 + 8) = 16 students
Question b)
To figure out all the students that only studied on ONE day, not 2 not 3, just one day. We need to figure out the students that studied for Saturday and Friday using the same method before for figuring out Sunday:
Friday: 9 - 4 - 1 -2 = 2 students
Saturday: 18 - 1 - 2- 8 = 7 students
and now add them all together: 2 + 7 + 16 = 25 students
That is the total number of students that studied on one day.
Question c)
Now for the numbers of students that didn't study... We can just use the total to minus everything else!
42 - (25 + 1 + 4 + 8 + 2) = 2 students!!!
And thats all done! If you still don't get it, please ask!
I need help.
You are interested in finding a 95% confidence interval for the average commute that non-residential students have to their college. The data below show the number of commute miles for 12 randomly selected non-residential college students. Round answers to 3 decimal places where possible.
Answer:
(11.847 ; 15.813)
Step-by-step explanation:
We are given 12 samples which are :
8, 20, 20, 11, 18, 12, 6, 5, 7, 22, 12, 25
We use a T-distribution to find the confidence interval since the sample size. is small, n < 30
Using a calculator :
The sample mean, xbar = 13.83
Sample standard deviation, s = 6.87
The confidence interval, C.I
C.I = xbar ± Tcritical * s/√n)
Tcritical at 95%, df = n - 1, 12 - 1 = 11
Tcritical(0.05, 11) = 2.20
Hence,
C.I = 13.83 ± 2.20(6.87/√12)
C.I = 13.83 ± 1.9831981
C. I = (13.83 - 1.983 ; 13.83 + 1.983)
C. I = (11.847 ; 15.813)
MFP15017010 2021 Question 2 2.1 Calculate the following 2- and 3-digit numbers using strategic doubling: 34 2.1.2 340 2.13 277 214 00 (10) 2.15 500
Answer:
plz check ur school solution down.
Step-by-step explanation:
Engineers are designing a large elevator that will accommodate 44 people. The maximum weight the elevator can hold safely is 8228 pounds. According to the National Health Statistics Reports, the weights of adult U.S. men have mean 186 pounds and standard deviation 60 pounds, and the weights of adult U.S. women have mean 157 pounds and standard deviation 69 pounds.
a. If 44 people are on the elevator, and their total weight is 8228 pounds, what is their average weight?
b. If a random sample of 44 adult men ride the elevator, what is the probability that the maximum safe weight will be exceeded?
c. If a random sample of 44 adult women ride the elevator, what is the probability that the maximum safe weight will be exceeded?
Answer:
a) Their average weight is of 187 pounds.
b) 0.4562 = 45.62% probability that the maximum safe weight will be exceeded.
c) 0.002 = 0.2% probability that the maximum safe weight will be exceeded
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
a. If 44 people are on the elevator, and their total weight is 8228 pounds, what is their average weight?
8228/44 = 187
Their average weight is of 187 pounds.
b. If a random sample of 44 adult men ride the elevator, what is the probability that the maximum safe weight will be exceeded?
For men, we have that [tex]\mu = 186, \sigma = 60[/tex]
Sample of 44 means that [tex]n = 44, s = \frac{60}{\sqrt{44}}[/tex]
This probability is 1 subtracted by the p-value of Z when X = 187. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{187 - 186}{\frac{60}{\sqrt{44}}}[/tex]
[tex]Z = 0.11[/tex]
[tex]Z = 0.11[/tex] has a p-value of 0.5438.
1 - 0.5438 = 0.4562
0.4562 = 45.62% probability that the maximum safe weight will be exceeded.
c. If a random sample of 44 adult women ride the elevator, what is the probability that the maximum safe weight will be exceeded?
For women, we have that [tex]\mu = 157, \sigma = 69[/tex]
Sample of 44 means that [tex]n = 44, s = \frac{69}{\sqrt{44}}[/tex]
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{187 - 157}{\frac{69}{\sqrt{44}}}[/tex]
[tex]Z = 2.88[/tex]
[tex]Z = 2.88[/tex] has a p-value of 0.998.
1 - 0.998 = 0.002.
0.002 = 0.2% probability that the maximum safe weight will be exceeded
1. One half of a number added to a second
number equals 4. One half of the first
number decreased by the second number
equals zero. Find the two numbers.
Answer:
(4, 2)
Step-by-step explanation:
½x + y = 4
y = 4 - ½x
½x - y = 0
½x - (4 - ½x) = 0
½x - 4 + ½x = 0
x = 4
y = 4 - ½(4)
y = 2
Paul baked 208 brown loaves. If the ratio of white loaves to brown loaves is 3:2, how many loaves did he bake in total?
Paul baked 520
loaves.
The owner of a restaurant is placing an order for bread.
On Friday there were 300 customers in the restaurant and 100 bread rolls were served.
On Saturday he is expecting 540 customers.
What would be a good estimate of how many bread rolls should he order? I
Os 2021
A Exit
Back
✓ Mark Question
172.000
13 :
O atv
N
MacBook Air
Answer:
A. Total=520 loaves
B. Estimate= 180 rolls
Step-by-step explanation:
Perform the following series of rigid transformations on ∆ABC: Translate ∆ABC by moving it 5 units to the right and 2 units up. Draw the line y = -x, and reflect ∆A'B'C' across the line. Rotate ∆A''B''C'' counterclockwise about the origin by 270°.
Answer:
The answer is below
Step-by-step explanation:
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, reflection, translation and dilation.
If a point A(x, y) is translated a units right and b units up, the new point is at A'(x + a, y + b).
If a point A(x, y) is reflected across the line y = -x, the new point is at A'(-y, -x).
If a point A(x, y) is rotated counterclockwise by 270 degrees, the new point is at A'(y, -x).
Let us assume that triangle ABC has vertices at A(-6, -1), B(-3, -3) and C(-1, -2).
If it is moved 5 units to the right and 2 units up, the new point is at A'(-1, 1), B'(1, -1) and C'(3, 0). If it is reflected across the line y = -x, the vertices are at A"(-1, 1), B"(1, -1) and C"(0, -3). If it is then rotated counterclockwise about the origin by 270°, the new point is at A'"(-1, -1), B"'(1, 1), C"'(3, 0)
PLEASE HEP ME
PLEASE HELP AND BE CORRECT BEFORE ANSWERING
9514 1404 393
Answer:
TrueTrueStep-by-step explanation:
The center of dilation (point D) is a point that doesn't move. Any line not through that point will be moved to a parallel location when a dilation factor is applied.
Any line through the center of dilation will still go through the center of dilation. Its slope does not change, so the line will appear to be the same.
AB ║ A'B' — True
AD ≅ A'D' — True
_____
You can see these relationships in the attached figure.
Certify Completion Icon Tries remaining:2 A town recently dismissed 10 employees in order to meet their new budget reductions. The town had 7 employees over 50 years of age and 18 under 50. If the dismissed employees were selected at random, what is the probability that exactly 5 employees were over 50
Answer:
0.055 = 5.5% probability that exactly 5 employees were over 50.
Step-by-step explanation:
The employees are removed from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
7 + 18 = 25 employees, which means that [tex]N = 25[/tex]
7 over 50, which means that [tex]k = 7[/tex]
10 dismissed, which means that [tex]n = 10[/tex]
What is the probability that exactly 5 employees were over 50?
This is P(X = 5). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 5) = h(5,25,10,7) = \frac{C_{7,5}*C_{18,5}}{C_{25,10}} = 0.055[/tex]
0.055 = 5.5% probability that exactly 5 employees were over 50.