Determine the equation of the tangent line to the given path at the specified value of t. (sin(7t), cos(7t), 2t9/2); t=1

Answers

Answer 1

Answer:

P(t) = {sin7, cos7, 2} + (7cos7, -7sin7, 9)(t-1)

Step-by-step explanation:

The equation of the tangent line to the given path at the specified value of t is expressed as;

P(t) = f(t0) + f'(t0)(t - t0)

f(t0) = (sin(7t), cos(7t), 2t^9/2)

at t0 = 1;

f(t0) = {sin7(1), cos7(1), 2(1)^9/2}

f(t0) = {sin7, cos7, 2}

f'(t0) = (7cos7t, -7sin7t, 9/2{2t^9/2-1}

f'(t0) = (7cos7t, -7sin7t, 9t^7/2}

If t0 = 1

f'(1) = (7cos7(1), -7sin7(1), 9(1)^7/2)

f'(1) =(7cos7, -7sin7, 9)

Substituting the given function into the tangent equation will give:

P(t) = f(t0) + f'(t0)(t - t0)

P(t)= {sin7, cos7, 2} + (7cos7, -7sin7, 9)(t-1)

The final expression gives the equation of the tangent line to the path.


Related Questions

Factor completely 6x - 18.
6(x + 3)
6(x-3)
6X (-18)
Prime

Answers

Answer:

6(x-3)

Step-by-step explanation:

the common number for 6 and 18 is 6 so if you extract that from the expression then it turns to 6(x-3) which cannot be factored further

Answer:

Option B:  6(x - 3)

Step-by-step explanation:

Two fraction have the same denominator, 8.the some of two fraction is 1/2.if one of the fraction is added to five times the order, the result is 2,find the number.

Answers

Answer:

  1/8, 3/8

Step-by-step explanation:

Let x and y represent the two fractions. Then we are given ...

  x + y = 1/2

  x + 5y = 2

Subtracting the first equation from the second, we get ...

  (x +5y) -(x +y) = (2) -(1/2)

  4y = 3/2 . . . . . simplify

  y = 3/8 . . . . . . divide by 4

  x = 1/2 -3/8 = 1/8

The two numbers are 1/8 and 3/8.

Consider the surface f(x,y) = 21 - 4x² - 16y² (a plane) and the point P(1,1,1) on the surface.

Required:
a. Find the gradient of f.
b. Let C' be the path of steepest descent on the surface beginning at P, and let C be the projection of C' on the xy-plane. Find an equation of C in the xy-plane.
c. Find parametric equations for the path C' on the surface.

Answers

Answer:

A) ( -8, -32 )

Step-by-step explanation:

Given function : f (x,y) = 21 - 4x^2 - 16y^2

point p( 1,1,1 ) on surface

Gradient of F

attached below is the detailed solution

consider the bevariate data below about Advanced Mathematics and English results for a 2015 examination scored by 14 students in a particular school.The raw score of the examination was out of 100 marks.
Questions:
a)Draw a scatter graph
b)Draw a line of Best Fit
c)Predict the Advance Mathematics mark of a student who scores 30 of of 100 in English.
d)calculate the correlation using the Pearson's Correlation Coefficient Formula
e) Determine the strength of the correlation

Answers

Answer:

Explained below.

Step-by-step explanation:

Enter the data in an Excel sheet.

(a)

Go to Insert → Chart → Scatter.

Select the first type of Scatter chart.

The scatter plot is attached below.

(b)

The scatter plot with the line of best fit is attached below.

The line of best fit is:

[tex]y=-0.8046x+103.56[/tex]

(c)

Compute the value of x for y = 30 as follows:

[tex]y=-0.8046x+103.56[/tex]

[tex]30=-0.8046x+103.56\\\\0.8046x=103.56-30\\\\x=\frac{73.56}{0.8046}\\\\x\approx 91.42[/tex]

Thus, the Advance Mathematics mark of a student who scores 30 out of 100 in English is 91.42.

(d)

The Pearson's Correlation Coefficient is:

[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot \sum X^{2}-(\sum X)^{2}][n\cdot \sum Y^{2}-(\sum Y)^{2}]}}[/tex]

  [tex]=\frac{14\cdot 44010-835\cdot 778}{\sqrt{[14\cdot52775-(825)^{2}][14\cdot 47094-(778)^{2}]}}\\\\= -0.7062\\\\\approx -0.71[/tex]

Thus, the Pearson's Correlation Coefficient is -0.71.

(e)

A correlation coefficient between ± 0.50 and ±1.00 is considered as a strong correlation.

The correlation between Advanced Mathematics and English results is -0.71.

This implies that there is a strong negative correlation.

Pamela drove her car 99 kilometers and used 9 liters of fuel. She wants to know how many kilometers (k)left parenthesis, k, right parenthesis she can drive with 12 liters of fuel. She assumes the relationship between kilometers and fuel is proportional.


How many kilometers can Pamela drive with 12 liters of fuel?

Answers

Answer:

132 kilo meters

Step-by-step explanation:

Pro por tions:

9 lite rs ⇒ 99 km

12 lite rs  ⇒  P km

P = 99*12/9

P = 132 km

Answer:

132

Step-by-step explanation:

give person above brainliest :))

Please please help :((((

Answers

Answer:

y = x-4

Step-by-step explanation:

The y intercept is -4

We have 2 points so we can find the slope

( 0,-4) and(4,0)

m = ( y2-y1)/(x2-x1)

    = ( 0- -4)/ (4-0)

    = 4/4

   =1

The slope intercept form is

y = mx+b

y = 1x-4

y = x-4

evaluate the expression 4x^2-6x+7 if x = 5

Answers

Answer:

77

Step-by-step explanation:

4x^2-6x+7

Let x = 5

4* 5^2-6*5+7

4 * 25 -30 +7

100-30+7

7-+7

77

The expression (x - 4)2 is equivalent to which expression

Answers

Answer:

8-2x

Step-by-step explanation:

2 distributed over the entire expression equals 8-2x

Answer:

the answer is b

Step-by-step explanation:

A Markov chain has 3 possible states: A, B, and C. Every hour, it makes a transition to a different state. From state A, transitions to states B and C are equally likely. From state B, transitions to states A and C are equally likely. From state C, it always makes a transition to state A.

(a) If the initial distribution for states A, B, and C is P0 = ( 1/3 , 1/3 , 1/3 ), find the distribution of X2

(b) Find the steady state distribution by solving πP = π.

Answers

Answer:

A) distribution of x2 = ( 0.4167 0.25 0.3333 )

B) steady state distribution = [tex]\pi a \frac{4}{9} , \pi b \frac{2}{9} , \pi c \frac{3}{9}[/tex]

Step-by-step explanation:

Hello attached is the detailed solution for problems A and B

A) distribution states for A ,B, C:

Po = ( 1/3, 1/3, 1/3 )  we have to find the distribution of x2 as attached below

after solving the distribution

x 2 = ( 0.4167, 0.25, 0.3333 )

B ) finding the steady state distribution solving

[tex]\pi p = \pi[/tex]

below is the detailed solution and answers

solve the equation ​

Answers

Answer:

x = 10

Step-by-step explanation:

2x/3 + 1 = 7x/15 + 3

(times everything in the equation by 3 to get rid of the first fraction)

2x + 3 = 21x/15 + 9

(times everything in the equation by 15 to get rid of the second fraction)

30x+ 45 = 21x + 135

(subtract 21x from 30x; subtract 45 from 135)

9x = 90

(divide 90 by 9)

x = 10

Another solution:

2x/3 + 1 = 7x/15 + 3

(find the LCM of 3 and 15 = 15)

(multiply everything in the equation by 15, then simplify)

10x + 15 = 7x + 45

(subtract 7x from 10x; subtract 15 from 45)

3x = 30

(divide 30 by 3)

x = 10

Tonya and Leo each bought a cell phone at the same time. The trade-in values, in dollars, of the cell phones are modeled by the given functions, where x is the number of months that each person has owned the phone.

Answers

Answer:

The answer is: Leo's phone had the greater initial trade-in value. Tonya's phone decreases at an average rate slower than the trade in value of Leo's phone.

Step-by-step explanation:

I got it right. Hope this helps.

The initial trade-in value of Tonia's phone is greater when compared with Leo's    

There is a decrease in the trade-in value of Leo's phone at an average slower rate

[tex]f(x) = 490\times 0.88[/tex]

[tex](x)[/tex] ⇒ [tex]g(x)[/tex]

[tex]0[/tex] ⇒ [tex]480[/tex]

[tex]2[/tex] ⇒ [tex]360[/tex]

[tex]4[/tex] ⇒ [tex]470[/tex]

Now we will solve with the greater initial value

The initial value is when x = 0. So, we have

[tex]f(x) = 490 \times o.88^x\\\ f(o) = 490 \times 0.88 ^0\\f(0 =490 \times 1 \\f(o) = 490[/tex]

From leos table

[tex]g(0) = 480\\f(0) > g(o)\\i.e \\490 > 480[/tex]

So Tonia had a greater initial value

Solving (b): The phone with a lesser rate

y [tex]y = a b ^ x[/tex]

An exponential function is:

where [tex]b \rightarrow rate[/tex]

For Tonia

[tex]b = o.88[/tex]

For Leo we have

[tex](x_{1} , y_{1} )= (0,480)\\(x_{1}, y_{1} ) = (2, 360)[/tex]

So the equation becomes

[tex]y = ab ^x \\480 = ab ^0 \\and \\360 = ab ^2[/tex]

On solving

[tex]480 = a \times 1\\a = 480[/tex]

[tex]360 = ab ^ 2[/tex]

so it becomes

[tex]480 = 360 \times b ^2 \\[/tex]

On dividing both sides by [tex]480[/tex]  we get

[tex]b ^ 2 = 0.87[/tex]

[tex]b ^ 2 = 0.75[/tex]

On taking square root we get

[tex]b = 0.87[/tex]

In comparison, we get Leo's rate is slower.

Learn more about Equation here:

https://brainly.com/question/14686792

# SPJ2

I'm not sure about this one please I need someone to help me.

Answers

Answer:

The corresponding graph is Graph A.

Step-by-step explanation:

Part 1: Rewriting the inequality and solving for d

To start, the inequality will need simplified.

[tex]9-4d\geq -3\\\\-4d\geq -12\\\\\frac{-4d}{-4} \geq \frac{-12}{-4} \\\\d \leq 3[/tex]

Because simplifying the inequality involved dividing by a negative number, the sign must be flipped.

Part 2: Determining the graph for the inequality

Now, refer to the rules for graphing inequalities.

If the sign is simply < or >, the graph will start at the number that it begins at and the circle will be open.If the sign is ≤ or ≥, the graph will start at the number that it begins at and the circle will be closed.

Therefore, because [tex]d \leq 3[/tex], the graph will start at 3 as a closed dot. Then, it will go left because values must be equal to 3 or less than 3.

Therefore, the graph that represents this is Graph A.

Answer:

Graph A

I hope this helps!

Simplify . 7+ the square root of 6(3+4)-2+9-3*2^2 The solution is

Answers

Answer:

7+sqrt(37)

Step-by-step explanation:

7+sqrt(6*(3+4)-2+9-3*2^2)=7+sqrt(6*7+7-3*4)=7+sqrt(42+7-12)=7+sqrt(37)

If f(x) = 2x2 – 3x – 1, then f(-1)=

Answers

ANSWER:
Given:f(x)=2x^2-3x-1
Then,f(-1)=2(-1)^2-3(-1)-1
f(-1)=2(1)+3-1
f(-1)=5-1
f(-1)=4


HOPE IT HELPS!!!!!!
PLEASE MARK BRAINLIEST!!!!!

The value of function at x= -1 is f(-1) = 4.

We have the function as

f(x) = 2x² - 3x -1

To find the value of f(-1) when f(x) = 2x² - 3x -1, we substitute x = -1 into the expression:

f(-1) = 2(-1)² - 3(-1) - 1

      = 2(1) + 3 - 1

      = 2 + 3 - 1

      = 4.

Therefore, the value of function at x= -1 is f(-1) = 4.

Learn more about Function here:

https://brainly.com/question/32020999

#SPJ6

A raffle offers one $8000.00 prize, one $4000.00 prize, and five $1600.00 prizes. There are 5000 tickets sold at $5 each. Find the expectation if a person buys one ticket.

Answers

Answer:

The expectation is  [tex]E(1 )= -\$ 1[/tex]

Step-by-step explanation:

From the question we are told that  

     The first offer is  [tex]x_1 = \$ 8000[/tex]

     The second offer is  [tex]x_2 = \$ 4000[/tex]

      The third offer is  [tex]\$ 1600[/tex]

      The number of tickets is  [tex]n = 5000[/tex]

      The  price of each ticket is  [tex]p= \$ 5[/tex]

Generally expectation is mathematically represented as

             [tex]E(x)=\sum x * P(X = x )[/tex]

     [tex]P(X = x_1 ) = \frac{1}{5000}[/tex]    given that they just offer one

    [tex]P(X = x_1 ) = 0.0002[/tex]    

 Now  

     [tex]P(X = x_2 ) = \frac{1}{5000}[/tex]    given that they just offer one

     [tex]P(X = x_2 ) = 0.0002[/tex]    

 Now  

      [tex]P(X = x_3 ) = \frac{5}{5000}[/tex]    given that they offer five

       [tex]P(X = x_3 ) = 0.001[/tex]

Hence the  expectation is evaluated as

       [tex]E(x)=8000 * 0.0002 + 4000 * 0.0002 + 1600 * 0.001[/tex]

      [tex]E(x)=\$ 4[/tex]

Now given that the price for a ticket is  [tex]\$ 5[/tex]

The actual expectation when price of ticket has been removed is

      [tex]E(1 )= 4- 5[/tex]

      [tex]E(1 )= -\$ 1[/tex]

Which one is correct? in need of large help

Answers

Answer:

Option C. x + 12 ≤ 2(x – 3)

Step-by-step explanation:

From the question, we obtained the following information:

x + 12 ≤ 5 – y .......(1)

5 – y ≤ 2(x – 3) ....... (2)

To know which option is correct, do the following:

From equation 2,

5 – y ≤ 2(x – 3)

Thus, we can say

5 – y = 2(x – 3)

Now, we shall substitute the value of 5 – y into equation 1 as shown below:

x + 12 ≤ 5 – y

5 – y = 2(x – 3)

x + 12 ≤ 2(x – 3)

From the above illustration, we can see that if x + 12 ≤ 5 – y and 5 – y ≤ 2(x – 3), then x + 12 ≤ 2(x – 3) must be true.

Option C gives the correct answer.

Given the sequence 38, 32, 26, 20, 14, ..., find the explicit formula. A. an=44−6n B. an=41−6n C. an=35−6n D. an=43−6n

Answers

Answer:

The answer is option A

Step-by-step explanation:

The sequence above is an arithmetic sequence

For an nth term in an arithmetic sequence

A(n) = a + ( n - 1)d

where a is the first term

n is the number of terms

d is the common difference

From the question

a = 38

d = 32 - 38 = - 6 or 20 - 26 = - 6

Substitute the values into the above formula

A(n) = 38 + (n - 1)-6

= 38 - 6n + 6

We have the final answer as

A(n) = 44 - 6n

Hope this helps you

Answer:

a

Step-by-step explanation:

you're welcome!

Which function below has the following domain and range?
Domain: { -6, -5,1,2,6}
Range: {2,3,8)
{(2,3), (-5,2), (1,8), (6,3), (-6, 2)
{(-6,2), (-5,3), (1,8), (2,5), (6,9)}
{(2,-5), (8, 1), (3,6), (2, - 6), (3, 2)}
{(-6,6), (2,8)}​

Answers

Answer:

{(2,3), (-5,2), (1,8), (6,3), (-6, 2)

Step-by-step explanation:

The domain is the input and the range is the output

We need inputs of -6 -5 1 2 6

and outputs of 2 3 and 8

Evaluate integral _C x ds, where C is
a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)
b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Answers

Answer:

a.    [tex]\mathbf{36 \sqrt{5}}[/tex]

b.   [tex]\mathbf{ \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

Step-by-step explanation:

Evaluate integral _C x ds  where C is

a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)

i . e

[tex]\int \limits _c \ x \ ds[/tex]

where;

x = t   , y = t/2

the derivative of x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt}= \dfrac{1}{2}[/tex]

and t varies from 0 to 12.

we all know that:

[tex]ds=\sqrt{ (\dfrac{dx}{dt})^2 + ( \dfrac{dy}{dt} )^2}} \ \ dt[/tex]

[tex]\int \limits _c \ x \ ds = \int \limits ^{12}_{t=0} \ t \ \sqrt{1+(\dfrac{1}{2})^2} \ dt[/tex]

[tex]= \int \limits ^{12}_{0} \ \dfrac{\sqrt{5}}{2}(\dfrac{t^2}{2}) \ dt[/tex]

[tex]= \dfrac{\sqrt{5}}{2} \ \ [\dfrac{t^2}{2}]^{12}_0[/tex]

[tex]= \dfrac{\sqrt{5}}{4}\times 144[/tex]

= [tex]\mathbf{36 \sqrt{5}}[/tex]

b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Given that:

x = t  ; y = 3t²

the derivative of  x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt} = 6t[/tex]

[tex]ds = \sqrt{1+36 \ t^2} \ dt[/tex]

Hence; the  integral _C x ds is:

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

Let consider u to be equal to  1 + 36t²

1 + 36t² = u

Then, the differential of t with respect to u is :

76 tdt = du

[tex]tdt = \dfrac{du}{76}[/tex]

The upper limit of the integral is = 1 + 36× 2² = 1 + 36×4= 145

Thus;

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

[tex]\mathtt{= \int \limits ^{145}_{0} \sqrt{u} \ \dfrac{1}{72} \ du}[/tex]

[tex]= \dfrac{1}{72} \times \dfrac{2}{3} \begin {pmatrix} u^{3/2} \end {pmatrix} ^{145}_{1}[/tex]

[tex]\mathtt{= \dfrac{2}{216} [ 145 \sqrt{145} - 1]}[/tex]

[tex]\mathbf{= \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

You are going to your first school dance! You bring $20,
and sodas cost $2. How many sodas can you buy?
Please write and solve an equation (for x sodas), and
explain how you set it up.

Answers

Answer:

10

Step-by-step explanation:

Let the no. of sodas be x

Price of each soda = $2

Therefore, no . of sodas you can buy = $2x

2x=20

=>x=[tex]\frac{20}{2}[/tex]

=>x=10

you can buy 10 sodas

Answer: 10 sodas

Step-by-step explanation:

2x = 20       Divide both sides by 2  

x = 10

If I brought 20 dollars and I  want to by only sodas and each sodas cost 2 dollars, then I will divide the total amount of money that I brought  by 2 to find out how many sodas I could by.

Please Solve
F/Z=T for Z

Answers

Answer:

F /T = Z

Step-by-step explanation:

F/Z=T

Multiply each side by Z

F/Z *Z=T*Z

F = ZT

Divide each side by T

F /T = ZT/T

F /T = Z

Answer:

[tex]\boxed{\red{ z = \frac{f}{t} }}[/tex]

Step-by-step explanation:

[tex] \frac{f}{z} = t \\ \frac{f}{z} = \frac{t}{1} \\ zt = f \\ \frac{zt}{t} = \frac{f}{t} \\ z = \frac{f}{t} [/tex]

AB is dilated from the origin to create A'B' at A' (0, 8) and B' (8, 12). What scale factor was AB dilated by?

Answers

Answer:

4

Step-by-step explanation:

Original coordinates:

A (0, 2)

B (2, 3)

The scale is what number the original coordinates was multiplied by to reach the new coordinates

1. Divide

(0, 8) ÷ (0, 2) = 4

(8, 12) ÷ (2, 3) = 4

AB was dilated by a scale factor of 4.

Brainliest! Jared uses the greatest common factor and the distributive property to rewrite this sum: 100 + 75 Drag one number into each box to show Jared's expression. Brainliest!

Answers

Answer:

25(4 + 3)

Step-by-step explanation:

100 = 2^2 + 5^2

75 = 3 * 5^2

GCF = 5^2 = 25

100 + 75 =

= 25 * 4 + 25 * 3

= 25(4 + 3)

��2222 is the diameter of a circle. The coordinates are �(−2, −3) and �(−12, −5). At what coordinate is the center of the circle located? A. (5, 1) B. (−5, −1) C. (−4, −7) D. (−7, −4)

Answers

Answer:

D ). (-7,-4)

Step-by-step explanation:

To locate the position or the location of the centre of the circle we have to bear in mind that the center of the circle is the midpoint of the diameter line.

Formula for midpoint of a line is given below

Midpoint= (X1+x2)/2 ,(y1+y2)/2

Where X1= -2,y1= -3

X2= -12, y2= -5

The midpoint= (-2+(-12))/2,(-3+(-5))/2

Midpoint= (-2-12)/2,(-3-5)/2

Midpoint= (-14)/2,(-8)/2

Midpoint=( -7,-4)

The center of the circle is located at the point (-7,-4)

Researchers recorded that a certain bacteria population declined from 450,000 to 900 in 30 hours at this rate of decay how many bacteria will there be in 13 hours

Answers

Answer:

30,455

Step-by-step explanation:

Exponential decay

y = a(1 - b)^x

y = final amount

a = initial amount

b = rate of decay

x = time

We are looking for the rate of decay, b.

900 = 450000(1 - b)^30

1 = 500(1 - b)^30

(1 - b)^30 = 0.002

1 - b = 0.002^(1/30)

1 - b = 0.81289

b = 0.1871

The equation for our case is

y = 450000(1 - 0.1871)^x

We are looking for the amount in 13 hours, so x = 13.

y = 450000(1 - 0.1871)^13

y = 30,455

According to the local union president, the mean gross income of plumbers in the Salt Lake City area follows a normal distribution with a mean of $48,000 and a population standard deviation of $2,000. A recent investigative reporter for KYAK TV found, for a sample of 49 plumbers, the mean gross income was $47,600. At the 0.05 significance level, is it reasonable to conclude that the mean income is not equal to $47,600? Determine the p value. State the Null and Alternate hypothesis: State the test statistic: State the Decision Rule: Show the calculation: What is the interpretation of the sample data? Show the P value

Answers

Answer:

Step-by-step explanation:

Given that:

population mean [tex]\mu[/tex] = 47600

population standard deviation [tex]\sigma[/tex] = 2000

sample size n = 49

Sample mean [tex]\over\ x[/tex] = 48000

Level of significance = 0.05

The null and the alternative hypothesis can be computed as follows;

[tex]H_0 : \mu = 47600 \\ \\ H_1 : \mu \neq 47600[/tex]

Using the table of standard normal distribution, the value of z that corresponds to the two-tailed probability 0.05 is 1.96. Thus, we will reject the null hypothesis if the value of the test statistics is less than -1.96 or more than 1.96.

The test statistics can be calculated by using the formula:

[tex]z= \dfrac{\overline X - \mu }{\dfrac{\sigma}{ \sqrt{n}}}[/tex]

[tex]z= \dfrac{ 48000-47600 }{\dfrac{2000}{ \sqrt{49}}}[/tex]

[tex]z= \dfrac{400 }{\dfrac{2000}{ 7}}[/tex]

[tex]z= 1.4[/tex]

Conclusion:

Since 1.4 is lesser  than 1.96 , we fail to reject the null hypothesis and  that there is insufficient information to conclude that the   mean gross income is not equal to $47600

The P-value is being calculate as follows:

P -value = 2P(Z>1.4)

P -value =  2 (1 - P(Z< 1.4)

P-value = 2 ( 1 - 0.91924)

P -value = 2 (0.08076 )

P -value = 0.16152

Which graph shows the polar coordinates (-3,-) plotted

Answers

Graph 1 would be the answer

A fair die is tossed once, what is the probability of obtaining neither 5 nor 2?​

Answers

Answer:

4/6 or 66.666...%

Step-by-step explanation:

If you want to find the probability of obtaining neither a 5 nor a 2 you find how many times they occur and add them together in this case 5 occurs once and 2 also occurs once out of 6 numbers so 1/6 + 1/6 equals 2/6, you now know that 4/6 of them won't be a 5 nor a 2 and because it is a fair die the likelihood of it falling on a number is the same for all sides so the answer is 4/6 or 66.67%.

The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.

Answers

Answer:

7/11 = 0.6363...

Step-by-step explanation:

7 + 4 = 11

probability of winning: 7/11 = 0.6363...

The probability that the horse will in the race is [tex]\mathbf{\dfrac{7}{11}}[/tex]

Given that the odds  of the horse winning the race is 7:4

Assuming the ratio is in form of a:b, the probability of winning the race can be computed as:

[tex]\mathbf{P(A) = \dfrac{a}{a+b}}[/tex]

From the given question;

The probability of the horse winning the race is:

[tex]\mathbf{P(A) = \dfrac{7}{7+4}}[/tex]

[tex]\mathbf{P(A) = \dfrac{7}{11}}[/tex]

Learn more about probability here:

https://brainly.com/question/11234923?referrer=searchResults

Please help 1-7 questions

Answers

Answer:

25= q+20

25 - 20 =q

5 = q

Hi there! Hopefully this helps!

-------------------------------------------------------------------------------------------

Answer: q = 5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[tex]25 = q + 20[/tex]

Swap sides so that all variable terms are on the left hand side.

[tex]q + 20 = 25[/tex]

Subtract 20 from both sides.

[tex]q = 25 - 20[/tex]

Subtract 20 from 25 to get, you guessed it, 5!
Other Questions
PLEASE HELP!! Its for a math class and I cant figure it out been trying every website nothing has helped! I A resistor made of Nichrome wire is used in an application where its resistance cannot change more than 1.35% from its value at 20.0C. Over what temperature range can it be used (in C)? A .. is a basic memory element indigital circuitsand can be used to store 1 bit of information. Solve for f.-f + 2 + 4f = 8 - 3f= What theme about tradition and community does this poem convey?Read the poem "Without Title" by diane glancy.It's hard you know without the buffalo,the shaman,[1] the arrow,but my father went out each day to huntas though he had them.He worked in the stockyards.All his life he brought us meat.No one marked his first kill,no one sang his buffalo song.Without a vision[2] he had migrated to the cityand went to work in the packing house.When he brought home his horns and hidesmy mother saidget rid of them.I remember the animal tracks of his carbacking out the drive in snow and mud,the aerial[3] on his old car wavinglike a bow string.I remember the silence of his lost power,the red buffalo painted on his chest.Oh, I couldn't see itbut it was there, and in the night I heardhis buffalo grunts like a snore. hello, if someone can give me a hand with this upper and lower bound excercise please? l get 3 marks of 5 but l cant find what l am missing please thanks A baseball is hit 3 feet above the ground at 80 feet per second and at an angle of with respect to the ground. Find the maximum height. Round your answer to the nearest integer. The formula for the area of a triangle is A = 12bh, where b is the base of the triangle and h is the height of the triangle. What is the length of the base if the area is 32 cm2 and the height is 4 cm? A. 4 cm B. 8 cm C. 16 cm D. 18 cm What caused Louis XIV monarchy to do what choices A. Crumble B. Fall deeply into debt. C. Invaded other countries You have accumulated several parking tickets while at school, but you are graduating later in the year and plan to return to your home in another jurisdiction. A friend tells you that the authorities in your home jurisdiction will never find out about the tickets when you re-register your car and apply for a new license. What should you do? A 30-F capacitor is charged to an unknown potential V and then connected across an initially uncharged 10-uF capacitor. If the final potential difference across the .10-F capacitor is 20 V, determine V Type the expression that results from the following series of steps: Start with y, times by 4, then subtract 9. LCM of x2+5x+6 and x2-x-6 is An appraiser estimated the replacement cost new of a building at $560,000. The building has an estimated economic life of 40 years and an estimated remaining life of 30 years. What is the current value of the building i need help quick!!! The equation of line AB is y = 2x + 4. Write an equation of a line parallel to line AB in slope-intercept form that contains point (3, 2). A. y = 2x + 4 B. y = negative 1 over 2 , x 1 over 2 C. y = 1 over 2 , x 7 over 2 D. y = 2x 8 Julio wants to calculate 200,000 300,000. When he used his calculator to multiply, it showed the result below: Write the number shown on the calculator display in standard form. A. 60,466,176 B. 600,000,000 C. 6,000,000,000 D. 60,000,000,000 Find the area of the following shape. Please show work. Which balanced redox reaction is occurring in the voltaic cell represented by the notation of A l ( s ) | A l 3 ( a q ) | | P b 2 ( a q ) | P b ( s ) Al(s)|AlX3 (aq)||PbX2 (aq)|Pb(s)