Answer:
Three contributing factors that led to human trafficking
Political instability, militarism, civil unrest, internal armed conflict and natural disasters may result in an increase in trafficking. The destabilization and displacement of populations increase their vulnerability to exploitation and abuse through trafficking and forced labour.
real fourth roots of -625
Answer:
-5
Step-by-step explanation:
[tex]\sqrt[4]{-625}[/tex]
=[tex]\sqrt[4]{-5*-5*-5*-5}[/tex]
=-5
the result of subtraction of 3x from -4x is
Answer:
-x
Step-by-step explanation:
3x-4x= -x
The answer is minus x
hopes it helps
Answer:
-1x
Step-by-step explanation:
3x from &4x
= -4x-3x (minus minus =plus)
= 1x
Leo is visiting New York City to see the Empire State building. He knows that the Empire State building is 1,484 feet tall. When he spots it, he stops and has to look up at an angle of 84.7 degrees to see the top. How far away from the base of the Empire State building is he?[plz help mee!!]
Answer:
a = 137.6
Step-by-step explanation:
The building and the street make a 90 degree angle. You have the length b, which is the height 1,484ft. The angle B 84.7 is created where he stands and looks up.
First, find the missing hypotenuse, c. Your angel A is 180 - 90 -84.7 = 5.3
The sine of an angle is equal to the ratio of the opposite side to the hypotenuse.
sin( B)=opp/hyp
sin(84.7) = 1484 / c
c = 1484/sin(84.7)
c=1490.37
Find the last side of the triangle, in this case the distant from Leo to the building, using the Pythagorean theorem.
[tex]a^{2} +b^{2} =c^{2} \\a^{2} = c^{2} -b^{2} \\a^{2} =1490.37^{2} -1484^{2} \\a=137.6[/tex]
which statement is true?
Answer:
A. The slope of Function A is greater than the slope of Function B.
Step-by-step explanation:
The slope of a function can be defined as rise/run. In Function A, the rise/run is 4. The slope in Function B is much easier to see: it is 2. Because 4 is greater than 2, Function A has a greater slope than Function B.
What is the value of this number in decimal form?
Three hundred sixty-seven thousandths.
Answer:
306+7÷100=306.07 that is the answer
If f(x) = 5x - 3 and g(x) = 3x - 3, find f(x) - g(x).
A 2x
B. 8x - 6W
C2x-6
D. 8x
Replace f(x) to 5x-3 and g(x) to 3x-3 then subtract f(x) by g(x).
[tex] \large{f(x) - g(x) = (5x - 3) - (3x - 3)}[/tex]
Cancel the brackets, remember that multiplying or expanding the negative symbol will switch the sign. From plus to minus and minus to plus.
[tex] \large{ f(x) - g(x)= 5x - 3 - 3x + 3 }[/tex]
Combine like terms.
[tex] \large{f(x) - g(x) = 2x + 0 \longrightarrow \boxed{2x}}[/tex]
Answer
f(x)-g(x) = 2xAnswer:
5x-3-(3x-3)
5x-3-3x+3
5x-3x
2x
Sue believes that the two cylinders shown in the diagram have equal volumes. Is Sue correct? Explain why or why not
Sui believes that the two cylinders have an equal volume is correct.
The volume of cylinder = Base area×Height
=(πr²)×(height)
This is also true for oblique cylinder.
Both cylinders have same height and radius also so, both cylinders have equal volume.
V=πr²h
V=π×(5)²×11.5
V=903.208m³
It can also be visualized that the oblique cylinder have circular pieces. These pieces can be solid together to form a regular cylinder with the same height (i.e. 11.4 m). So both the cylinders have equal volume.
What is a cylinder?A cylinder is a three-dimensional shape in geometry. A cylinder is round and has a top and bottom in the shape of a circle. The top and bottom are flat and always the same size.
Thus, Sue is correct, and it's true that the two cylinders shown in the diagram have equal volumes.
Learn more about cylinders here,
https://brainly.com/question/15891031
#SPJ2
A research team conducts a survey to determine the area of land used for farming in Iowa. The team randomly selects house addresses and sends the survey by mail. Which type of sampling method is the research team using?
A. Systematic random sampling.
B. Simple random sampling.
C. Multi-stage sampling.
D. Cluster sampling.
Answer:
B. Simple random sampling.
Step-by-step explanation:
From the question we are informed about a research team conducts a survey to determine the area of land used for farming in Iowa. The team randomly selects house addresses and sends the survey by mail. In this case, the type of sampling method used is the Simple random sampling. A simple random sample can be regarded as a subset of a statistical population, whereby each member of this subset posses an equal probability of them being chosen. A simple random sample can be portrayed as an unbiased representation of a group.
Simple random sampling is utilized in to culling smaller sample size out of larger population so that it can be used to research and make generalizations as regards larger group.
What is the best description of the data in the histogram
A The data is set symmetrical
B The data interval is four
C The data set has a peak
D The data set has a cluster
Gravel is being dumped from a conveyor belt at a rate of 40 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 11 ft high? (Round your answer to two decimal places.)
Answer:
0.42ft/mn
Step-by-step explanation:
we have the following information to answer this question
dv/dt = 40 feet
height = 11 ft
volume = 1/3πr²h
= 1/3π(h/2)²h
= 1/3πh³/4
= πh³/12
dv/dt = π3h²/12
= πh²/4
dh/dt = 4/πh²dv/dt
= 4(40)÷22/7(11)²
= 160/380.29
= 0.42 ft/min
The height of the pile is therefore increasing by 0.42ft/min at a height of 11 feets
The manager of The Cheesecake Factory in Boston reports that on six randomly selected weekdays, the number of customers served was 175, 125, 180, 220, 240, and 245. She believes that the number of customers served on weekdays follows a normal distribution. Construct the 99% confidence interval for the average number of customers served on weekdays.
Answer:
(121.576 ; 273.424)
Step-by-step explanation:
Given the data:
175, 125, 180, 220, 240, 245
We can calculate the mean and standard deviation
Mean = Σx/ n = 1185 / 6 = 197.5
Standard deviation = 46.125 (calculator)
The confidence interval :
Mean ± margin of error
Margin of Error = Tcritical * s/sqrt(n)
Tcritical at 99%, df = n - 1 ; 6 - 1 = 5
Tcritical = 4.032
Margin of Error = 4.032 * 46.125/√6
Margin of error = 75.924
Confidence interval :
197.5 ± 75.924
Lower boundary = 197.5 - 75.924 = 121.576
Upper boundary = 197.5 + 75.924 = 273.424
(121.576 ; 273.424)
Which statement describes the graph?
Answer:
A
Step-by-step explanation:
The answer is A, the graph raises, crosses at (0, 5) and then remains constant.
Match the vocabulary word to its correct definition
1. arithmetic sequence
an individual quantity or number in
a sequence
the fixed amount added on to get
2. common difference
to the next term in an arithmetic
sequence
a sequence in which a fixed
3. sequence
amount is added on to get the next term
a set of numbers that follow a
4 term
pattern, with a specific first number
Answer:
1. Term.
2. Common difference.
3. Arithmetic sequence.
4. Sequence.
Step-by-step explanation:
1. Term: an individual quantity or number in a sequence. For example, 1, 2, 3, 5, 6. The first term is 1 while 5 is the fourth term.
2. Common difference: the fixed amount added on to get to the next term in an arithmetic sequence. For example, 2, 4, 6, 8 have a common difference of 2 i.e (6 - 4 = 2).
3. Arithmetic sequence: a sequence in which a fixed amount such as two (2) is added on to get the next term. For example, 0, 2, 4, 6, 8, 10, 12.... is an arithmetic sequence.
4. Sequence: a set of numbers that follow a pattern, with a specific first number. For example, 1, 2, 3, 4, 5, 6 is a sequence.
Derive the equation of the parabola with a focus at (0, 1) and a directrix of y = -1.
Answer:
The equation of the parabola is y = x²/4
Step-by-step explanation:
The given focus of the parabola = (0, 1)
The directrix of the parabola is y = -1
A form of the equation of a parabola is presented as follows;
(x - h)² = 4·p·(y - k)
We note that the equation of the directrix is y = k - p
The focus = (h, k + p)
Therefore, by comparison, we have;
k + p = 1...(1)
k - p = -1...(2)
h = 0...(3)
Adding equation (1) to equation (2) gives;
On the left hand side of the addition, we have;
k + p + (k - p) = k + k + p - p = 2·k
On the right hand side of the addition, we have;
1 + -1 = 0
Equating both sides, gives;
2·k = 0
∴ k = 0/2 = 0
From equation (1)
k + p = 0 + 1 = 1
∴ p = 1
Plugging in the values of the variables, 'h', 'k', and 'p' into the equation of the parabola, (x - h)² = 4·p·(y - k), gives;
(x - 0)² = 4 × 1 × (y - 0)
∴ x² = 4·y
The general form of the equation of the parabola, y = a·x² + b·x + c, is therefore;
y = x²/4.
A pair of vertical angles has measures
(3x + 4) and ( 73 – 9)
What is the value of x?
Answer:
20
Step-by-step explanation:
Vertical angles are always equal to each other. So the answer is
3x + 4 = 73 - 9 Are you sure this is what the question is?
3x + 4 = 64 Subtract 4 from both sides
-4 -4
3x = 60 Divide by 3
3x/3 = 60/3
x = 20
Consider two countries, A and B, whose respective industries produce goods A and B. Total world output of the good is given by Q = 9A + 9B. There is a world demand given by P = 100 – Q. Suppose that the cost function for country A is given by cA (CA) = 89 A while the cost function in country B is given by CB(9B) = 398. The production of the good generates greenhouse gas emissions which cause global climate change. Total world emissions are 0.5 per unit of good, such that total world emissions are 0.5Q. If the two countries' industries compete in a Cournot fashion, what will the total world emissions be? Now suppose country A imposes a tax on A's production of A to curb emissions. Country B, however, is not taxed. A's cost function is now CA(CA) = 492A, while B's cost function is CB(9B) = 493. World demand is P = 99 – Q. The amount of greenhouse gas emissions per unit is still 0.5, such that total world emissions are given by 0.5Q.
What are total world emissions after country A enacts a carbon tax?
Answer: hello your question is poorly written attached below is the complete question
answer :
a) 31.5
b) 24.5
Step-by-step explanation:
Total world output of good given ( Q ) = qA + qB
world demand ( P ) = 100 - Q
cost function for country A = cA (qA) = 8qA
cost function of country B = cB(qB) = 3qB
total world emission = 0.5Q
emission per unit good = 0.5
a) Determine total world emissions when both countries compete in a Cournot fashion
Q = 63
therefore Total world emission = 0.5 ( Q )
= 0.5 ( 63 ) = 31.5
attached below is the detailed solution
b) Determine the total world emissions after Country A enacts a carbon tax
Q = 49
Therefore Total world emission after tax = 0.5 ( Q )
= 0.5 ( 49 ) = 24.5
attached below is the detailed solution
In the past year, Latoya watched 33 movies that she thought were very good. She watched 60 movies over the whole year. Of the movies she watched, what
percentage did she think were very good?
Answer:
55%
Step-by-step explanation:
Just do 33/60 and multiply by 100
F(x) = x3 + x2 -8x - 6
According to the Fundamental Theorem of Algebra, how many solutions/roots will there be?
According to Descartes' Rule of Signs, what are the possible combinations of positive, negative, and/or complex roots will there be?
Using the Rational Root Theorem, list all the possible rational roots.
Use a combination of Synthetic Division, Factoring, and/or the Quadratic Formula to find all the roots. PLEASE SHOW ALL WORK!
This is my 4th time posting this and no ones helping. Please someone who is smart help me out lol
Answer:
Given function:
f(x) = x³ + x² - 8x - 6This is the third degree polynomial, so it has total 3 roots.
Lets factor it and find the roots:
x³ + x² - 8x - 6 = x³ + 3x² - 2x² - 6x - 2x - 6 = x²(x + 3) - 2x(x + 3) - 2(x + 3) = (x + 3)(x² - 2x - 2) = (x + 3)(x² - 2x + 1 - 3) = (x + 3)((x - 1)² - 3) = (x + 3)(x - 1 + √3)(x - 1 - √3)The roots are:
x = -3x = 1 - √3x = 1 + √3It has highest degree 3 so 3 roots
1 positive and 2 negative rootsLets find
x³+x²-8x-6=0x²(x+3)-2x(x+3)-2(x+3)=0(x+3)(x²-2x-2)=0(x+3)(x-2.732)(x+0.732)=0Roots are
-3,2.732,-0.732a cone has a volume of 374 cubic inches and a height of 4 inches
Answer:
1496 cubic inches
Step-by-step explanation:
Find z such that 3.8% of the standard normal curve lies to the left of z. (Round your answer to two decimal places.)
Answer:
z = 1.77.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X, which is also the area of the normal curve to the left of Z. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Find z such that 3.8% of the standard normal curve lies to the left of z
Thus, z with a z-score of 0.038. Looking at the z-table, this is z = 1.77.
Must the quadrilateral be a parallelogram?
A. Yes, both pairs of opposite sides are parallel.
B. No, both pairs of opposite sides are parallel but not congruent
C. No, both pair of opposite sides are congruent but not parallel.
D. Yes, both pairs of opposite sides are congruent.
The following set of data represents the ages of the women who won the Academy Award for Best Actress from 1980 - 2003:
31 74 33 49 38 61 21 41 26 80 42 29
33 35 45 49 39 34 26 25 33 35 35 28
Make frequency table using # of classes as per the following criteria:
i) if you are born in Jan, Feb, Mar: No of classes = 5
ii) if you are born in Apr, May, Jun: No of classes = 6
Answer:
Step-by-step explanation:
Given the data :
Using 6 classes :
Class interval ____ Frequency
21 - 30 _________ 6
31 - 40 _________ 10
41 - 50 _________ 5
51 - 60 _________ 0
61 - 70 _________ 1
71 - 80 _________ 2
1. p-4= -9+p
2. 4m-4= 4m
Extra Credit, need help
Answer:
1. No solution
2. No solution
Step-by-step explanation:
1. p-4=-9+p
-4=-9
No solution
2. 4m-4=4m
-4=0
No solution
If this helps please mark as brainliest
a line passes through the points (2,6) and (4,9) move an expression and a number
Answer:
General equation of line is y=mx+c where m is the slope
Slope of line parallel to x-axis is m=0
So y=(0)x+c⟹y=c
(−4,6) lies on our required line y=c
⟹6=0(−4)+c
⟹c=6
Equation of the line is y=6
Step-by-step explanation:
Can somebody please help
Answer:
Approximately 46.29 feet
Step-by-step explanation:
A printer has a contract to print 100,000 posters for a political candidate. He can run the posters by using any number of plates from 1 to 30 on his press. If he uses x metal plates, they will produce x copies of the poster with each impression of the press. The metal plates cost $20.00 to prepare, and it costs $125.00 per hour to run the press. If the press can make 1000 impressions per hour, how many metal plates should the printer make to minimize costs
Answer:
25
Step-by-step explanation:
From the given information;
Numbers of posters that can be printed in an hour = no of impression/hour × no of plate utilized in each impression.
= 1000x
Thus, the required number of hours it will take can be computed as:
[tex]\implies \dfrac{100000}{1000x} \\ \\ =\dfrac{100}{x}[/tex]
cost per hour = 125
If each plate costs $20 to make, then the total number of plate will equal to 40x
∴
The total cost can be computed as:
[tex]C(x) = (\dfrac{100}{x}) \times 125 + 20 x --- (1)[/tex]
[tex]C'(x) = (-\dfrac{12500}{x^2}) + 20 --- (2)[/tex]
At C'(x) = 0
[tex]\dfrac{12500}{x^2} = 20[/tex]
[tex]\dfrac{12500}{20} = x^2[/tex]
[tex]x^2= 625[/tex]
[tex]x = \sqrt{625}[/tex]
x = 25
[tex]C'' (x) = -12500 \times \dfrac{-2}{x^3} +0[/tex]
[tex]C'' (x) = \dfrac{25000}{x^3}[/tex]
where; x = 25
[tex]C'' (x) = \dfrac{25000}{25^3}[/tex]
C''(x) = 1.6
Thus, at x = 25, C'' > 0
As such, to minimize the cost, the printer needs to make 25 metal plates.
please help! (listing BRAINLIST and giving points)
Answer:
Step-by-step explanation:
sin x = opposite / hypotenuse
sin x = b / c
cos x = adjacent / hypotenuse
cos x = a / c
tan x = opposite / adjacent
tan x = b / a
The diameter of a circle is 15 in. Find its circumference in terms of \piπ
Answer:
15π in
Step-by-step explanation:
In order to solve this, we need to know that the circumference of a circle can be found by using the following formula...
Circumference = dπ (where d is the diameter of the circle)
Therefore the circumference equals...
Circumference = dπ = 15π in
[tex]\boxed{Given:}[/tex]
Diameter of the circle "[tex]d[/tex]" = 15 in.
[tex]\boxed{To\:find:}[/tex]
The circumference of the circle (in terms of π).
[tex]\boxed{Solution:}[/tex]
[tex]\sf\orange{The\:circumference \:of\:the\:circle\:is\:15\:π\:in.}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
We know that,
[tex]\sf\purple{Circumference\:of\:a\:circle \:=\:πd }[/tex]
[tex] = \pi \times 15 \: in \\ \\ = 15 \: \pi \: in[/tex]
Therefore, the circumference of the circle is 15 π in.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}[/tex]
Ryder is building a workbench.
The top of the workbench is a rectangular piece of plywood that is 6.25 feet long and 1.83 feet wide.
Part A
Round the length and width to the nearest whole number.
Then estimate the perimeter of the workbench.
Which of the following equations models this estimate of the perimeter?
A. 6 + 6 + 2 + 2 = 16
B. 6 × 2 = 12
C. 7 + 7 + 2 + 2 = 18
D. 7 × 2 = 14
Part B
Round the length and width to the nearest tenth.
Then estimate the perimeter of the workbench.
Which of the following equations models this estimate of the perimeter?
A. 6.2 + 6.2 + 1.8 + 1.8 = 16
B. 6.2 × 1.8 = 11.16
C. 6.3 + 6.3 + 1.8 + 1.8 = 16.2
D. 6.3 × 1.8 = 11.34
What number must you add to complete the square? x^2+26x=11