first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.
here,
7. (-154) ➗ (-14) =11
11. (-40) ➗10=-4
15. 90 ➗ (-15)=-6
16. 108 ➗ (-9)=-12
17. (-48) ➗ (-6)=8
18. (-105) ➗ 7=-15
hope it helps you......
For an avid bird watcher, the probability of spotting a California Condor while birdwatching in the Grand Canyon area is 0.3. The probability of being able to take a clear picture of the bird suppose one is able to spot it is 0.8. What is the probability that the bird watcher is able to take a clear picture of a California Condor
Answer:
the probability of taking a clear picture of a California candor is .24
II. Round to the nearest hundred.
11. 582
12. 1,234
13. 640
14. 770
15. 1,104 can you please tell what the answer?
Answer:
582-600
1,234-1,200
640-600
770-800
1,104-1,100
A sample of 13 sheets of cardstock is randomly selected and the following thicknesses are measured in millimeters. Give a point estimate for the population standard deviation. Round your answer to three decimal places. 1.96,1.81,1.97,1.83,1.87,1.84,1.85,1.94,1.96,1.81,1.86,1.95,1.89
===============================================
Explanation:
Add up the values to get
1.96+1.81+1.97+1.83+1.87+1.84+1.85+1.94+1.96+1.81+1.86+1.95+1.89= 24.54
Then divide over 13 (the number of values) to get 24.54/13 = 1.8876923 which is approximate.
So the mean is approximately 1.8876923
---------------------
Now make a spreadsheet as shown below
We have the first column as the x values, which are the original numbers your teacher provided. The second column is of the form (x-M)^2, where M is the mean we computed earlier. We subtract off the mean and square the result.
After we compute that column of (x-M)^2 values, we add them up to get what is shown in the highlighted yellow cell at the bottom of the column.
That sum is approximately 0.04403076924
Next, we divide that over n-1 = 13-1 = 12
0.04403076924 /12 = 0.00366923077
That is the sample variance. Apply the square root to this to get the sample standard deviation. This is the point estimate of the population standard deviation. As the name implies, it works for samples that estimate population parameters.
sqrt(0.00366923077) = 0.06057417576822
This rounds to 0.061 which is the final answer.
Describe the following sequence using an algebraic expression as a rule 0; 2,4; 6
Answer:
Step-by-step explanation:
I assume the sequence is 0, 2, 4, 6
nth term = 2(n-1)
8.113 as a fraction PLEASE HELPP
Answer:
8 113/1000(as a mixed number) 8113/1000(as an improper fraction)
Step-by-step explanation:
1. Convert 0.113 to a fraction...113/1000
2. As there is no further simplification needed, add 8 to 113/1000....8 113/1000
3. To convert 8 113/1000 from a mixed number to an improper fraction, multiply 8 (the whole number) and 1,000(the denominator)...8,000. Then add 113 (the numerator) to 8,000...8113. After that, you put 8113 over the denominator of the previous mixed number, getting 8113/1000 as the improper fraction.
Susan randomly selected a sample of plants to determine the average height of the total 35 plants in her garden. She measured the heights (in inches) of 12 randomly selected plants and recorded the data:
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
What is the sample mean of the heights of the plants in Susan's garden?
Answer:
3.5 inches
Step-by-step explanation:
Sample mean basically means that we need to find the average of the samples.
So the formula for finding average is
Number of observations/ Number of Occurrences
So when we add the values together we get
42.
So there are 12 numbers
So, 42/12 =
3.5 inches
The sample mean of the heights of the plants in Susan's garden is
3.5 inches.
Here,
Susan randomly selected a sample of plants to determine the average height of the total 35 plants in her garden.
She measured the heights (in inches) of 12 randomly selected plants and recorded the data:
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
We have to find the sample mean of the heights of the plants in Susan's garden.
What is Average?
Average value in a set of given numbers is the middle value, calculate as dividing the total of all values by the number of values.
Now,
The recorded data is;
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
To find the sample mean of the heights of the plants in Susan's garden we have to find the average of the recorded data.
Formula for average = [tex]\frac{sum of number of observation}{ number of occurrence}[/tex]
Hence, Average = [tex]\frac{1.0+ 1.4+1.8+2.0+ 2.5+3.5+4.2+4.5+ 4.8+ 5.0+ 5.3+ 6.0}{12} = \frac{42}{12} = 3.5[/tex]
Therefore, The sample mean of the heights of the plants in Susan's garden is 3.5 inches.
Learn more about the average visit:
https://brainly.com/question/22905678
#SPJ2
What are 3 ratios that are equivalent to 8 :5
Answer:
Step-by-step explanation:
8/5 = 16/10 = 24/15
8:5 = 16:10 = 24:15
Please please help!! Quickly
Answer:
pretty sure its D
Answer:
I have to give 2 Ans for my question
Line L has a slope of 1/2 . The line through which of the following pair of points is perpendicular to L?
The line which crosses through L must have an intersect point with L to become perpendicular.
Gien slope is positive 1/2.
What is a straight line graph?The graph follows a straight line equation shows a straight line graph.equation of a straight line is y=mx+cy represents vertical line y-axis.x represents the horizontal line x-axis. m is the slope of the lineslope(m)=tan∅=y axis/x axis.
c represents y-intercepts (it is the point at which the line cuts on the y-axis)Straight line graphs show a linear relationship between the x and y values.
Learn more about the straight lines here:-https://brainly.com/question/14323743
#SPJ2
Yooooo HELPPP
with this question plz
Answer:
Step-by-step explanation:
(x-2)(x+4)=x^2+4x-2x-8=0=> x =2, x=0
Answer:
A
Step-by-step explanation:
Choose the system of inequalities that best matches the graph below. A. B. C. D.
The system of inequalities that is graphed is:
y ≤ - (2/3)*x
y < x - 3
So the correct option is B.
Which system of inequalities is the graphed one?First, we can see that for both of the inequalities the shaded part is below the lines.
You also can see that the solid line (correspondent to the symbol ≤) is the one with a negative slope, and the dashed line (correspondent with the line <) is the one with a positive slope.
Only with that, we conclude that the correct option is B.
y ≤ - (2/3)*x
y < x - 3
If you want to learn more about inequalities:
https://brainly.com/question/24372553
#SPJ1
How do you make 2.318181818 a mixed number
A line passes through the point (-2,4) and has a slope of 7. Write an equation for this line
Answer: y = 7x + 18
Step-by-step explanation:
y = mx + b, (-2,4), m = 7
4 = 7(-2) + b
4 = -14 + b
b = 18
y = 7x + 18
Mr Makgato sells his car for R42 000.00. The total commission is 7.2% of the selling price of which the broker receives 2 thirds and the salesperson receives the rest. How much does the broker receive?
Answer:
2016
Step-by-step explanation:
using USA dollars:
$42000 x .072 (7.2%) = 3024 total commission
3024 x 2/3 = 2016 brokers amount
Carmen Martinez
What is the slope of the line that passes through the point 4,4 and 10,7 write your answer in simplest form
[tex]\boxed{\sf Slope(m)=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{7-4}{10-4}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{3}{6}[/tex]
[tex]\\ \sf\longmapsto m=\dfrac{1}{2}[/tex]
[tex]\\ \sf\longmapsto m\approx0.5[/tex]
Answer:
[tex]m=\frac{1}{2}[/tex]
Step-by-step explanation:
The slope of a line, also known as the change in the line or the ([tex]\frac{rise}{run}[/tex]) can be found using the following formula,
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Where ([tex]x_1,y_1[/tex]) and ([tex]x_2,y_2[/tex]) are points on the line. Substitute the given information into the formula and solve for the slope.
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Points on the line: [tex](4,4)\ \ \ (10, 7)[/tex]
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\frac{7-4}{10-4}[/tex]
[tex]m=\frac{3}{6}[/tex]
[tex]m=\frac{1}{2}[/tex]
[tex]m=0.5[/tex]
Which of the following is a geometric sequence? a. 5,-25,125,-625 b.2,4,16,48 c. 13,16,19,22 d. 100,50,0,-50
Answer:
a
Step-by-step explanation:
B isn't a geometric sequence as it's last term doesn't follow the rule
C is an arithmetic sequence
D is an arithmetic sequence too
What is the x intercept of the graph that is shown below? Please help me
Answer:
(-2,0)
Step-by-step explanation:
The x intercept is the value when it crosses the x axis ( the y value is zero)
x = -2 and y =0
(-2,0)
look below for the image
Answer:
135.7 yd²
Step-by-step explanation:
Surface area of the cone,
πr²+πrl
= π×3²+π×11.4×3
= 43.2π
= 135.7 yd² (rounded to the nearest tenth)
look at the image below
If a $6 per unit tax is introduced in this market, then the new equilibrium quantity will be
Answer:
soory i dont know just report me if you angry
у
х
9
3
Find the value of y.
9514 1404 393
Answer:
(d) 6√3
Step-by-step explanation:
There are several ways to work multiple-choice problems. One of the simplest is to choose the only answer that makes any sense. Here, that is 6√3.
y is the hypotenuse of the medium-sized right triangle, so will be longer than that triangle's longest leg. y > 9
The only answer choice that meets this requirement is ...
y = 6√3
__
In this geometry, all of the right triangles are similar. This means corresponding sides have the same ratio. For y, we're interested in the ratio of long leg to hypotenuse.
long leg/hypotenuse = y/(9+3) = 9/y
y² = 9(9+3) = 9·4·3
y = 3·2·√3 . . . . . . take the square root
y = 6√3
__
Additional comments
You may notice that y is the root of the product of the longer hypotenuse segment (9) and the whole hypotenuse (9+3 = 12). We can say that y is the "geometric mean" of these segment lengths. Similarly (pun only partially intended), x will be the root of the product of the short segment (3) and the whole hypotenuse (12)
x = √(3·12) = 6
This is another "geometric mean" relation.
Further, the altitude will be the geometric mean of the two segments of the hypotenuse:
h = √(9·3) = 3√3
A way to summarize all of these relations is to say that the legs of the right triangle that are not the hypotenuse are equal to the geometric mean of the segments of the hypotenuse that the leg intercepts.
x = √(3·12)
y = √(9·12)
h = √(3·9)
A group of hens lays 69 eggs in a single day. On one particular day, there were 7 brown eggs and 62 white eggs. If four eggs are selected at random, without replacement, what is the probability that all four are brown?
Answer:
The probability will 4.32%.
The probability that all four are brown is 35/8,64,501.
Given that, A group of hens lays 69 eggs in a single day. On one particular day, there were 7 brown eggs and 62 white eggs.
What is the probability without replacement?Probability without replacement means once we draw an item, then we do not replace it back to the sample space before drawing a second item. In other words, an item cannot be drawn more than once.
If four eggs are selected at random, without replacement, the probability that all four are brown is 7/69 × 6/68 × 5/67 × 4/66
= 7/69 × 3/34 × 5/67 × 2/33
=7/23 × 1/17 × 5/67 × 1/33
=35/8,64,501
Therefore, the probability that all four are brown is 35/8,64,501.
To learn more about the probability visit:
https://brainly.com/question/11234923.
#SPJ2
Find the missing side round to the nearest tenth
======================================================
Work Shown:
sin(angle) = opposite/hypotenuse
sin(29) = x/24
24*sin(29) = x
x = 24*sin(29) ..... exact value
x = 11.635430885912 .... approximate value
x = 11.6
To get the approximate value, you'll need a calculator. Make sure the calculator is in degree mode.
A solid is formed by rotating the region bounded by y = x − x^2 and y = 0 about the line x = 2 . Use the shell method to find the volume of the solid.
Answer:
The volume of the resulting solid is π/2 cubic units.
Step-by-step explanation:
Please refer to the diagram below.
The shell method is given by:
[tex]\displaystyle V = 2\pi \int _a ^b r(x) h(x)\, dx[/tex]
Where the representative rectangle is parallel to the axis of revolution, r(x) is the distance from the axis of revolution to the center of the rectangle, and h(x) is the height of the rectangle.
From the diagram, we can see that r(x) = (2 - x) and that h(x) is simply y. The limits of integration are from a = 0 to b = 1. Therefore:
[tex]\displaystyle V = 2\pi \int_0^1\underbrace{\left(2-x\right)}_{r(x)}\underbrace{\left(x - x^2\right)}_{h(x)}\, dx[/tex]
Evaluate:
[tex]\displaystyle \begin{aligned} V&= 2\pi \int_0 ^1 \left(2x-2x^2-x^2+x^3\right) \, dx\\ \\ &= 2\pi\int _0^1 x^3 -3x^2 + 2x \, dx \\ \\ &= 2\pi\left(\frac{x^4}{4} - x^3 + x^2 \Bigg|_0^1\right) \\ \\ &= 2\pi \left(\frac{1}{4} - 1 + 1 \right) \\ \\ &= \frac{\pi}{2}\end{aligned}[/tex]
The volume of the resulting solid is π/2 cubic units.
Answer:
pi/2
Step-by-step explanation:
I always like to draw an illustration for these problems.
For shells method think volume of cylinder=2pi×r×h
Integrate(2pi(2-x)(x-x^2) ,x=0...1)
Multiply
Integrate(2pi(2x-2x^2-x^2+x^3 ,x=0...1)
Combine like terms
Integrate(2pi(2x-3x^2+x^3) ,x=0...1)
Begin to evaluate
2pi(2x^2/2-3x^3/3+x^4/4) ,x=0...1
2pi(x^2-x^3+x^4/4), x=0...1
2pi(1-1+1/4)
2pi/4
pi/2
Amit makes a cuboid having sides 3cm, 2cm & 3cm. How many such cuboids will be required to form a cube.
Start with a volume of a cuboid,
[tex]V=abc=3\cdot2\cdot3=18\mathrm{cm^3}[/tex]
The side of the cube we need equals to the LCM of the cubiod's sides,
[tex]\mathrm{LCM}(a,b,c)=\mathrm{LCM}(3,2,3)=6[/tex]
Now compute the volume of such cube,
[tex]V=\mathrm{LCM}(a,b,c)^3=6^3=216\mathrm{cm^3}[/tex]
Divide the volumes to get how many cubiods are in such cube,
[tex]\dfrac{V_{\mathrm{cube}}}{V_{\mathrm{cubiod}}}=\dfrac{216}{18}=\boxed{12}[/tex]
Hope this helps :)
Answer:
Hi,
Answer: 12
Step-by-step explanation:
lcm(3,2,3)=6
Volume of a cuboid=3*2*3=18 (cm³)
Volume of the cube=6³=216 (cm³)
Number of cuboids=216/18=12.
The function f is defined by f(x) = 4x + 1. What is the value of f(3)?
O 13
O 17
O 65
O 82
Answer:
13
Step-by-step explanation:
f(x) = 4x + 1
Let x= 3
f(3) = 4*3+1
= 12+1
= 13
The expression y + y + 2y is equivalent to ??
because ??
Answer:
4y
They would have the same value if a number was substituted for y
Step-by-step explanation:
y+y+2y =
Combine like terms
4y
These are all like terms
They would have the same value if a number was substituted for y
Let y = 5
5+5+2(5) = 5+5+10 = 20
4(5) =20
Desde cierto paradero se transportan 300 pasajeros en
4 microbuses. ¿Cuántos micros se deben aumentar para
que por cada 3 micros se transporten 90 pasajeros?
Se necesitan 10 micros si queremos que cada 3 micros transporten 90 pasajeros.
En principio, sabemos que 300 pasajeros pueden transportarse en 4 microbuses.
Entonces, el numero de pasajeros que va por cada micro será el cociente entre el numero de pasajeros y el numero de micros:
N = 300/4 = 75
Queremos responder:
¿Cuántos micros se deben aumentar para que por cada 3 micros se transporten 90 pasajeros?
Definamos X como el numero de grupos de 3 micros que tendriamos en esta situación.
Entonces 300 sobre X, debe ser igual a 90 (el numero de pasajeros que va en cada grupo de 3 micros)
300/X = 90
300 = 90*X
300/90 = X = 3.33...
Notar que el número total de micros sera 3 veces X:
3*X = 3*3.33.... = 10
Se necesitan 10 micros.
Si queres leer más sobre el tema, podes ver.
https://brainly.com/question/23854869
Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The success of the procedure depends on various biomechanical properties of the human nasal periosteum and fascia. An article reported that for a sample of 10 (newly deceased) adults, the mean failure strain (%) was 24.0, and the standard deviation was 3.2.
Required:
a. Assuming a normal distribution for failure strain, estimate true average strain in a way that converys information about precision and reliability.
b. Predict the strain for a single adult in a way that conveys information about precision and reliability. How does the prediction compare to the estimate calculated in part (a)?
Solution :
Given information :
A sample of n = 10 adults
The mean failure was 24 and the standard deviation was 3.2
a). The formula to calculate the 95% confidence interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times \frac{s}{\sqrt n}$[/tex]
Here, [tex]$t_{\alpha/2,n-1} = t_{0.05/2,10-1}$[/tex]
= 2.145
Substitute the values
[tex]$24 \pm 2.145 \times \frac{3.2}{\sqrt {10}}$[/tex]
(26.17, 21.83)
When the [tex]\text{sampling of the same size}[/tex] is repeated from the [tex]\text{population}[/tex] [tex]n[/tex] infinite number of [tex]\text{times}[/tex], and the [tex]\text{confidence intervals}[/tex] are constructed, then [tex]95\%[/tex] of them contains the [tex]\text{true value of the population mean}[/tex], μ in between [tex](26.17, 21.83)[/tex]
b). The formula to calculate 95% prediction interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times s \sqrt{1+\frac{1}{n}}$[/tex]
[tex]$24 \pm 2.145 \times 3.2 \sqrt{1+\frac{1}{10}}$[/tex]
(31.13, 16.87)
Lesson 1 Skills Practice
Lines For Exercises 1-12, use the figure at the right. In that figure, line m is parallel.
Classify each pair of angles as alternate interior, alternate exterior, or corresponding.
Pictures Below.
9514 1404 393
Answer:
alternate interior: (2, 4), (3, 5)alternate exterior: (1, 7), (43°, 6)corresponding: (1, 5), (2, 6), (3, 7), alternate interior: (2, 4), (3, 5)corresponding: (1, 5), (2, 6), (3, 7), (43°, 4)4)
Step-by-step explanation:
In this geometry, "corresponding" angles are in the same direction from the point of intersection of the transversal with the parallel line.
"Alternate" refers to angles on opposite sides of the transversal. "Interior" and "exterior" refer to angles between and outside of the parallel lines, respectively.
Here, we list all angle pairs in each classification, so you can answer questions 1-12 based on this list.
alternate interior: (2, 4), (3, 5)
alternate exterior: (1, 7), (43°, 6)
corresponding: (1, 5), (2, 6), (3, 7), (43°, 4)
__
Additional classifications are also used:
consecutive (same-side) interior: (2, 5), (3, 4)
consecutive (same-side) exterior: (1, 6), (43°, 7)
vertical: (1, 3), (2, 43°), (4, 6), (5, 7)
linear pairs: (1, 2), (1, 43°), (2, 3), (3, 43°), (4, 5), (4, 7), (5, 6), (6, 7)