The difference between a deletion, duplication, inversion, translocation, and nondisjunction are explained in the explation below.
Deletion: It is a genetic alteration caused by the removal of a segment of DNA from a chromosome. When part of the genetic material is absent, the remaining fragment is insufficient to provide the genetic instructions needed to construct a fully functioning individual.
Duplication: It occurs when a portion of a chromosome is replicated, resulting in the presence of two or more identical copies of a region of DNA. Duplication mutations can have either beneficial or harmful effects, or they may have no impact at all.
Inversion: An inversion is a chromosomal abnormality that occurs when a chromosome segment is turned 180 degrees in the opposite direction. Inversions can occur when part of a chromosome breaks off, rotates 180 degrees, and then reattaches to the same chromosome in the reverse direction.
Translocation: Translocation is a chromosomal abnormality that occurs when part of one chromosome breaks off and becomes attached to a different chromosome. Two types of translocation are balanced translocation and unbalanced translocation.
Nondisjunction: A genetic mutation that occurs when a pair of homologous chromosomes or sister chromatids fail to separate during meiosis or mitosis, resulting in the creation of aneuploid cells with an extra or missing chromosome. Nondisjunction can cause a variety of genetic diseases and conditions.
Learn more about Translocation at https://brainly.com/question/29511403
#SPJ11
identify the three proteins that make up the cell membrane and their functions.
Answer:
Junctions – Serve to connect and join two cells together.
Enzymes – Fixing membranes localizes metabolic pathways.
Transport – Responsible for facilitated diffusion and active transport.
Explanation:
I remember taking a class like this last year. :)
How would the results from Part A change if both parents are also heterozygous for the FUT1 gene controlling the synthesis of the H substance (Hh)? Drag the correct value to the blank following each offspring type View Available Hint(s) Reset Help type A with M antigen: 1/32 3/32 5/32 6/32 10/32 type A with M and N antigens type A with N antigen: type O with M antigen type O with M and N antigens: type O with N antigen
If both parents are heterozygous for the FUT1 gene controlling the synthesis of the H substance (Hh), then the expected offspring results would be:
Type A with M antigen: 3/32
Type A with M and N antigens: 5/32
Type A with N antigen: 1/32
Type O with M antigen: 10/32
Type O with M and N antigens: 6/32
Type O with N antigen: 1/32
This is because the FUT1 gene is responsible for the synthesis of the H substance and heterozygous for the gene means that each parent has one dominant and one recessive allele.
As a result, each offspring has a 3:1 ratio of dominant to recessive alleles, so each type of offspring will have different probabilities of being expressed.
To learn more about the gene: https://brainly.com/question/19947953
#SPJ11
The chart lists organisms in five different categories living near the Texas Gulf Coast.Based on the chart, which food chain best models a flow of energy in this ecosystem?Sun > Mosquitoes > Shrimp >CoyotesSun > Algae > Shrimp > Red drumSun > Pygmy sunfish > Shrimp > Wood ducksSun > Willow oaks > Algae > River otters
The food chain that best models a flow of energy in the ecosystem near the Texas Gulf Coast is Sun > Algae > Shrimp > Red drum.
What is a food chain? A food chain is a series of organisms in which one organism is eaten by another, which, in turn, is eaten by another, and so on. Energy is transferred from one organism to another in a food chain. This energy transfer is unidirectional and hierarchical, with each organism occupying a specific trophic level in the food chain.
The food chain of the Texas Gulf Coast ecosystem is as follows: Sun > Algae > Shrimp > Red drum.
Sunlight is the primary source of energy for all living organisms on Earth. Algae, the first link in the food chain, is a primary producer. It transforms the sun's energy into organic matter via photosynthesis. Shrimp are primary consumers that eat algae. Red drum is a secondary consumer that feeds on shrimp.
As a result, the energy flows from the sun to the producers, then to the primary consumers, and finally to the secondary consumers. The food chain's top carnivore is a red drum in this ecosystem. Hence, the food chain that best models a flow of energy in the ecosystem near the Texas Gulf Coast is Sun > Algae > Shrimp > Red drum.
To know more about ecosystem, refer here:
https://brainly.com/question/13979184#
#SPJ11
The body obtains energy by breaking down carbohydrates into ______.ProteinsGlucosenutrient-denseAdditives
The body obtains energy by breaking down carbohydrates into glucose.
Together with lipids and proteins, carbohydrates are one of the three macronutrients that give the body energy. Digestive enzymes convert eaten carbs into simple sugars, of which glucose is the most significant. The body subsequently uses glucose as a source of energy for various cellular functions when it is absorbed into the bloodstream and delivered to cells there.
Cellular respiration is the process that occurs after glucose enters a cell and involves a series of metabolic events that release energy from glucose. The production of new molecules, muscle contractions, nerve impulses, and other cellular processes are all powered by this energy.
To know more about carbohydrates
brainly.com/question/29775112
#SPJ4
this diagram shows a late stage of dna replication. can you name the protein represented by each icon in the diagram? then, for each protein, can you identify how dna replication would be affected if that protein were nonfunctional?
DNA replication is the process of copying DNA molecules. DNA replication is critical because it ensures that each new cell receives a complete set of genetic material.
DNA replication is a complex process involving numerous enzymes and other proteins. The following is a list of proteins involved in DNA replication:
Helicase - This enzyme is responsible for unwinding and separating the two strands of DNA.
It does this by breaking the hydrogen bonds between the nucleotides.
Primase - This enzyme is responsible for synthesizing the RNA primers that are needed to start DNA synthesis.DNA polymerase - This enzyme is responsible for synthesizing new DNA strands. It can only add nucleotides to the 3' end of a growing strand. Therefore, it can only synthesize in the 5' to 3' direction.Ligase - This enzyme is responsible for joining the Okazaki fragments on the lagging strand.Topoisomerase - This enzyme is responsible for relieving the tension that builds up ahead of the replication fork when the two strands of DNA are separated. Without topoisomerase, the strands would become overwound and break.Learn more about DNA: https://brainly.com/question/16099437
#SPJ11
30 POINTS
Create a timeline illustrating developments in the understanding of botany, plant reproduction, and hybridization. Your timeline must include at least 8 different points.
Answer:
Timeline of Developments in the Understanding of Botany, Plant Reproduction, and Hybridization:
1. 600 BCE - Theophrastus writes "Enquiry into Plants," one of the earliest works on botany and plant classification.
2. 1682 - Nehemiah Grew publishes "Anatomy of Plants," which lays the foundation for the study of plant anatomy.
3. 1727 - Johann Friedrich Böttger discovers the principles of plant hybridization, by successfully crossing two different species of tobacco plants.
4. 1760 - Joseph Koelreuter demonstrates that hybridization can occur between plants of different genera.
5. 1827 - Robert Brown discovers the cell nucleus, which leads to further understanding of plant reproduction.
6. 1856 - Gregor Mendel publishes his work on inheritance and genetics in pea plants, laying the foundation for the study of plant breeding.
7. 1898 - Carl Correns, Hugo de Vries, and Erich von Tschermak independently rediscover Mendel's work, leading to the modern study of genetics.
8. 1900s - Scientists continue to develop hybridization techniques, leading to the creation of many hybrid plant varieties, including hybrid corn, wheat, and rice.
9. 1953 - James Watson and Francis Crick discover the structure of DNA, leading to a deeper understanding of the genetic mechanisms underlying plant reproduction and hybridization.
10. 2000s - Modern techniques such as gene editing and genetic modification continue to advance the study of botany and plant breeding, with potential applications in agriculture, medicine, and conservation.
The neurotransmitter released into the synapse between neurons and muscle cells that stimulate skeletal muscle cell isGABAepinerphrinenorepinephrineacetylcholine
The neurotransmitter that is released into the synapse between neurons and muscle cells that stimulates skeletal muscle cells is acetylcholine. Here option D is the correct answer.
Acetylcholine is a chemical messenger that is released from the axon terminals of motor neurons and diffuses across the neuromuscular junction to bind to acetylcholine receptors on the surface of skeletal muscle cells.
This binding triggers a series of biochemical reactions that lead to the contraction of the muscle fiber. The release of acetylcholine is essential for normal muscle function, and disruptions in the production or release of this neurotransmitter can lead to muscle weakness or paralysis.
For example, botulinum toxin, which is produced by the bacterium Clostridium botulinum, blocks the release of acetylcholine from motor neurons and can cause muscle paralysis.
To learn more about skeletal muscle cells
https://brainly.com/question/13989523
#SPJ4
Complete question:
Which neurotransmitter is released into the synapse between neurons and muscle cells that stimulates skeletal muscle cell?
A) GABA
B) Epinephrine
C) Norepinephrine
D) Acetylcholine
describe how two medical conditions might be helped by biofeedback therapy.
Biofeedback therapy is a type of treatment that involves using electronic monitoring equipment to provide patients with real-time feedback about their physiological responses.
By gaining awareness and control over their bodily functions, patients can learn to manage symptoms associated with certain medical conditions. Here are two examples of how biofeedback therapy can help with specific medical conditions:
Migraine headaches: Biofeedback therapy can help reduce the frequency and severity of migraine headaches. During biofeedback sessions, patients are taught to recognize the physiological signs that often precede a migraine attack, such as muscle tension and increased heart rate. By learning to recognize and control these responses, patients can reduce the intensity and frequency of migraines.
Urinary incontinence: Biofeedback therapy can help people who have difficulty controlling their bladder muscles. During biofeedback sessions, patients are taught to recognize and strengthen the pelvic floor muscles that are responsible for bladder control. By gaining control over these muscles, patients can improve bladder function and reduce urinary incontinence.
In both cases, biofeedback therapy can help patients gain greater awareness and control over their physiological responses, leading to improved symptom management and overall quality of life.
To know more about Biofeedback therapy, visit the link given below:
https://brainly.com/question/14076467
#SPJ4
what is the term for the part of a dna strand that produces a protein that causes a stem cell to differentiate?
The term for the part of a DNA strand that produces a protein that causes a stem cell to differentiate is differentiation-inducing factor or differentiation signal.
What is differentiation-inducing factor?This protein is a transcription factor that regulates the expression of genes involved in cell differentiation, leading to development of specialized cell types.
Cell fate means that stem cell makes a decision to differentiate into mature cell type. Signals from environment—chemicals, extracellular proteins/hormones/factors, neighboring cells, physical environment—converge on the cell, activating a signaling cascade that leads to gene expression.
Cell that differentiates into all cell types of adult organism is known as pluripotent and such cells are called meristematic cells in higher plants and embryonic stem cells in animals.
To know more about stem cells, refer
https://brainly.com/question/2304432
#SPJ1
A long, thin, probing beak enables finches to feed on what food source? a.) small fish b.) seeds c.) insects d.) plants
The long, thin, probing beak allows finches to feed on insects.
True finches belong to the family Fringillidae and are small to medium-sized passerine birds. Finches frequently have colourful plumage in addition to having strong conical bills designed for eating seeds and nuts. They live in a variety of environments and occupy a wide range of them. They are not migratory.
With the exception of Australia and the polar regions, they are found everywhere over the planet. There are more than 200 species in the family Fringillidae, grouped into 50 genera. It contains species referred to as grosbeaks, euphonias, redpolls, serins, siskins, and canaries.
The term "finch" is also frequently used to describe several birds belonging to other families. These families include certain members of the Old World bunting family (Emberizidae), the New World sparrow family (Passerellidae), and the Darwin's finches of the Galapagos Islands, which are currently classified as members of the tanager family (Thraupidae).
To know more about finches click here:
https://brainly.com/question/23410514
#SPJ4
You need to determine whether an unknown plant is an angiosperm or a gymnosperm. Which of the following features would be the best to examine? Roots Leaves Seeds Stems 3-In a fern life cycle, which of the following structures is not present in the sporophyte generation? Indusium Prothallus Crozier Annulus 6-A researcher who studies the internal cell structure of ancient plants would gather the most information from which type of fossil? Petrifaction Compression Mold Cast 7- A seed is more likely than a spore to survive a long drought because it has which structure? A seed coat A cuticle A hypodermis A strobilus 9-When you eat a peach, what are you eating? Gametophytic tissue composed of haploid cells Sporophytic tissue composed of diploid cells Gametophytic tissue composed of diploid cells Sporophytic tissue composed of haploid cells
The correct options are (1) seeds, (2) prothallus, (3) petrifaction fossil, (4) seed coat, and (5) sporophytic tissue composed of diploid cells.
The best feature to examine to determine an unknown plant as an angiosperm or a gymnosperm is seeds.
In the life cycle of a fern, the prothallus structure is absent in the sporophyte generation.
A researcher who studies the internal cell structure of ancient plants would gather most information from the petrifaction fossil.
A seed is more likely than a spore to survive a long drought because it has a seed coat.
The seed coat is a protective layer that prevents the desiccation of the embryo and protects it from harmful factors.
When we eat a peach, it is the sporophytic tissue composed of diploid cells that we are eating.
The flesh of a peach is the mature ovary of the flower and it develops from the diploid tissue of the sporophyte generation.
Learn more about fern: https://brainly.com/question/2919630
#SPJ11
explain why it is unlikely for all of the offspring in spinach plant to have flat leaves even though both parents do
how many subunits make up the core rna polymerase of a bacterium?
The core RNA polymerase of a bacterium is composed of four subunits: two α subunits, one β subunit, and one β' subunit. The α subunits have regulatory roles, while the β and β' subunits are responsible for catalyzing RNA synthesis.
The β subunit is responsible for binding the DNA template and the incoming ribonucleotides, while the β' subunit is responsible for catalyzing the formation of the phosphodiester bonds between the ribonucleotides.
The core RNA polymerase is able to carry out elongation of the RNA transcript, but additional subunits called sigma factors are required for the initiation of transcription at specific promoter sequences. Different sigma factors confer specificity to the RNA polymerase by recognizing different promoter sequences and binding to the core enzyme to form a holoenzyme.
To learn more about RNA polymerase
https://brainly.com/question/29664942
#SPJ4
what happens when a baby swallows poop in the womb
Answer:it would die
Explanation:it would die from infection
In the troposphere, CFCs are stable. But in the stratosphere, CFCs are not stable and release damaging chlorine atoms when exposed to _____.
In the troposphere, CFCs are stable but in the stratosphere, CFCs are not stable and release damaging chlorine atoms when exposed to UV radiation.
Chlorofluorocarbons (CFCs) are compounds made up of carbon, chlorine, and fluorine atoms. They were once widely used in refrigerants, aerosol sprays, and foam insulation. However, because of their detrimental effects on the Earth's ozone layer, their use has been phased out.
In the stratosphere, CFCs are not stable and release damaging chlorine atoms when exposed to UV radiation. The chlorine atoms combine with ozone, resulting in a chain reaction that destroys the ozone layer, exposing the Earth's surface to harmful UV radiation.
Learn more about stratosphere at https://brainly.com/question/30318190
#SPJ11
The long head of the biceps femoris muscle originates on the
The long head of the biceps femoris muscle originates on the ischial tuberosity, which is a bony prominence located at the base of the pelvis.
Specifically, it originates on the upper inner quadrant of the tuberosity, along with the semitendinosus and semimembranosus muscles. The biceps femoris muscle is one of the three muscles that make up the hamstring muscle group in the back of the thigh. The other two muscles are the semitendinosus and semimembranosus. The biceps femoris muscle inserts onto the fibular head and the lateral condyle of the tibia, just below the knee joint. The biceps femoris muscle is a large muscle located in the posterior compartment of the thigh. It is the most lateral of the three muscles that make up the hamstring muscle group, and it is divided into two parts: the long head and the short head. The long head of the biceps femoris is the larger and more lateral of the two parts, and it is responsible for most of the muscle's functions.
Know more about biceps femoris here: https://brainly.com/question/12897205
#SPJ4
where does the excess glucose go once the liver & muscle glycogen stores are full?
When the liver and muscle glycogen stores are full, excess glucose is converted to fat and stored in adipose tissue or transported to other organs to be used for energy.
Excess glucose from dietary carbohydrates is stored in the liver and muscle as glycogen. Once these glycogen stores are full, excess glucose is converted to fat and stored in adipose tissue. This process is called lipogenesis. The fat that is produced is either stored or released into the bloodstream as triglycerides, which are transported to other organs, such as the heart, muscles, and other tissues. From here, the triglycerides can be oxidized and used for energy, or they can be stored in the form of fatty acids.
To learn more about Glycogen :
https://brainly.com/question/4303062
#SPJ11
Stimulation of the aortic baroreceptors reflexively results in?.increased activity by the parasympathetic nervous system.stimulation of the cardioaccelerator center in the brain.increased heart rate.increased sympathetic stimulation of the heart.stimulation of the vasoconstrictive center.
Stimulation of the aortic baroreceptors reflexively results in increased activity by the parasympathetic nervous system.
Option A is correct.
What are the aortic baroreceptors?The aortic baroreceptors and carotid baroreceptors are located in the adventitia layer of the aortic arch and carotid arteries, respectively.
The aortic baroreceptors are stretch receptors located in the aortic arch that are sensitive to changes in blood pressure.
In the situation where blood pressure increases, the aortic baroreceptors are stimulated, which then sends signals to the cardiovascular control center in the brainstem.
Learn more about aortic baroreceptors at: https://brainly.com/question/8963123
#SPJ1
what structure holds the chordae tendineae to the interior walls of the heart is called?
Papillary muscles holds the chordae tendineae to the interior walls of the heart.
The papillary muscles are found in the heart's ventricles. They connect to the mitral and tricuspid valve cusps via the chordae tendineae and contract to stop these valves from prolapsing or inverting during systole (or ventricular contraction). Around 10% of the total heart mass is made up of the papillary muscles.
In total, the heart contains five papillary muscles, two in each ventricle (right and left). Through chordae tendineae, the tricuspid valve is connected to the anterior, posterior, and septal papillary muscles of the right ventricle. The mitral valve is connected to the left ventricle's anterolateral and posteromedial papillary muscles by chordae tendineae.
To know more about Papillary muscles click here:
https://brainly.com/question/14697886
#SPJ4
Which of the following is used to ensure patency of the ureters or allow for drainage of urine from the kidneys? A. Foley catheter. B. Suprapubic catheter
The catheter which is used to ensure patency of the ureters or allow for drainage of urine from the kidneys is known as a Foley catheter.
Foley catheter is a thin, sterile tube that is passed through the urethra and into the bladder to collect urine or measure urine output. A Foley catheter is also known as an indwelling urinary catheter, it is used to ensure the patency of the ureters or allow for the drainage of urine from the kidneys. The Foley catheter is a soft, flexible tube that is inserted through the urethra into the bladder to help with urine drainage. It is composed of a balloon that inflates inside the bladder to hold it in place.
Learn more about foley catheter: https://brainly.com/question/27961078
#SPJ11
true or false a pulsed intensity is the average intensity for the pulse duration only. it does not include the listening time.
The statement "A pulsed intensity is the average intensity for the pulse duration only. It does not include the listening time.: is false as pulsed intensity is the average intensity of the ultrasound wave during the pulse period, which is typically short in duration.
According to the American Institute of Ultrasound in Medicine (AIUM), the pulsed intensity is the average intensity of an ultrasound beam during the pulse duration, which is typically short in duration. A pulsed ultrasound wave is one in which the sound energy is sent out in a series of short pulses rather than continuously. When a pulsed wave is emitted, the pulse duration, pulse repetition frequency, and pulse intensity all have an impact on the overall intensity of the wave, which is sometimes referred to as the temporal-average intensity.
The pulse duration is the length of time that the ultrasound energy is being emitted, while the pulse repetition frequency is the number of pulses per second that are emitted by the ultrasound machine. The pulse intensity is the amount of energy per unit time that is contained within each pulse.Thus, A pulsed intensity is the average intensity of the ultrasound wave during the pulse period.
More on pulse: https://brainly.com/question/30696164
#SPJ11
which element is important in directly triggering contraction?
The element important in directly triggering contraction is calcium.
Contraction is the process of muscle tightening and shortening which enable an individual to perform any activity or movement. Any movement of the body is associated with muscle contraction. The contraction occurs due to the generation of signals due to action potential.
Calcium is one of the most important element associated with the contraction, It is released from the cell's storage when the action potential occurs. The role of calcium ions is to trigger the movement proteins of the muscles called actin and myosin and mediate their sliding action over each other.
To know more about contraction, here
brainly.com/question/8115612
#SPJ4
Under the ___________ , species are identified based on their unique habitat requirements.phylogenetic species concept,biological species concept,evolutionary species concept,ecological species concept,general lineage concept.
Under the ecological species concept, species are identified based on their unique habitat requirements. Therefore the correct option is option C.
The ecological species concept is a definition of species in which a species is a group of organisms that can breed with one another and are adapted to their environment in a unique way. The emphasis is placed on an organism's distinctive ecological function in its environment, as well as the ecological niche it occupies.
As a result, a species is defined as a group of individuals that exploit a single niche in the same way, and whose members' life histories are linked through a number of adaptations to that niche.
Evolutionary species concept: It is a definition of species based on the idea that species are derived from lineages of ancestral populations that have experienced relatively long, independent evolutionary histories. Therefore the correct option is option C.
For such more question on ecological:
https://brainly.com/question/1331136
#SPJ11
What are some of the reasons the genetics of race may me more complex ?
The main finding of the Human Microbiome Project was that
everyone has essentially the same types of microorganisms residing in their bodies.
healthy adults should be free from viruses and bacteria.
bacterial cells far outnumber human cells in healthy adults.
bacteria cannot reproduce unless inside a host cell.
The main finding of the Human Microbiome Project was that bacterial cells far outnumber human cells in healthy adults.
What is the Human Microbiome Project?The Human Microbiome Project is a five-year project launched by the National Institutes of Health (NIH) to improve our understanding of the microorganisms that live in and on us and to develop new ways of protecting and restoring human health based on this understanding. Its goal was to identify the types of microbes that live in or on our bodies, figure out what they do, and investigate how they interact with each other, with us, and with our environment.
What did the Human Microbiome Project find?The human microbiome is a complex community of bacteria, viruses, fungi, and other microorganisms that live on and in the human body. Researchers have discovered that bacterial cells outnumber human cells by a factor of ten to one in the average adult. The microbiome plays a critical role in maintaining our health by helping us digest food, produce essential vitamins, and regulate our immune system. It also appears to play a role in a wide range of diseases, including obesity, cancer, and autoimmune disorders.
The Human Microbiome Project's main finding was that everyone has essentially the same types of microorganisms residing in their bodies, regardless of age, gender, or ethnicity. However, the abundance and diversity of these microorganisms can vary significantly from person to person depending on a variety of factors, such as diet, lifestyle, and genetics.
Learn more about Human Microbiome Project here: https://brainly.com/question/25592524
#SPJ11
Construct an argument in favor of the National Park Service’s decision to reintroduce wolves to Isle Royale. Be sure to discuss the boundary of the ecosystem and energy flow in your argument. Provide evidence and scientific reasoning to support your argument.
The National Park Service's decision to reintroduce wolves to Isle Royale was necessary, supported by science, and will have a positive impact on the environment in many ways.
Why is it crucial to bring wolves back to Isle Royale?Wolf hunting reduces the amount of moose, beavers, and snowshoe hare on the island. At Isle Royale National Park, these intricate predator-prey relationships have been studied for more than 60 years and are still being investigated today.
What advantages would reintroduction wolves bring?Research has demonstrated that wolves have contributed to the revitalization and restoration of several ecosystems since they were reintroduced to the American West in 1995. They enhance habitat and boost populations of numerous species, including raptor birds, pronghorn, and even trout.
To know more about ecosystems visit:-
https://brainly.com/question/30376964
#SPJ1
assuming a penalty of 1 for a mismatch and a penalty of 2 for a gap, use the dynamic programming algorithm to find an optimal alignment of the following sequences:
CCGGGTTACCA
GGAGTTCA
The dynamic programming algorithm, optimal alignment has a penalty of 3, with 1 mismatch (G/A) and 2 gaps of these two sequences as follows:
CCGGGTTACCA
| | | |
GG-AGTTCA-
Dynamic programming is a method that is used for solving complex problems in which we break down the problem into smaller subproblems to solve it. This approach is used in bioinformatics to align two DNA or protein sequences. The dynamic programming algorithm is a widely used algorithm to find the best possible alignment of two sequences.
The following sequences have to be aligned using the dynamic programming algorithm:
CCGGGTTACCA
GGAGTTCA
Here are the steps to find the optimal alignment:
Step 1: Creating a grid
We create a 2-D grid of (n + 1) rows and (m + 1) columns, where n is the length of the first sequence, and m is the length of the second sequence.
Step 2: Fill in the values
We fill in the grid using the following rules:
The value in the top-left corner is 0.
The value in the first row and the first column is obtained by adding the gap penalty to the value to its left or above.
The values in the remaining cells are obtained by taking the minimum of the three values: the value to the left plus the gap penalty, the value above plus the gap penalty, and the value diagonally to the top left plus the match/mismatch penalty.
Step 3: Traceback
We start from the bottom-right corner of the grid and move upwards towards the top-left corner while building the alignment of the sequences. We follow the arrows in the grid and add the symbols corresponding to the directions.
So, the optimal alignment of the sequences is:
CCGGGTTACCA
| | | |
GG-AGTTCA-
Learn more about the alignment of the sequences at https://brainly.com/question/28447399
#SPJ11
what part Located in depressions of mucous membranes of the throat and pharynx
The part located in depressions of mucous membranes of the throat and pharynx is the tonsils.
Tonsils are masses of lymphatic tissue located in the throat that play a role in the immune system. They help to trap and filter out bacteria and other foreign substances that enter the body through the nose and mouth. There are three types of tonsils: pharyngeal tonsils, palatine tonsils, and lingual tonsils.
The pharyngeal tonsils, also known as the adenoids, are located in the upper part of the throat, behind the nose, and above the soft palate. The palatine tonsils are located on either side of the back of the throat, while the lingual tonsils are located at the base of the tongue.
Tonsillitis is a common condition in which the tonsils become inflamed and swollen due to infection. Symptoms of tonsillitis include sore throat, difficulty swallowing, fever, and swollen lymph nodes. Treatment may involve rest, fluids, pain relievers, and antibiotics if the infection is bacterial. In some cases, a tonsillectomy (surgical removal of the tonsils) may be necessary if the condition is chronic or severe.
In summary, the tonsils are located in the depression of mucous membranes.
To know more about Tonsils, refer here:
https://brainly.com/question/29525724#
#SPJ11
Which of the following is a characteristic that distinguishes gymnosperms and angiosperms from other plants? (A)alternation of generations (B)independent gametophytes (C)vascular tissue (D)ovules
The characteristic which distinguishes gymnosperms and angiosperms from other plants is the vascular tissue. These tissues are present in higher plants. Thus, the correct option is C.
What is Vascular tissue?Vascular tissue is a characteristic of gymnosperms and angiosperms that distinguishes them from other plants. This tissue helps transport water and nutrients to different parts of the plant and provides structural support.
Alternation of generations: This is the alternating pattern of asexual and sexual reproduction in certain plants and algae.
Independent gametophytes: Gametophytes are haploid cells that produce gametes (sperm and eggs) in plants.
Ovules: An ovule is a small structure containing the female reproductive cells of a flowering plant.
Therefore, the correct option is C.
Learn more about Vascular tissue here:
https://brainly.com/question/4522173
#SPJ11
the structure of the dna determines which amino acids are put together to form a specific protein which is used to carry out out the essential functions of life.
The statement in question "the structure of the DNA determines which amino acids are put together to form a specific protein which is used to carry out the essential functions of life" is true. So the answer to that statement is true.
DNA (Deoxyribonucleic acid) is the biological molecule that carries genetic information. In living organisms, DNA is the genetic material that is passed down from one generation to the next. DNA has a unique structure that allows it to store and transmit genetic information in a specific order. DNA contains the genetic code that determines the sequence of amino acids in a protein. Each amino acid is coded for by a specific sequence of three nucleotides in DNA called a codon, the sequence of codons in DNA determines the sequence of amino acids in a protein.
Learn more about DNA: https://brainly.com/question/21992450
#SPJ11