Answer:
Fill in the blanks with the correct term.
a. a liquid that dissolves another substance.
b. a chemical that is dissolved.
c. a value used to describe the amount of one substance dissolved in another.
d. a liquid consisting of one substance dissolved in another.
Explanation:
a. A liquid that dissolves another substance is called the solvent.
b. A chemical that is dissolved solute.
c. A value used to describe the amount of one substance dissolved in another is called concentration.
d. A liquid consisting of one substance dissolved in another is called a solution.
What is the molarity of a solution that contains 0.75 mol Naci in 3.0 L of solution? Select one: O a. 4.0 M O b. 2.3 M O d. 3.8 M O d. 0.25 M Clear my choice
Answer:
[tex]\boxed {\boxed {\sf D. \ 0.25 \ M}}[/tex]
Explanation:
Molarity is a measure of concentration in moles per liter.
[tex]molarity= \frac{moles \ of \ solute}{ liters \ of \ solution}[/tex]
The solution contains 0.75 moles of sodium chloride and has a volume of 3.0 liters.
moles of solute = 0.75 mol NaCl liters of solution = 3.0 LSubstitute these values into the formula.
[tex]molarity= \frac{ 0.75 \ mol \ NaCl}{3.0 \ L}[/tex]
[tex]molarity= 0.25 \ mol \ NaCl/L[/tex]
Molarity has the molar (M) as its unit. 1 molar is equal to 1 mole per liter.
[tex]molarity= 0.25 \ M \[/tex]
The molarity of the solution is 0.25 Molar and Choice D is correct.
1. Draw the condensed structural formula of sodium benzoate showing all charges, atoms including any lone pairs in the side chain functional group, and all sigma and pi bonds.
2. Draw the condensed structural formula of benzoic acid showing all atoms including any lone pairs in the side chain functional group, and all sigma and pi bonds. Indicate the acidic hydrogen.
3. Draw the condensed structural formula of tetrahydrofuran (THF) showing all heteroatoms plus their lone pairs and all sigma and pi bonds.
The structures are shown in the image attached.
A structural formula is the representation of the molecule in which all atoms and bonds in the molecule are shown.
Since the question requires that all the lone pairs, formal charges and sigma and pi bonds should be shown, then the simple condensed structural formula becomes insufficient in this case.
I have attached images of the structural formula of sodium benzoate (image 1), benzoic acid (image 2) and tetrahydrofuran (image 3).
All the formal charges, lone pairs as well as sigma and pi bonds are fully shown.
https://brainly.com/question/9988658
For the following acids of varying concentrations, which are titrated with 0.50 M NaOH, rank the acids in order of least to most volume of base needed to completely neutralize the acid.
a. 0.2M H2C6H5O7
b. 0.2M H2C2O4
Answer:
0.2M H2C6H5O7 < 0.2M H2C2O4
Explanation:
A weak acid/base ionizes to a very small extent in water. Hence, if we say that a substance is a weak acid/base, its percentage of ionization in solution is very little.
More volume of a very weak acid is required to neutralize a strong base. Since NaOH is a strong base, the weaker acid among the duo will require more volume for neutralization.
Since H2C6H5O7 is a weaker acid than H2C2O4, equal concentration of the both acids will require less volume of H2C2O4 than H2C6H5O7 to neutralize 0.50 M NaOH.
H₂C₆H₅O₇ is a weaker acid than H₂C₂O₄, and will require the least volume of 0.50 M NaOH to be neutralized.
H₂C₆H₅O₇ < H₂C₂O₄
The strength of an acid is related to the value of its dissociation constant, Ka or its pKa (negative logarithm of Ka)
Strong acids have high Ka values or low pKa value, whereas weak acids have low Ka values and high pKa values.
Between two acids, the acid with a higher Ka or lower pKa values is the stronger acid.
Acids are classified as either strong or weak depending on how well it ionizes in solution to produce hydrogen ions.
Strong acids ionizes completely to produce hydrogen ions.
Weak acid ionizes partially to a varying degrees in water to produce hydrogen ions.
In neutralization reactions between acids and bases, stronger acids will require the most volume of base or alkali in order to be neutralized.
H₂C₂O₄ has a Ka value of 5.9 x 10⁻² and a pKa value of 1.23
H₂C₆H₅O₇ has a Ka value of 8.4 x 10⁻⁴ and a pKa value of 3.08
Hence H₂C₂O₄ is a stronger acid than H₂C₆H₅O₇
For equal molar concentrations of the two acids, H₂C₂O₄ will produce more hydrogen ions than H₂C₆H₅O₇, and thus, will require more volume base (0.50 M NaOH) to be neutralized.
learn more at: https://brainly.com/question/24229657
Consider the following reaction:
Cr(NO3)3 (aq) + 2NaF (aq) --> 3NaNO3 (aq) + CrF3 (s)
If 21.0 grams of NaF are needed to precipitate all of the Cr+3 ions present in 0.125L of a solution of Cr(NO3)3, what is the molarity of the Cr(NO3)3 solution?
Your answer should be to 2 decimal places.
Answer:
2.01
Explanation:
First, let's convert grams to moles
(Na) 22.99 + (F) 18.998 = 41.988
Every mole of NaF is 41.988 grams
21/41.988 = 0.500143 moles of NaF
For every Cr+3, we will need 2 NaF, so Cr+3 will be half of NaF
0.500143/2 = 0.250071
molarity = moles/liters
0.250071/0.125 = 2.0057 M
11 Explain how you would obtain solid lead carbonate from a mixture of lead carbonate and sodium chloride
Explanation:
Add water, Na2CO3 dissolves, filter, PbCO3 stays in the paper and dissolved Na2CO3 goes through as the solution. Dry the PbCO3 and you have the dry solid.
OR
Add water to dissolve then filter to obtain PbCo3 as you're residue and Na2Co3 as the filtrate. Dry the insoluble PbCo3 between filter papers and you obtain solid PbCo3
6. Who stated that matter is not composed of particles
After careful consideration your answer is...
Leucippus and Democritus
*Hope I helped*
~Alanna~
Answer:
The first theories of matter were put forward by Empedocles in 450 BC, he proposed that all matter was composed of four elements - Earth, air, fire and water. Later, Leucippus and Democritus suggested matter was made up of tiny indestructible particles continuously moving in empty space.
Explanation:
Which redox reaction would most likely occur if silver and copper metal were added to a solution that contained silver and copper ions?
A. Cu + Agt Cu2+ + 2Ag
B. Cu2+ + 2Ag* → Cu + 2Ag
C. Cu2+ + 2Ag → Cu + 2Ag+
D. Cu + 2Ag Cu²+ + 2Ag+
give the wrong answer and I'm reporting
Answer:
B
Explanation:
b/c copper is readuction agent
The most likely redox reaction that would occur if silver and copper metal were added to a solution that contained silver and copper ions is [tex]\rm Cu^{2+} + 2Ag \rightarrow Cu + 2Ag^+[/tex]. The correct answer is option C.
Redox reaction is a reaction in which reduction and oxidation takes place simultaneously.
In this reaction:
[tex]\rm Cu^{2+} + 2Ag \rightarrow Cu + 2Ag^+[/tex]
Copper metal has a higher reduction potential than silver metal, which means that it will be oxidized to [tex]\rm Cu^{2+}[/tex] ions before silver metal is oxidized to [tex]\rm Ag^+[/tex] ions.
The [tex]\rm Cu^{2+}[/tex] ions in the solution will then react with the silver metal to form [tex]\rm Ag^+[/tex] ions and Copper metal. This reaction is an example of a displacement reaction, where a more reactive metal removes a less reactive metal from its compound.
Therefore, option C. [tex]\rm Cu^{2+} + 2Ag \rightarrow Cu + 2Ag^+[/tex] is the correct answer.
Learn more about Redox reaction here:
https://brainly.com/question/28300253
#SPJ5
Which subshells are found in each of the following shells
electron subshell - M shell
Answer:
3
Explanation:
The electron shells are labelled as K,L,M,N,O,P, and Q or 1,2,3,4,5,6, and 7.
As we go from innermost shell outwards, this number denotes the number of subshell in the shell. Electrons in outer shells have higher average energy and travel farther from the nucleus than those in inner shells.
Hence, M shell contains s,p and d subshells.
When comparing Be2 and H2:
I. Be2 is more stable because it contains both bonding and antibonding valence electrons.
II. H2 has a higher bond order than Be2.
III. H2 is more stable because it only contains 1s electrons.
IV. H2 is more stable because it is diamagnetic, whereas Be2 is paramagnetic
a. II,III,IV
b.II,III
c.III only
d.I,II
e.III,IV.
Answer:
The answer is "Option b".
Explanation:
H2 does have bond energy of 1, while Be2 has a covalent bond of zero. Be2 has eight electrons, each of which dwells in a distinct orbital. As just a result, four of them are linked molecular orbitals and two are antibonding molecular orbitals, respectively. As just a result, this molecule is unstable. This chemical orbital, with a bond order of 1, has just two electrons. As a result, it is a very solid substance. H2's bond length is higher than Be2's. Since it only has one electron, H2 is more stable than that of other compounds.
For an atoms electrons, how many energy sublevels are present in the principal energy level n = 4?
A. 4
B. 9
C. 10
D. 16
E. 32
Answer:
by the own's formula energy sublevels are 2 the power of n or principal quantum number this means 2 the power of 4 equal to 32
2.5
Nakula investigated the effect of heat on amylase. Amylase is an enzyme
that makes starch molecules break down into sugar molecules.
P
• Nakula put some amylase solution into two boiling tubes,
P and Q
• He boiled the solution in tube P. He did not heat tube Q.
• He waited until the solution in tube P had cooled down to
room temperature.
• He added equal volumes of starch solution to tube P and
boiled amylase amylase
• After 10 minutes, he tested both tubes for sugar.
and starch and starch
• Nakula found that there was sugar in tube Q. but not in tube P.
The structure of amylase deteriorates due to high temperature of the solution.
This experiment shows that the structure of amylase deteriorates due to high temperature which prevents this amylase from performing its function properly.
At high temperatures the amylase will break starch down very slowly or not at all due to denaturation of the enzyme's active site due to which it can't perform its function properly so we can conclude that high temperature denatures amylase enzyme.
https://brainly.com/question/24323388
Nakula's conclusion was- "My results show that boiling destroys amylase"
Amylase is an enzyme that breaks down starch molecules into sugar molecules. He boiled the solution in tube P, and when he checked tube P for sugar, there wasn't any. He didn't boil the solution in tube Q and he found sugar in it.
Amylase had broken down starch molecules to sugar molecules in tube Q. Tube P's solution had been boiled, and this showed that when he boiled it, it destroyed the amylase, that is why the starch molecules hadn't been broken down into sugar molecules.
20. An oxide of osmium (symbol Os) is a pale yellow solid. If 2.89 g of the compound contains 2.16 g of osmium, what is its empirical formula?
The empirical formula is OsO₄ :
Explanation:
Osmium oxide contains osmium and oxygen only.
Thus, we shall determine the mass of oxygen in osmium oxide. This can be obtained as follow:
Mass of compound = 2.89 g
Mass of Os = 2.16 g
Mass of O =?Mass of O = (Mass of compound) – (Mass of Os)
Mass of O = 2.89 – 2.16
Mass of O = 0.73 g
Finally, we shall determine the empirical formula of the compound. This can be obtained as follow:
Mass of Os = 2.16 g
Mass of O = 0.73 g
Empirical formula =..?Os = 2.16 g
O = 0.73 g
Divide by their molar mass of
Os = 2.16 / 190 = 0.011
O = 0.73 / 16 = 0.046
Divide by the smallest
Os = 0.011 / 0.011 = 1
O = 0.046 / 0.011 = 4
Empirical formula = OsO₄Learn more: https://brainly.com/question/23629778
How many grams of magnesium chloride can be produced from 2.30 moles of chlorine gas reacting w excess magnesium Mg(s)+Cl2(g)->MgCl2(s)
The mass of magnesium chloride produced from 2.30 moles of chlorine gas is 218.99 grams.
How to calculate moles in stoichiometry?Stoichiometry refers to the study and calculation of quantitative (measurable) relationships of the reactants and products in chemical reactions.
According to this question, magnesium reacts with chlorine gas to form magnesium chloride as follows:
Mg + Cl₂ → MgCl₂
Based on the above chemical equation, 1 mole of chlorine gas forms 1 mole of magnesium chloride.
This means that 2.30 moles of chlorine gas will 2.30 moles of magnesium chloride.
Next, we convert moles of magnesium chloride to mass as follows:
molar mass of magnesium chloride = 95.211g/mol
mass of magnesium chloride = 95.211 × 2.30 = 218.99 grams.
Therefore, 218.99 grams of magnesium chloride will be formed.
Learn more about stoichiometry at: https://brainly.com/question/9743981
#SPJ1
5. Calcule las concentraciones cuando se alcanza el equilibrio si partimos de unas concentraciones iniciales [A]=[B]=1M ; [C]=[D]=0M y una constante de equilibrio de 5.
Las concentraciones en el equilibrio para la reacción química presentada son:
[tex][A] = [B] = 1-x = 1-0.69 = 0.31 M\\[C] = [D] = x = 0.69 M[/tex]
Consideremos la siguiente reacción química genérica:
A + B ⇄ C + D
Para calcular las concentraciones en el equilibrio, debemos construir una Tabla ICE. Cada fila representa una instancia (Inicial, Cambio, Equilibrio) y la completamos con la concentración o cambio de concentración ("x" para concentraciones desconocidas). Como inicialmente no hay productos, la reacción se desplazará hacia la derecha para alcanzar el equilibrio.
A + B ⇄ C + D
I 1 1 0 0
C -x -x +x +x
E 1-x 1-x x x
La constante de equilibrio, Kc, es:
[tex]Kc = 5 = \frac{[C][D]}{[A][B]} = \frac{x^{2} }{(1-x)^{2} } \\\sqrt{5} = x/1-x\\x = 0.69[/tex]
Las concentraciones en el equilibrio son:
[tex][A] = [B] = 1-x = 1-0.69 = 0.31 M\\[C] = [D] = x = 0.69 M[/tex]
Puedes aprender más sobre equilibrio químico aquí: https://brainly.com/question/21632386
which of the following is indicated by the ph value of a solution?
a- it's hydrogen ion concentration
b- its ammonium ion concentration
c- ability to undergo chemical reaction
d- its ratio of solute amount to solvent volume
Answer:
c- ability to undergo chemical reaction
Another method for creating a buffer, in situ, is to add an appropriate amount of a strong base, e.g., NaOH, to a weak acid OR add an appropriate amount of a strong acid, e.g., HNO3, to a weak base. As an example, mixing 1.0 mol of acetic acid with 0.5 mol of NaOH will result in a buffer solution with 0.5 mol of acetic acid and 0.5 mol of acetate. The acetate is created by the reaction of acetic acid and the strong base, hydroxide. Given this information, which of the following, when mixed with the appropriate amount of HCl, would create a buffer solution?
a. HNO3
b. HClO2
c. LiCl
d. NH3
Answer:
As an example, mixing 1.0 mol of acetic acid with 0.5 mol of NaOH will result in a buffer solution with 0.5 mol of acetic acid and 0.5 mol of acetate. The acetate is created by the reaction of acetic acid and the strong base, hydroxide.
When HClO2 is mixed with the appropriate amount of HCl it would create a buffer solution. That is option B.
Methods used to form buffer solutionA buffer solution is the solution that resists a change in pH of a solution when acid or base is added because it is made up of weak acid and the conjugate base or weak base and the conjugate acid.
The methods that can be used to form a buffer solution include:
Adding a strong base to a weak acid: For example, mixing 1.0 mol of acetic acid with 0.5 mol of NaOH will result in a buffer solution with 0.5 mol of acetic acid and 0.5 mol of acetate.Adding a weak acid to a conjugate base: For example HCl is a strong acid which will react with a conjugate base such as HClO2.Although HCl is a strong acid, it can be converted to a weak acid through dilution with water. It is in this context that it can be used to form a buffer solution.
Learn more about buffer solution here:
https://brainly.com/question/26416276
calculate the volume of 20.5g of oxygen occupied at standard temperature and pressure.what the volume
Answer :
volume of a gas = weight * 22.4 l / gram molecular weight
volume of o2 = ?
weight given = 20.5 g
gram molecular weight of oxygen = 32 (because of 2 oxygen atoms )
volume of oxygen = 20.5 * 22.4 / 32
volume of oxygen = 14.35 liters
Explanation:
hope this helps you
if wrong just correct me
State the different radiations emitted by radioactive elements.
Which one of the following is not matches the organelle with its function
Answer:
rip there isnt a photo
Explanation:
i do know a lot about cells tho lol
Calculate the percent error in the atomic weight if the mass of a Cu electrode increased by 0.4391 g and 6.238x10-3 moles of Cu was produced. Select the response with the correct Significant figures. You may assume the molar mass of elemental copper is 63.546 g/mol. Refer to Appendix D as a guide for this calculation.
Answer:
10.77%
Explanation:
Molar mass of Cu = mass deposited/number of moles of Cu
Molar mass of Cu = 0.4391 g/6.238x10^-3 moles
Molar mass of Cu = 70.391 g/mol
%error = 70.391 g/mol - 63.546 g/mol/63.546 g/mol × 100
%error = 10.77%
Sally has constructed a concentration cell to measure Ksp for MCln. She constructs the cell by adding 2 mL of 0.05 M M(NO3)n to one compartment of the microwell plate. She then makes a solution of MCln by adding KCl to M(NO3)n. She adds 7.903 mL of the resulting mixture to a second compartment of the microwell plate. Sally knows n = +2. She has already calculated [Mn+] in the prepared MCln solution using the Nernst equation. [Mn+] = 8.279 M
Required:
How many moles of [Cl-] must be dissolved in that compartment?
Answer:
0.1309 mol
Explanation:
From the given information:
The metal ion, two ions of [tex]M^{+}[/tex] reacted with Cl⁻ to form [tex]MCl_n[/tex] i.e. the compound formed is [tex]MCl_2[/tex].
The concentration of the metal ion formed [tex][M^+][/tex] = 8.279 M
The concentration of the chlorine ion formed [tex][Cl^-][/tex] = 2 × 8.279 M
= 16.558 M
∴
We know that:
[tex]\mathsf{Molarity = \dfrac{no \ of \ moles }{volume (mL)}}[/tex]
The number of moles of [tex][Cl^-][/tex] = [tex]16.558 \ mol.L^{-1} \times 7.903 \ mL \times \dfrac{1 \ L}{1000 \ mL}[/tex]
= 0.1309 mol
Considering a fish breeder decided to breed small fishes which needs a pH between 6,0 to 7,0 to stay alive. He needs to adjust the water's pH that is 5,0 to a value of 6.5, having available only calcium carbonate. The mass in mg added to 5L of water is about:
A)2,5
B)5,5
C)6,5
D)7,5
E)9,5
Calculate the molarity of a solution consisting of 65.5 g of K2S0 4 in 5.00 L of solution.
Answer:
Molarity is 0.075 M.
Explanation:
Moles:
[tex]{ \tt{ = \frac{65.5}{RFM} }}[/tex]
RFM of potassium sulphate :
[tex]{ \tt{ = (39 \times 2) + 32 + (16 \times 4)}} \\ = 174 \: g[/tex]
substitute:
[tex]{ \tt{moles = \frac{65.5}{174} = 0.376 \: moles}}[/tex]
In volume of 5.00 l:
[tex]{ \tt{5.00 \: l = 0.376 \: moles}} \\ { \tt{1 \: l = ( \frac{0.376}{5.00} ) \: moles}} \\ { \tt{molarity = 0.075 \: mol \: l {}^{ - 1} }}[/tex]
the nutrition label on rice lists the amounts of protein, carbohydrates and fats in one serving. these substances are important for human nutrition
Answer:
Carbohydrates, proteins, and fats are biological macromolecules that are made up of chemical elements which are inherent to chemistry.
Chemistry explain how these macromolecules are bonded together at the molecular level and give an explanation for their behavior.
Explanation:
what is the difference between 25ml and 25.00ml
Answer:
There is no difference between the two.
Explanation:
They both show the same volume. But, adding decimal places shows the least count of the instrument used and is more acceptable when recording values in scientific experiments
Select the choice that best completes the following sentence: When cooled slowly, transformations near the melting temperature tend to yield ______ grains due to the formation of ______ nucleation sites followed by ______ grain growth.
Question Completion with Options:
O coarse...few...rapid
O fine...few...slow
O fine...multiple...rapid
O coarse...few...slow
O fine...multiple...slow
Answer:
The choice that best completes the sentence is:
O coarse...few...slow
Explanation:
Transformations near the melting temperature develop coarse grains because few nucleation sites are formed and the rate of the grain growth is usually slow. This is because of the process that starts with recrystallization, recovery, and nucleation before growth can occur. While recrystallization enables the grain to increase in size at high temperature, nucleation gives the grain the energy to irreversibly grow into larger-sized nucleus.
name a factor tht affects the value of electron affinity
Answer:
Atomic sizeNuclear chargesymmetry of the electronic configurationAssuming a mixture of equal volumes of o xylene and cyclohexane,which of these will distill off first?
Van der Waals forces hold molecules together by: A. moving electrons from one molecule to another. B. attracting a lone pair of electrons to the positive charge of a hydrogen. C. inducing temporary dipoles that attract each other. D. sharing electrons between atoms.
Van der Waals forces hold molecules together by inducing temporary dipoles that attract each other. That is option C
Van Der Waals forces are example of those intermolecular forces which are weaker than ionic and covalent bonds that exists between molecules.
Van Der Waals forces was postulated by a Dutch physicist known as Van Der Waals. He postulated the existence of weak, short-range forces of attraction, which are independent of normal bonding forces, between non-polar molecules. He came to this conclusion after studying the of real gases at low temperatures and high pressures that:
electrons in a non-polar molecule such as hydrogen are close to one nucleus as to the other, although momentary concentration at one end of the molecule may occur, this momentary concentration of electron cloud on one side create a temporary dipole in the hydrogen molecule, that is, one side of the molecule acquires a partial negative charge while the other side acquires a partial positive charge of equal magnitude, the temporary dipole induces a similar dipole in an adjacent behavior molecule, this results in a temporary dipole-induced dipole attraction between the positive and negative ends of the adjacent molecules.This is how weak Van Der Waals forces are set up. Therefore, option C is CORRECT
Learn more here:
https://brainly.com/question/11457190
what are the properety of covalent bond
Explanation:
1. boiling and melting point
2. electrical conductivity
3. Bond strength
4. bond length
A covalent bond consists of negative electrons that are shared in between atoms. Because of this bond, they possess and manifest physical abilities, including electrical pressure/conductivity and lower melting points compared to ionic compounds.