Find g. Write your answer as a whole number or a decimal. Do not round.

Find G. Write Your Answer As A Whole Number Or A Decimal. Do Not Round.

Answers

Answer 1

The value of length of side g using the  similar triangles is found as 20 ft.

Explain about the similar triangles?Triangles that are similar to one another in terms of shape, angle measurements, and proportion are said to be similar.If the single difference between two triangles is their size and perhaps the requirement to rotate or flip one of them, then they are similar.

In the given figures:

DC || EA

So,

∠D = ∠A

∠C = ∠E

By Angle -Angle similarity both triangles are similar.

Thus,

Taking the ratios of their side, it will be also equal.

EA / DC = EB / BC

5 / 10 = g / 10

g = 10*10 / 5

g = 100 / 5

g = 20

Thus, the value of length of side g using the  similar triangles is found as 20 ft.

Know more about the similar triangles

https://brainly.com/question/14285697

#SPJ1


Related Questions

A mountain is 13,318 ft above sea level and the valley is 390 ft below sea level What is the difference in elevation between the mountain and the valley

Answers

Answer: 13,708 ft

Step-by-step explanation:

To find the difference in elevation between the mountain and the valley, we need to subtract the elevation of the valley from the elevation of the mountain:

13,318 ft (mountain) - (-390 ft) (valley) = 13,318 ft + 390 ft = 13,708 ft

Therefore, the difference in elevation between the mountain and the valley is 13,708 ft.

Answer: The difference is 13,708 ft.

Given that a mountain is 13,318 feet above sea level. So the elevation of the mountain is [tex]= +13,318 \ \text{ft}[/tex].

Given that a valley is 390 feet below sea level.

So the elevation of the valley is [tex]= -390 \ \text{ft}[/tex].

So the difference between them is [tex]= 13,318 - (-390) = 13,318 + 390 = 13,708 \ \text{ft}.[/tex]

Learn more: https://brainly.com/question/20521181

Find the generating functions and the associated sequences of: (x+4) ^ 4

Answers

Using binomial theorem, the generating function is G(x) = x^4 + 16x^3 + 96x^2 + 256x + 256 while the associated sequence of (x+4)^4 is {1, 16, 96, 256, 256}.

What is the generating functions and associated sequences of the function

To find the generating function of (x+4)^4, we expand it using the binomial theorem:

[tex](x+4)^4 = C(4,0)x^4 + C(4,1)x^3(4) + C(4,2)x^2(4^2) + C(4,3)x(4^3) + C(4,4)(4^4)[/tex]

where C(n,k) denotes the binomial coefficient "n choose k".

Simplifying the terms, we get:

[tex](x+4)^4 = x^4 + 16x^3 + 96x^2 + 256x + 256[/tex]

Therefore, the generating function of (x+4)^4 is:

[tex]G(x) = x^4 + 16x^3 + 96x^2 + 256x + 256[/tex]

The associated sequence can be read off by finding the coefficients of each power of x:

The coefficient of x^k is the k-th term of the sequence.In this case, the sequence is given by the coefficients of G(x):a₀ = 256a₁ = 256a₂ = 96a₃ = 16a₄ = 1

To find the generating function of (x+4)^4, we expand it using the binomial theorem:

(x+4)^4 = C(4,0)x^4 + C(4,1)x^3(4) + C(4,2)x^2(4^2) + C(4,3)x(4^3) + C(4,4)(4^4)

where C(n,k) denotes the binomial coefficient "n choose k".

Simplifying the terms, we get:

(x+4)^4 = x^4 + 16x^3 + 96x^2 + 256x + 256

Therefore, the generating function of (x+4)^4 is:

G(x) = x^4 + 16x^3 + 96x^2 + 256x + 256

The associated sequence can be read off by finding the coefficients of each power of x:

The coefficient of x^k is the k-th term of the sequence.

In this case, the sequence is given by the coefficients of G(x):

a₀ = 256

a₁ = 256

a₂ = 96

a₃ = 16

a₄ = 1

Therefore, the associated sequence of (x+4)^4 is {1, 16, 96, 256, 256}.

Learn more on binomial theorem here;

https://brainly.com/question/24756209

#SPJ1

Jenny took the car, the bus, and the train to get home in time.
What form of punctuation is missing?
O A. No punctuation is missing.
OB.
A period
OC.
A comma
OD. A semicolon

Last three times I have tried to take a picture of my question. Nothing comes up that resembles any of it. I don’t know what’s wrong with this app but it’s not helping.

Answers

According to the question. A. No punctuation is missing.

What is punctuation ?

Punctuation is the use of symbols to indicate the structure and organization of written language. It is used to help make the meaning of sentences clearer and to make them easier to read and understand. Punctuation marks can also be used to indicate pauses in speech, to create emphasis, and to indicate the speaker’s attitude. There are many different types of punctuation marks, each with its own purpose. The most commonly used punctuation marks are the period, comma, question mark, exclamation mark, quotation marks, and the apostrophe.

Quotation marks are used to enclose quoted material, while the apostrophe is used to indicate possession or to replace missing letters in a word or phrase. By using punctuation correctly, writers can ensure that their messages are correctly understood by their readers.

To learn more about punctuation

https://brainly.com/question/30321693

#SPJ1

find all real numbers k for which there exists a nonzero 2 dimensional vector bold v such that begin bmatrix 2

Answers

Answer:

We can write the given system of equations as a matrix equation:

$\begin{bmatrix} 2 & 4 \ 4 & k \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix}$

To find nontrivial solutions (i.e., $x$ and $y$ not both equal to zero), the coefficient matrix must be singular, which means its determinant must be zero:

$\det\begin{bmatrix} 2 & 4 \ 4 & k \end{bmatrix} = 2k - 16 = 2(k - 8) = 0$

Thus, $k = 8$ is the only value for which there exists a nonzero 2-dimensional vector $\boldsymbol{v} = \begin{bmatrix} x \ y \end{bmatrix}$ satisfying the given system of equations. For $k \neq 8$, the only solution is the trivial one, $\boldsymbol{v} = \boldsymbol{0}$.


I hope this us helpful

Find the measures of angles 1 through 5 in the figure shown !

Answers

Answer:

55 degrees angles on a rights angle triangle. 1 and 3 they are equal cause they are vertical opp angles 55 degrees

find an ordered pair (x, y) that is a solution to the equation. -x+6y=7

Answers

Step-by-step explanation:

(-1, 1) is a solution.

because

-(-1) + 6×1 = 7

1 + 6 = 7

7 = 7

correct.

every ordered pair of x and y values that make the equation true is a solution.

(5, 2) would be another solution. and so on.

A type of wood has a density of 250 kg/m3. How many kilograms is 75,000 cm3 of the wood? Give your answer as a decimal.

Answers

D=250kg/m3
V=75000cm3=0,075m3
Kg=?
D=m*v
m=d/v
m=250/0.075=3333,33kg

Decide if the function is an exponential growth function or exponential decay function, and describe its end behavior using
limits.

Y=(1/6) ^-x

Answers

Answer:

The given function is an exponential growth function, not an exponential decay function because as the exponent x increases, the value of y also increases instead of decreasing.

To describe its end behavior using limits, we need to find the limit of the function as x approaches infinity and as x approaches negative infinity.

As x approaches infinity, the exponent -x approaches negative infinity, and the base (1/6) is raised to increasingly larger negative powers, causing the function to approach zero. So, the limit as x approaches infinity is 0.

As x approaches negative infinity, the exponent -x approaches infinity, and the base (1/6) is raised to increasingly larger positive powers, causing the function to approach infinity. So, the limit as x approaches negative infinity is infinity.

Therefore, the end behavior of the function is that it approaches zero as x approaches infinity and approaches infinity as x approaches negative infinity.

Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0°C and 1.08°C. Round your answer to 4 decimal places

Answers

Answer: We are given that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C.

To find the probability of obtaining a reading between 0°C and 1.08°C, we need to calculate the z-scores for these values using the formula:

z = (x - mu) / sigma

where x is the value we are interested in, mu is the mean, and sigma is the standard deviation.

For x = 0°C, we have:

z1 = (0 - 0) / 1.00 = 0

For x = 1.08°C, we have:

z2 = (1.08 - 0) / 1.00 = 1.08

Using a standard normal table or a calculator, we can find the probability of obtaining a z-score between 0 and 1.08.

Using a standard normal table or a calculator, we find that the probability of obtaining a z-score between 0 and 1.08 is 0.3583.

Therefore, the probability of obtaining a reading between 0°C and 1.08°C is 0.3583, rounded to 4 decimal places.

Step-by-step explanation:

Find x, if √x +2y^2 = 15 and √4x - 4y^2=6

pls help very soon

Answers

Answer:

We have two equations:

√x +2y^2 = 15 ----(1)

√4x - 4y^2=6 ----(2)

Let's solve for x:

From (1), we have:

√x = 15 - 2y^2

Squaring both sides, we get:

x = (15 - 2y^2)^2

Expanding, we get:

x = 225 - 60y^2 + 4y^4

From (2), we have:

√4x = 6 + 4y^2

Squaring both sides, we get:

4x = (6 + 4y^2)^2

Expanding, we get:

4x = 36 + 48y^2 + 16y^4

Substituting the expression for x from equation (1), we get:

4(225 - 60y^2 + 4y^4) = 36 + 48y^2 + 16y^4

Simplifying, we get:

900 - 240y^2 + 16y^4 = 9 + 12y^2 + 4y^4

Rearranging, we get:

12y^2 - 12y^4 = 891

Dividing both sides by 12y^2, we get:

1 - y^2 = 74.25/(y^2)

Multiplying both sides by y^2, we get:

y^2 - y^4 = 74.25

Let z = y^2. Substituting, we get:

z - z^2 = 74.25

Rearranging, we get:

z^2 - z + 74.25 = 0

Using the quadratic formula, we get:

z = (1 ± √(1 - 4(1)(74.25))) / 2

z = (1 ± √(-295)) / 2

Since the square root of a negative number is not real, there are no real solutions for z, which means there are no real solutions for y and x.

Therefore, the answer is "no solution".

Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than 0.35°C.
Round your answer to 4 decimal places

Answers

The probability of obtaining a reading less than 0.35° C is approximately 35%.

What exactly is probability, and what is its formula?

Accοrding tο the prοbability fοrmula, the likelihοοd οf an event οccurring is equal tο the ratiο οf the number οf favοurable οutcοmes tο the tοtal number οf οutcοmes. Prοbability οf an event οccurring P(E) = The number οf favοurable οutcοmes divided by the tοtal number οf οutcοmes.

The readings at freezing οn a set οf thermοmeters are nοrmally distributed, with a mean (x) οf 0°C and a standard deviatiοn (μ) οf 1.00°C. We want tο knοw hοw likely it is that we will get a reading that is less than 0.35°C.

To solve this problem, we must use the z-score formula to standardise the value:

[tex]$Z = \frac{x - \mu}{\sigma}[/tex]

Z = standard score

x = observed value

[tex]\mu[/tex] = mean of the sample

[tex]\sigma[/tex] = standard deviation of the sample

Here

x = 0.35° C

[tex]\mu[/tex] = 0° C

[tex]\sigma[/tex] = 1.00°C

Using the values on the formula:

[tex]$Z = \frac{0.35 - 0}{1}[/tex]

Z = 0.35

The probability of obtaining a reading less than 0.35° C is approximately 35%.

To know more about probability visit:

brainly.com/question/30719832

#SPJ1

I will mark you brainiest!

If the triangles above are reflections of each other, then ∠D ≅ to:
A) ∠F.
B) ∠E.
C) ∠C.
D) ∠A.
E) ∠B.

Answers

Answer:

D I believe

Step-by-step explanation:

Is the function represented by the following table linear, quadratic or exponential? ​

Answers

The function represented by the table is linear, as it has a constant rate of change and is represented by a straight line.

What is function in mathematics?

Function in mathematics is a relation between two sets, where one set is the input and the other set is the output. Functions are an important tool in mathematics and can be used to describe and model real-world phenomena. Functions take inputs, manipulate them and produce outputs. They can be used to represent relationships between two or more variables, or to represent a complex process. Functions allow us to break down complex problems into smaller, more manageable pieces and to study how changes in one variable affect other variables.

The function represented by the table is linear. It can be determined by the fact that the y-values change by the same amount every time the x-values increase by one unit. In this case, the y-values decrease by 2 each time the x-values increase by one unit. This is an example of a linear function.

Linear functions have the shape of a straight line and are characterized by having a constant rate of change. The constant rate of change is represented by the slope of the line, which in this case is -2. This means that for every one unit increase in the x-values, the y-values decrease by two.

A quadratic function is the opposite of a linear function, as it has a rate of change that is not constant. Quadratic functions are characterized by their parabolic shape and their rate of change increases as x-values increase. Exponential functions are characterized by their curved shape and increase exponentially as x-values increase.

In conclusion, the function represented by the table is linear, as it has a constant rate of change and is represented by a straight line.

To know more about function click-
https://brainly.com/question/25841119
#SPJ1

Solve please geometry, solve for x

Answers

Answer: The answer is D

Step-by-step explanation:

Pythagorean theorem: a²+b²=c²

x²+x²=14²

2x²=196

Evaluate...

x=7√2

Which expressions are equivalent to 8(3/4y -2)+6(-1/2+4)+1

Answers

Answer: 6y + 6

Step-by-step explanation:

To simplify the expression 8(3/4y -2) + 6(-1/2+4) + 1, we can follow the order of operations (PEMDAS):

First, we simplify the expression within parentheses, working from the inside out:

6(-1/2+4) = 6(7/2) = 21

Next, we distribute the coefficient of 8 to the terms within the first set of parentheses:

8(3/4y -2) = 6y - 16

Finally, we combine the simplified terms:

8(3/4y -2) + 6(-1/2+4) + 1 = 6y - 16 + 21 + 1 = 6y + 6

Therefore, the expression 8(3/4y -2) + 6(-1/2+4) + 1 is equivalent to 6y + 6.

Uri paid a landscaping company to mow his lawn. The company charged $74 for the service plus
5% tax. After tax, Uri also included a 10% tip with his payment. How much did he pay in all?

Answers

Uri paid a total of $85.47 for the landscaping service including tax and tip.

What is tax?

Taxes are compulsory payments made by a government organisation, whether local, regional, or federal, to people or businesses. Tax revenues are used to fund a variety of government initiatives, such as Social Security and Medicare as well as public infrastructure and services like roads and schools. Taxes are borne by whoever bears the cost of the tax in economics, whether this is the entity being taxed, such as a business, or the final users of the items produced by the firm. Taxes should be taken into consideration from an accounting standpoint, including payroll taxes, federal and state income taxes, and sales taxes.

Given that company charged $74 for the service plus 5% tax.

The tax is 5%, that is:

Tax = 5% of $74 = 0.05 x $74 = $3.70

Cost after tax = $74 + $3.70 = $77.70

Now, tip is 10%:

Tip = 10% of $77.70 = 0.10 x $77.70 = $7.77

Total cost = $77.70 + $7.77 = $85.47

Hence, Uri paid a total of $85.47 for the landscaping service including tax and tip.

Learn more about tax here:

https://brainly.com/question/16423331

#SPJ1

The breadth of a rectangular playground is 5m shorter than its length. If its perimeter is 130m,find ids length and breadth.

Answers

Answer:

Length is 35 m and breadth is 30 m

Step-by-step explanation:

Given,

The breadth of a rectangular playground is 5m shorter than its length.Perimeter is 130 m

Let length be x and breadth (x - 5).

Perimeter of rectangle is calculated by :

[tex] \: \: \boxed{ \pmb{ \sf{Perimeter_{(rectangle)} = 2(l + b)}}} \\ [/tex]

On substituting the values we get :

[tex]\dashrightarrow \: \: 130 = 2(x + x - 5) \\ [/tex]

[tex]\dashrightarrow \: \: 130 = 2(2x - 5) \\ [/tex]

[tex]\dashrightarrow \: \dfrac{130}{2} = (2x - 5) \\ [/tex]

[tex]\dashrightarrow \: \: 65 = 2x - 5 \\ [/tex]

[tex]\dashrightarrow \: \: 65 + 5 = 2x \\ [/tex]

[tex]\dashrightarrow \: \: 70 = 2x \\ [/tex]

[tex]\dashrightarrow \: \: \frac{70}{2} = x \\ [/tex]

[tex]\dashrightarrow \: \: 35 = x \\ [/tex]

Hence,

Length = x = 35 m.Breadth = x -5 = (35 -5) = 30 m

Write a quadratic inequality represented by the graph.

Answers

Using the concept of parabola, the quadratic inequality represented by the graph can be written as:

y = x² -2x +2.

Define parabola?

An equation of a curve that has a point on it that is equally spaced from a fixed point and a fixed line is referred to as a parabola.

The parabola's fixed point is referred to as the focus, and its fixed line is referred to as the directrix.

The general equation for a parabola is given as:

y = a(x-h) ² + k

Now here we have:

(x,y) = (2,5)

(h,k) = (1,1)

Putting these values in the equation,

5 = a (2-1) ² + 1

a = 5-1

=4

Substituting the values:

y = (x-1) + 1

y = x² -2x +2

Therefore, the quadratic inequality can be written as: y = x² -2x +2.

To know more about parabola, visit:

https://brainly.com/question/4074088

#SPJ1

The rate at which a rumor spreads through a town of population N can be modeled by the equation dt/dx = kx(N−x) where k is a constant and x is the number of people who have heard the rumor. (a) If two people start a rumor at time t=0 in a town of 1000 people, find x as a function of t given k=1/250. (b) When will half the population have heard the rumor?

Answers

(a) The function x as a function of t is t = 250ln(499x/998)

(b) Half the population will have heard the rumor approximately 109.86 units of time after it was started.

(a) To solve the differential equation dt/dx = kx(N−x), we can separate the variables and integrate

dt/dx = kx(N−x)

dt/(N-x) = kx dx

Integrating both sides, we get

t = -1/k × ln(N-x) - 1/k × ln(x) + C

where C is the constant of integration.

To find C, we can use the initial condition that two people start the rumor at t=0, so x=2:

0 = -1/k * ln(N-2) - 1/k * ln(2) + C

C = 1/k * ln(N-2) + 1/k * ln(2)

Substituting C back into the equation, we get:

t = -1/k * ln(N-x) - 1/k * ln(x) + 1/k * ln(N-2) + 1/k * ln(2)

Simplifying, we get

t = 1/k * [ln((N-2)x/(2(N-x)))]

Substituting k=1/250 and N=1000, we get:

t = 250ln(499x/998)

(b) We want to find the time t when half the population has heard the rumor, so x = N/2 = 500. Substituting this into the equation we obtained in part (a), we get

t = 250ln(499(500)/998) = 250ln(249/499)

t ≈ 109.86

Therefore, half the population will have heard the rumor approximately 109.86 units of time after it was started.

Learn more about differential equation here

brainly.com/question/29199325

#SPJ4

Find the 66th derivative of the function f(x) = 4 sin (x)…..

Answers

In response to the stated question, we may state that As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).

what is derivative?

In mathematics, the derivative of a function with real variables measures how sensitively the function's value varies in reaction to changes in its parameters. Derivatives are the fundamental tools of calculus. Differentiation (the rate of change of a function with respect to a variable in mathematics) (in mathematics, the rate of change of a function with respect to a variable). The use of derivatives is essential in the solution of calculus and differential equation problems. The definition of "derivative" or "taking a derivative" in calculus is finding the "slope" of a certain function. Because it is frequently the slope of a straight line, it should be enclosed in quotation marks. Derivatives are rate of change metrics that apply to almost any function.

Using the chain rule and the derivative of the sine function repeatedly yields the 66th derivative of the function [tex]f(x) = 4 sin (x).[/tex]

The derivative of sin(x) is cos(x), and the derivative of cos(x) is -sin(x), and this pattern repeats itself every two derivatives.

As a result, the first derivative of f(x) is:

[tex]f'(x) = 4 cos (x)[/tex]

The second derivative is as follows:

[tex]f"(x) = -4 sin (x)[/tex]

The third derivative is as follows:

[tex]f"'(x) = -4 cos (x)[/tex]

The fourth derivative is as follows:

[tex]f""(x) = 4 sin (x)[/tex]

And so forth.

[tex]f^{(66)(x)} = 4 sin (x)[/tex]

Because the pattern repeats every four derivatives, the 66th derivative is the same as the second, sixth, tenth, fourteenth, and so on.

As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).

To know more about derivatives visit:

https://brainly.com/question/25324584

#SPJ1

T/F. Star clusters with lots of bright, blue stars of spectral type O and B are generally younger than clusters that don't have any such stars.

Answers

The given statement "Star clusters with lots of bright, blue stars of spectral type O and B are generally younger than clusters that don't have any such stars." is True. The reason for this is that O and B stars are short-lived and burn through their fuel quickly.

The reason for this is that O and B stars burn through their fuel quickly, causing them to exhaust their nuclear fuel and end their lives in a relatively short period, typically within a few tens of millions of years.

On the other hand, stars of lower mass and cooler temperatures, like G and K type stars like our sun, have longer lifetimes and take billions of years to exhaust their nuclear fuel.

Therefore, clusters without any bright, blue stars are likely to have evolved for longer periods, allowing these short-lived stars to have already expired.

To know more about Star clusters:

https://brainly.com/question/30899528

#SPJ4

Find the standard normal area for each of the following Round your answers to the 4 decimal places

Answers

The standard normal areas are given as follows:

P(1.22 < Z < 2.15) = 0.0954. P(2 < Z < 3) = 0.0215.P(-2 < Z < 2) = 0.9544.P(Z > 0.5) = 0.3085.

How to obtain probabilities using the normal distribution?

The z-score of a measure X of a normally distributed variable that has mean represented by [tex]\mu[/tex] and standard deviation represented by [tex]\sigma[/tex] is obtained by the equation presented as follows:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The z-score represents how many standard deviations the measure X is above or below the mean of the distribution of the data-set, depending if the obtained z-score is positive(above the mean) or negative(below the mean).The z-score table is used to obtain the p-value of the z-score, and it represents the percentile of the measure X in the distribution.

Considering the second bullet point, the areas are given as follows:

P(1.22 < Z < 2.15) = p-value of Z = 2.15 - p-value of Z = 1.22 = 0.9842 - 0.8888 = 0.0954.P(2 < Z < 3) = 0.0215 = p-value of Z = 3 - p-value of Z = 1 = 0.9987 - 0.9772 = 0.0215.P(-2 < Z < 2) = p-value of Z = 2 - p-value of Z = -2 = 0.9772 - 0.0228 = 0.9544P(Z > 0.5) = 1 - p-value of Z = 0.5 = 1 - 0.6915 = 0.3085.

More can be learned about the normal distribution at https://brainly.com/question/25800303

#SPJ1

The roots of a quadratic equation a x +b x +c =0 are (2+i √2)/3 and (2−i √2)/3 . Find the values of b and c if a = −1.

Answers

[tex]\begin{cases} x=\frac{2+i\sqrt{2}}{3}\implies 3x=2+i\sqrt{2}\implies 3x-2-i\sqrt{2}=0\\\\ x=\frac{2-i\sqrt{2}}{3}\implies 3x=2-i\sqrt{2}\implies 3x-2+i\sqrt{2}=0 \end{cases} \\\\\\ \stackrel{ \textit{original polynomial} }{a(3x-2-i\sqrt{2})(3x-2+i\sqrt{2})=\stackrel{ 0 }{y}} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\stackrel{ \textit{difference of squares} }{[(3x-2)-(i\sqrt{2})][(3x-2)+(i\sqrt{2})]}\implies (3x-2)^2-(i\sqrt{2})^2 \\\\\\ (9x^2-12x+4)-(2i^2)\implies 9x^2-12x+4-(2(-1)) \\\\\\ 9x^2-12x+4+2\implies 9x^2-12x+6 \\\\[-0.35em] ~\dotfill\\\\ a(9x^2-12x+6)=y\hspace{5em}\stackrel{\textit{now let's make}}{a=-\frac{1}{9}} \\\\\\ -\cfrac{1}{9}(9x^2-12x+6)=y\implies \boxed{-x^2+\cfrac{4}{3}x-\cfrac{2}{3}=y}[/tex]

If A = [ 1 2 4 0 5 6 ] and B= [ 7 3 2 5 1 9] find C= A+B and D=A-B

Answers

Step 1: Arrange the arrays so that A and B are in the same order: A = [ 1 2 4 0 5 6 ], B = [ 7 3 2 5 1 9]

Step 2: To find C = A+B, add each element of A and B together.

C = [1+7, 2+3, 4+2, 0+5, 5+1, 6+9]

C = [8, 5, 6, 5, 6, 15]

Step 3: To find D = A-B, subtract each element of B from A.

D = [1-7, 2-3, 4-2, 0-5, 5-1, 6-9]

D = [-6, -1, 2, -5, 4, -3]

WILL GIVE BRAINLIEST NEED ANSWERS FAST!!!

Find the missing length indicated

Answers

Step-by-step explanation:

4)

based on similar triangles and the common ratio for all pairs of corresponding sides we know

LE/LM = LD/LK = DE/EM

because E and D are the midpoints of the longer sides, all of these ratios are 1/2.

1/2 = DE/8

8/2 = 4 = DE

5)

same principle as for 4)

BQ/BA = BR/BC = QR/AC

again, Q and R are the midpoints, so all these ratios are 1/2.

1/2 = QR/10

QR = 10/2 = 5

find the value of the derivative (if it exists) at
each indicated extremum

Answers

Answer:

The value of the derivative at (-2/3, 2√3/3) is zero.

Step-by-step explanation:

Given function:

[tex]f(x)=-3x\sqrt{x+1}[/tex]

To differentiate the given function, use the product rule and the chain rule of differentiation.

[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Product Rule of Differentiation}\\\\If $y=uv$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}[/tex]

[tex]\boxed{\begin{minipage}{7 cm}\underline{Differentiating $[f(x)]^n$}\\\\If $y=[f(x)]^n$, then $\dfrac{\text{d}y}{\text{d}x}=n[f(x)]^{n-1} f'(x)$\\\end{minipage}}[/tex]

[tex]\begin{aligned}\textsf{Let}\;u &= -3x& \implies \dfrac{\text{d}u}{\text{d}{x}} &= -3\\\\\textsf{Let}\;v &= \sqrt{x+1}& \implies \dfrac{\text{d}v}{\text{d}{x}} &=\dfrac{1}{2} \cdot (x+1)^{-\frac{1}{2}}\cdot 1=\dfrac{1}{2\sqrt{x+1}}\end{aligned}[/tex]

Apply the product rule:

[tex]\implies f'(x) =u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}[/tex]

[tex]\implies f'(x)=-3x \cdot \dfrac{1}{2\sqrt{x+1}}+\sqrt{x+1}\cdot -3[/tex]

[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-3\sqrt{x+1}[/tex]

Simplify:

[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-\dfrac{3\sqrt{x+1} \cdot 2\sqrt{x+1}}{2\sqrt{x+1}}[/tex]

[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-\dfrac{6(x+1)}{2\sqrt{x+1}}[/tex]

[tex]\implies f'(x)=- \dfrac{3x+6(x+1)}{2\sqrt{x+1}}[/tex]

[tex]\implies f'(x)=- \dfrac{9x+6}{2\sqrt{x+1}}[/tex]

An extremum is a point where a function has a maximum or minimum value.

From inspection of the given graph, the maximum point of the function is (-2/3, 2√3/3).

To determine the value of the derivative at the maximum point, substitute x = -2/3 into the differentiated function.

[tex]\begin{aligned}\implies f'\left(-\dfrac{2}{3}\right)&=- \dfrac{9\left(-\dfrac{2}{3}\right)+6}{2\sqrt{\left(-\dfrac{2}{3}\right)+1}}\\\\&=-\dfrac{0}{2\sqrt{\dfrac{1}{3}}}\\\\&=0 \end{aligned}[/tex]

Therefore, the value of the derivative at (-2/3, 2√3/3) is zero.

Tom’s yearly salary is $78000

Calculate Tom’s fortnightly income. (Use 26
fortnights in a year.)

Fortnightly income =
$

Answers

Tom's fortnightly income is $3000.

What is average?

In mathematics, an average is a measure that represents the central or typical value of a set of numbers. There are several types of averages commonly used, including the mean, median, and mode.

To calculate Tom's fortnightly income, we need to divide his yearly salary by the number of fortnights in a year:

Fortnightly income = Yearly salary / Number of fortnights in a year

Fortnightly income = $78000 / 26 = $3000

Therefore, Tom's fortnightly income is $3000.

To know more about average and given link below -brainly.com/question/24057012

#SPJ4

question - Calculate the  Tom's fortnightly income and yearly salary by the number of fortnights in a year .

Consider the function h(x) = a(−2x + 1)^5 − b, where a does not=0 and b does not=0 are constants.
A. Find h′(x) and h"(x).
B. Show that h is monotonic (that is, that either h always increases or remains constant or h always decreases or remains constant).
C. Show that the x-coordinate(s) of the location(s) of the critical points are independent of a and b.

Answers

Answer:

A. To find the derivative of h(x), we can use the chain rule:

h(x) = a(-2x + 1)^5 - b

h'(x) = a * 5(-2x + 1)^4 * (-2) = -10a(-2x + 1)^4

To find the second derivative, we can again use the chain rule:

h''(x) = -10a * 4(-2x + 1)^3 * (-2) = 80a(-2x + 1)^3

B. To show that h is monotonic, we need to show that h'(x) is either always positive or always negative. Since h'(x) is a multiple of (-2x + 1)^4, which is always non-negative, h'(x) is always either positive or negative depending on the sign of a. If a > 0, then h'(x) is always negative, which means that h(x) is decreasing. If a < 0, then h'(x) is always positive, which means that h(x) is increasing.

C. To find the critical points, we need to find where h'(x) = 0:

h'(x) = -10a(-2x + 1)^4 = 0

-2x + 1 = 0

x = 1/2

Thus, the critical point is at x = 1/2. This value is independent of a and b, as neither a nor b appear in the calculation of the critical point.

PLEASE HELP!!!!!!!!!

△DEF is similar to △YZX

A) which side corresponds to ED? (this one is already answered)

B) write a proportion that you could use to find XZ

C) what is XZ?

Answers

Step-by-step explanation:

B) 20:23

C) 6,0375

hope this helps

WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!!!!!
The point on the parabola y=x^2 that is closest to the point (1,0) is (_______,_______). The distance between the two points is ________.

you can use Newtons's Method or Bisection to help but you don't have to.

Answers

Answer:Approximately

(0.58975,0.34781)

Step-by-step explanation:

If (x,y) is a point on the parabola, then the distance between (x,y) and (1,0) is:

√(x−1)2+(y−0)2=√x4+x2−2x+1

To minimize this, we want to minimize

f(x)=x4+x2−2x+1

The minimum will occur at a zero of:

f'(x)=4x3+2x−2=2(2x3+x−1)

graph{2x^3+x-1 [-10, 10, -5, 5]}

Using Cardano's method, find

x=3√14+√8736+3√14−√8736≅0.58975

y=x2≅0.34781

Other Questions
Determine the entropy change of helium during this process assuming the process is irreversible. The gas constant of helium is R=0.4961 Btu/lbm-R. The constant volume specific heat of helium at room temperature is cv = 0.753 Btu/lbm-R.The entropy change of helium during this process is______ Btu/R. A surfboard is in the shape of a rectangle and semicircle. The perimeter is to be 4m. Find the maximum area of the surfboard correct to 2 places. Find the interest refund on a 35-month loan with interest of $2,802 if the loan is paid in full with 13 months remaining. Using the two-key encryption method for authentication, we need to be careful about how the keys are used. Select all correct answers regarding key usage in authentication from the list below.Public key management is very important because we use public keys to authenticate others in conducting e-business.Only the pair of one user's two keys is used for encryption and decryption. natural groceries has a policy of not buying paper products, such as paper towels, from certain companies if they are made with rainforest wood. natural groceries is sending an economic message that it protests deforestation because of severe damage to the environment. this is an example of a . PLEASE ANSWER THIS QUESTION, 20 POINTS!! An example of an expatriate is aA. person born in the United States and currently a Japanese citizen working in Japan.B. person born in Germany but currently a U.S.citizen working in the United States.C. Japanese citizen working in Japan for a Japanese firm.D. U.S. citizen working for a Japanese firm in the United States.E. U.S. citizen working for a U.S. firm in Germany A spinner with 10 equally sized slices has 5 red slices, 3 yellow slices, and 2 blue slices. Ann spun the dial 25 times. It landed on red 12 times, landed on yellow 10 times, and landed on blue 3 times. From Ann's results, compute the experimental probability of landing on blue or yellow in the early 1990s, banks began offering check-writing privileges on money market mutual funds. this caused Suppose that the government purchases $50 million worth of computers from China. Which of the following GDP accounts will be affected?a. Consumptionb. Investmentc. Government Purchasesd. Net Exports when firms outsource software work outside their national borders, this practice is called __________. Frequent contact with _____from the same ethnic group leads adolescents to developstronger positive feelings about their ethnicity How would President Franklin Roosevelt most likely respond to Father Charles Coughlin concernsabout the Works Progress Administration (WPA)?A. President Roosevelt would listen to the criticism and assure Father Coughlin that the money wasbenefiting the nation as a whole by helping the working people.B. President Roosevelt would agree with Father Coughlin taxation was necessary for the recovery ofthe country but private industries must also contribute.C. President Roosevelt would explain to Father Coughlin that the use of public tax money benefitsindustry and commerce as well as individuals.President Roosevelt would address Father Coughlin's concerns by reducing the taxes used tosupport the relief and recovery efforts. Shade in the regions represented by the inequalities The physical setting in which a speech occurs can have a significant impact on the outcome of a speech.True or False An object of mass m is initially at rest and free to move without friction in any direction in the xy-plane. A constant net force of magnitude F directed in the x direction acts on the object for 1 s. Immediately thereafter a constant net force of the same magnitude F directed in the y direction acts on the object for 1 s. After this, no forces act on the object. Write down the vectors that could represent the velocity of the object at the end of 3 s, assuming the scales on the x and y axes are equal Find the value of x. A quadrilateral has two angles that measure 235 and 40. The other two angles are in a ratio of 5:12. What are the measures of those two angles? the assumptions that all family members have common needs, interests, and behaviors is expressed in the myth of All the students in the sixth grade either purchased their lunch or brought their lunch from home on Monday. 24% of the students purchased their lunch. 190 students brought their lunch from home. How many students are in the sixth grade?