Answer:
Consider the angle Ф.
the line opposite to Ф is the perpendicular -> PQ = 5cm
The base is the line with whom the perpendicular has 90° angle -> PR = 12cm
Finally, hypotenuse is the line opposite to the 90° which is QR= 13cm
Answer:
hypotenuse = QR = 13 cm
Perpendicular = PQ = 5 cm
Base = PR = 12 cm
Factorise: 25x^2 - 1/49
Answer:
[tex] (5x + \frac{1}{7} )(5x - \frac{1}{7} )[/tex]Step-by-step explanation:
Given,
[tex] {25x}^{2} - \frac{1}{49} [/tex]
[tex] = {(5x)}^{2} - {( \frac{1}{7}) }^{2} [/tex]
Since,
[tex] {x}^{2} - {y}^{2} = (x + y)(x - y)[/tex]
Then,
[tex] = (5x + \frac{1}{7} )(5x - \frac{1}{7} )(ans)[/tex]
find the values of x and y for the following matrix equations
Answer:
Step-by-step explanation:
The length AB of a rectangle ABCD is 8cm and its diagonal BD and measures 10 cm Find its breadth BC
what vulnerable does the 4 represents in the number 487.009
Answer:
400 :D
Step-by-step explanation:
In a scatter plot, each ____. Group of answer choices individual is represented by a single point group mean is represented by a single point individual is represented by two data points group mean is represented by two data points
Answer:
Individual is represented by a single point
Step-by-step explanation:
Instructions: Find the missing length indicated.
Answer:
x = 65
Step-by-step explanation:
x = √(25×(25+144))
x = √(25×169)
x = 5×13
x = 65
Answered by GAUTHMATH
15. On Sports Day, Mike runs 100 metres in 13.89 seconds and Neal runs the same distance in 13.01 seconds. Who is the FASTER runner?
Answer:
Neal
Step-by-step explanation:
13.01 < 13.89
(4x - 3) × (x + 2)=0
Hi,
AxB = 0 means A=0. or B=0
so 2 solutions :
4x-3= 0
4x=3
x = 3/4
and x+2 = 0.
x= -2
solutions are : -2 +and 3/4
2 answers
1) -2
2) -3/4
If 10 wholes are divided into pieces that are one half of a whole each how many pieces are there?
9514 1404 393
Answer:
20
Step-by-step explanation:
A whole can be divided into two pieces that are each 1/2 of the whole.
(10 wholes) × (2 pieces per whole) = 20 pieces
What is the GCF of the expression 7xyz - 21xyz + 49yz + 14yz2?
Answer:
7yz
Step-by-step explanation:
You can take 7yz common from all the terms in the given expression
Answered by GAUTHMATH
What is the five-number summary for this data set? 22, 29, 33, 38, 44, 47, 51, 56, 64, 69 Assume the numbers in each answer choice are listed in this order: min, Q1, median, Q3, max.
A. 22, 33, 45.5, 56, 69
B. 22, 38, 45.5, 51, 69
C. 22, 38, 41, 51, 69
D. 22, 33, 41, 56, 69
Answer: A: 22, 33, 45.5, 56, 59
Step-by-step explanation:
The minimum is the lowest number in the data, in this case, it was 22.
Q1 is the median of the lower quartile range, anything below the median of the overall data.
Median, the middle number in the overall data. You first need to put them from lowest to highest (numerical order). After that, I find it a lot easier to cross one from each side until I'm either left with one or two. If I'm left with one, then that is my median for the overall data set. If I'm left with two, then I simply need to add both the numbers together and divide it by 2. Typically if it is a whole number, and the numbers are 1 number value away from each other, it is usually just 0.5 more of the lower value of the two. (For example, the two numbers I come down to is 10 and 11. The median would be 10.5).
Q3 is the exact same principle as Q1 just on the upper quartile range. Just repeat what you did in Q1 but for the numbers above the overall median of the data set.
Maximum is the highest number in the data set, in this case, it was 69.
Hope this helps!
What type of line is PQ?
A. side bisector
B. angle bisector
C. median
D. altitude
Answer:
B: I think
Step-by-step explanation:
correct me if im wrong
The line PQ is an angle bisector because it divides the angle P into two equal half option (B) angle bisector is correct.
What is an angle?When two lines or rays converge at the same point, the measurement between them is called a "Angle."
We have a triangle shown in the picture.
As we know,
in terms of geometry, the triangle is a three-sided polygon with three edges and three vertices. The triangle's interior angles add up to 180°.
From the figure the segment PQ divides the angle into two equal half.
From the definition of the angle bisector, the angle bisector can be defined as a line segment that divides the angle into two half.
Angle P = 40 + 40 = 80 degrees
Thus, the line PQ is an angle bisector because it divides the angle P into two equal half option (B) angle bisector is correct.
Learn more about the angle here:
brainly.com/question/7116550
#SPJ5
The lengths of two sides of the right triangle ABC shown in the illustration given
a= 7cm and b= 24cm
Answer:
25 cm.
Step-by-step explaination:
Given,
Two sides of a triangle:
a = 7cm
b = 24 cm
To find,
Third side:
c = ?
By Pythagorean Theorem;
a² + b² = c²
[where c is the longest side,hypotenuse]
Putting the value of a and b;
we get,
7² + 24² = c²
49 + 576 = c²
625 = c²
25² = c² (square root)
25 = c
c = 25
Therefore, the length of the third side will be equal to 25 cm.
The lengths of two sides of the right triangle ABC shown in the illustration given
a= 7cm and b= 24cm
Given,> a= 7cm
> b= 24cm
To find?Side c (third side)
Solution:-Using Pythagoras theorem,
▶️ a² + b² = c
▶️ 7cm ² + 24cm² = c²
▶️ 49cm + 576cm = c²
▶️ 625cm = c²
▶️ 25² = c² (25×25 = 625)
▶️ c = 25
The value of c is 25 cm.
the quotient of (x^4 - 3x^2 + 4x - 3) and a polynomial is (x^2 + x - 3) what is the polynormial
Answer:
Hello,
polynomial is x²-x+1
Step-by-step explanation:
if a=b*c+r then a=c*b+r
Using a long division, see the picture.
Solve for x . 7 - (2 x + 11) + 3(3 - x ) = 20
A.7/5
B.-3
C.-4
Answer:
the answer to the question is a:-3
Full-time Ph.D. students receive an average of $12,837 per year. If the average salaries are normally distributed with a standard deviation of $1500, find these probabilities. a. The student makes more than $15,000. b. The student makes between $13,000 and $14,000.
Answer:
a) 0.0749 = 7.49% probability that the student makes more than $15,000.
b) 0.227 = 22.7% probability that the student makes between $13,000 and $14,000.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Full-time Ph.D. students receive an average of $12,837 per year.
This means that [tex]\mu = 12837[/tex]
Standard deviation of $1500
This means that [tex]\sigma = 1500[/tex]
a. The student makes more than $15,000.
This is 1 subtracted by the p-value of Z when X = 15000.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{15000 - 12837}{1500}[/tex]
[tex]Z = 1.44[/tex]
[tex]Z = 1.44[/tex] has a p-value of 0.9251.
1 - 0.9251 = 0.0749
0.0749 = 7.49% probability that the student makes more than $15,000.
b. The student makes between $13,000 and $14,000.
This is the p-value of Z when X = 14000 subtracted by the p-value of Z when X = 13000.
X = 14000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{14000 - 12837}{1500}[/tex]
[tex]Z = 0.775[/tex]
[tex]Z = 0.775[/tex] has a p-value of 0.7708.
X = 13000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{13000 - 12837}{1500}[/tex]
[tex]Z = 0.11[/tex]
[tex]Z = 0.11[/tex] has a p-value of 0.5438.
0.7708 - 0.5438 = 0.227
0.227 = 22.7% probability that the student makes between $13,000 and $14,000.
7.49% of the student makes more than $15,000, while 23.85% of the student makes between $13,000 and $14,000
What is z score?
Z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:
z = (raw score - mean) / standard deviation
Given that:
Mean = $12837, standard deviation = $1500
a) For >15000:
z = (15000 - 12837)/1500 = 1.44
P(z > 1.44) = 1 - P(z < 1.44) = 1 - 0.9251 = 0.0749
b) For >13000:
z = (13000 - 12837)/1500 = 0.11
For <14000:
z = (14000 - 12837)/1500 = 0.78
P(0.11 < z < 0.78) = P(z < 0.78) - P(z < 0.11) = 0.7823 - 0.5438 = 0.2385
7.49% of the student makes more than $15,000, while 23.85% of the student makes between $13,000 and $14,000
Find out more on z score at: https://brainly.com/question/25638875
If car eyelashes sold for $13.99. If you bud double that, how much would you have paid for them? (Hint if needed: if they had been exactly $14, how different would your answer be?)
Answer:
13.99 x 2 = 27.98 dollars
now if they were 14 dollars exactly and you doubled that it would be 28 dollars so the difference would be 0.02 cents
Step-by-step explanation:
Near the beginning of Lesson 5.3, a strategy for factoring trinomials of the form x^2+ bx+c was
developed by exploring the product of the binomials (x+p) and (x+q).
Explain how the development of this factoring strategy is an example of working backwards
to solve a problem.
Answer:
Step-by-step explanation:
there are function that "invert" each other..
subtraction inverts addition...
3+2 = 5 ... 5-2 = 3
division inverts multiplication
5*2 = 10 ... 10/2 = 5
Using that concept, "factoring" is basically the inverse of multiplication
3x^2 + 9x can be factored to 3x(x+3)
if you multiply that out it reverts back to the original equation
so x^2 + 5x + 6 factors to (x+3)(x+2)
if you multiply that out (foil it)
you get x^2 + 5x + 6
How many permutations of letter of the word APPLE are there?
Answer:
There are 60 permutations.
Step-by-step explanation:
Arrangements formula:
The number of possible arrangements of n elements is given by:
[tex]A_n = n![/tex]
With repetition:
For each element that repeats, with [tex]n_1, n_2, ..., n_n[/tex] times, the formula is:
[tex]A_n^{n_1,n_2,...,n_n} = \frac{n!}{n_1!n_2!...n_n}[/tex]
In this question:
Apple has 5 letters.
P appears two times. So
[tex]A _5^{2} = \frac{5!}{2!} = 60[/tex]
There are 60 permutations.
Country Financial, a financial services company, uses surveys of adults age 18 and older to determine whether personal financial fitness is changing over time. A recent sample of 1000 adults showed 410 indicating that their financial security was more than fair. Just a year prior, a sample of 900 adults showed 315 indicating that their financial security was more than fair. Conduct the hypothesis test and compute the p-value. Round your answer to four decimal places. What is the 95% confidence interval estimate of the difference between the two population proportions? Round your answers to four decimal places.
Answer:
hey, how you're day going
Step-by-step explanation:
.................
The critical value of F for an upper tail test at a 0.05 significance level when there is a sample size of 21 for the sample with the smaller variance and there is a sample size of 9 for the sample with the larger sample variance is _____. a. 2.94 b. 2.45 c. 2.10 d. 2.37
Answer:
2.45
Step-by-step explanation:
Given that :
α = 0.05
Larger sample variance= numerator, sample size = 9
Smaller sample variance = denominator, sample size = 21
Hence,
DFnumerator = n - 1 = 9 - 1 = 8
DFdenominator = n - 1 = 21 - 1 = 20
Critical value for upper tail test using the F distribution table at α = 0.05 ; DFnumerator on horizontal ; Df denominator as vertical ;
F critical = 2.447
F critical = 2.45
If £15=$20 and $5=390 find the number of pounds that can be exchanged
200
Mark as braianlist
15 multiple by 5 equal 75 -390 equal 315 -15equal 200
Solve each system by graphing.
Answer:
it is 2 te he
Step-by-step explanation:
ONCE THE 5 6 = 7 10 .. ?% =1 x 7 =2 te he
A math class has a total of 31 students. The number of females is seven less than the number of meals. How many miles and how many females are in the class?
Answer:
Male-19&Female-13
Step-by-step explanation:
See the image for solution
Hope it helps
Have a great day
Convert 2 1/3 into improper fraction: *
7/3
O 7/6
O 6/3
O 3/6
Answer:
7/3 is the answer
Step-by-step explanation:
Find the area bounded by the curves x = 2y2 and x = 1 - y. Your work must include an integral in one variable.
Please help!!
Answer:
Hello,
in order to simplify, i have taken the inverses functions
Step-by-step explanation:
[tex]\int\limits^\frac{1}{2} _{-1} {(-2x^2-x+1)} \, dx \\\\=[\frac{-2x^3}{3} -\frac{x^2}{2} +x]^\frac{1}{2} _{-1}\\\\\\=\dfrac{-2-3+12}{24} -\dfrac{-5}{6} \\\\\boxed{=\dfrac{9}{8} =1.25}\\[/tex]
What is 3 times 10^9
Answer:
3 times 10 ^ 9
Step-by-step explanation:
3 × 10 ^ 9 = 3000000000
7. 20x + 10 = 110
a. X= 1
b. X= 5
c. x= 12
Answer:
b x=5
Step-by-step explanation:
20x+10=110
20x+10-10=110-10
20x/20=100/20
x=5
Answer:
x=5
Step-by-step explanation:
20x + 10 = 110
Subtract 10 from each side
20x +10-10 = 110-10
20x = 100
divide by 20
20x/20 =100/20
x= 5
(WILL GIVE YOU 30 POINTS!!!)
The graph shows the functions f(x), p(x), and g(x):
Graph of function g of x is y is equal to 3 multiplied by 1.2 to the power of x. The straight line f of x joins ordered pairs minus 3, minus 3 and 4, 4 and is extended on both sides. The straight line p of x joins the ordered pairs minus 6, 1 and minus 3, minus 3 and is extended on both sides.
Part A: What is the solution to the pair of equations represented by p(x) and f(x)? (3 points)
Part B: Write any two solutions for f(x). (3 points)
Part C: What is the solution to the equation p(x) = g(x)? Justify your answer. (4 points)
Answer:
(a) No solution
(b)
[tex](x_1,y_1) =(-3,-3)\\(x_2,y_2) =(4,4)[/tex]
(c) [tex](-6,1)[/tex]
Step-by-step explanation:
Given
See attachment for graph
Solving (a): Solution to p(x) and f(x)
Curve p(x) and line f(x) do not intersect.
So, there is no solution to the pair of p(x) and f(x)
Solving (b): Two solutions to f(x)
This means that we select any two point on straight line f(x)
From the line of f(x), we have:
[tex](x_1,y_1) =(-3,-3)\\(x_2,y_2) =(4,4)[/tex]
Solving (c): Solution to p(x) = g(x)
Here, we write out the point of intersection of p(x) and g(x)
From the graph, the point of intersection is: [tex](-6,1)[/tex]
helppp outt plss....
============================================================
Explanation:
For any cyclic quadrilateral (aka inscribed quadrilateral), the opposite angles are always supplementary.
One pair of such angles is A and C
A+C = 180
x+y = 180 is one equation to form
The other pair of supplementary angles is B and D
B+D = 180
y-45+2x+15 = 180
2x+y-30 = 180
2x+y = 180+30
2x+y = 210 is the other equation to form
--------------
So the system of equations we have is
[tex]\begin{cases}x+y = 180\\2x+y = 210\end{cases}[/tex]
Both equations involve 'y', with the same coefficient, so we can subtract straight down to eliminate this variable.
The x terms subtract to x-2x = -xThe y terms subtract to y-y = 0y = 0, so the y terms go awayThe right hand sides subtract to 180-210 = -30We end up with -x = -30 which solves to x = 30
--------------
Once we know x, we can determine y by plugging it into any equation involving x,y and solving for y
Let's say we picked on the first equation
x+y = 180
30+y = 180
y = 180-30
y = 150
Or we could pick on the second equation
2x+y = 210
2(30) + y = 210
60+y = 210
y = 210-60
y = 150
Only one equation is needed. However, doing both like this shows that we get the same y value, and it helps confirm the answers.