[tex] \large \tt{{❃ \: S \: O \: L \: U \: T \: I \: O \: N : }}[/tex]
A rhombus is a parallelogram in which all sides are equal i.e AB = BC = CD = CA Let ∠ A be x. In the ∆ ABC , AB = AC which means they are isosceles triangle and we know the opposite angles of isosceles triangle are equal i.e ∠ A = ∠ C = x. The sum of angles of a triangle is always 180°. Now , Find out the value of x :[tex] \large{ \tt{❁ \:x + x + 98 = 180 \degree \: [ Sum\: of \: angle \: of \: a \: triangle ]}}[/tex]
[tex] \large{ \tt{⟶2x + 98 \degree= 180 \degree}}[/tex]
[tex] \large{ \tt{⟶ \: 2x = 180 \degree - 98 \degree}}[/tex]
[tex] \large{ \tt{⟶ \: 2x = 82 \degree}}[/tex]
[tex] \large{ \tt{ ⟶x = \frac{82 \degree}{2} }}[/tex]
[tex] \large{ \tt{⟶ \: x = 41 \degree}}[/tex]
The value of x is 41°. Now , Find the measure of ∠ 1 :[tex] \large{ \tt{ ↔\angle \: 1 = x \degree = \boxed{41 \degree}}}[/tex] [ Being alternate angles ]
Hence , Our final answer is 41° .- Alternate angles are the non-adjacent interiors pair of angles lying to the opposite side of a transversal when it intersects two straight line segments. Alternate angles form ' Z ' shape.
Hope I helped! Let me know if you have any questions regarding my answer. :)can someone answer this
Answer:sadwer
Step-by-step explanation:
Find questions attached.
Show workings.
Answer:
Solution given:
7.<OYM=15°base angle of isosceles triangle
<OYL=50°base angle of isosceles triangle.
<OYL=<OYM+<MYL
50°=15°+<MYL
<MYL=50°-15°
<MYL=35°
again;
<MOL=35*2=70°central angle is double of a inscribed angle.
18.
Solution given:
<PQR+<PSR=180°sum of opposite angle of a cyclic quadrilateral is supplementary
<PQS+42°+78°=180°
<PQS=180°-120°=60°
<PQS=60°
<SPR=42°inscribed angle on a same arc is equal
:.<QPS=18°+42°=60°
<QSR=18°inscribed angle on a same arc is equal
again.
<PSR=78°
<QSR+<PSQ=78°
18°+<PSQ=78°
<PSQ=78°-18°
<PSQ=60°
In ∆ PQS
<PSQ=60°
<QPS=60°
<PQS=60°
In triangle ∆PQS all the angles are equal.
so it is a equilateral triangle.Will give brainiest
∆ABC and ∆PQR are similar. ∆ABC is dilated by a scale factor of 1.25 and rotated 45° counterclockwise about point B to form ∆PQR. The side lengths of ∆ABC are , 5 units; , 4.2 units; and , 4 units. Match each side of ∆PQR to its length.
see file attached
Answer:
QR=5.25 units
PR=5 units
PQ=6.25 units
what is the square root of 25
the answer would be 5 because 5*5 or 5 squared (5^2) is equal to 25, hope this helps!
Solve the system of equations using the substitution method.
y = 5x
7x + 2y = -17
(x, y) = ( , )
PLSSS HELP
Answer:
1. = 5 10 15 20 25
2. 2 4 6 8 10 12 14
X, y =10
I need help with this I don't understand
Answer:
Sin ? = 4/7
? = arcSin (4/7)
? = 35° (rounded to the nearest degree)
So the answer is 35°
Answered by GAUTHMATH
Jeanette wants to raise $3,200 in a marathon fundraiser. Her sponsers will donate
$35 for each (whole) kilometer she runs this summer.
The minimum amount Jeanette will have to run to reach her goal of $3, 200 is
kilometers.
Total amount she wants to raise = $3200
Amount she'll get for each kilometer = $35
So, number of kilometers she need to run
= Total amount she wants to raise/Amount she'll get for each kilometer
= $3200/$35
= 91.42....
Since her sponser is will donate only for whole kilometers she'll have to run 92 km.
In the xv-plane, the line determined by the
points (2,k) and (k, 32) passes through the origin.
Which of the following could be the value of k ?
Answer:
8
Step-by-step explanation:
If the diagonal line passes through the origin, that means it is proportional. That means that for every point on the line y/x is constantly the same value. So we have k/2=32/k.
Cross multiply: k^2=64
Square root both sides: k=8
Can someone help me with this math homework please!
Answer:
The answers are options A and C.
They are (-2,0) and (0,0).
Step-by-step explanation:
x-intercept
(-2,0) and (0,0)
Which expression is equivalent to the given expression?
Answer:C
Step-by-step explanation:
a^0=1 so youre left with 6ab/b8
then,
6a•b^(1-8)
6a•b^-7
therefore, 6a/b^7 is the answer
Find the value of x. Write your answer in simplest form. WILL MAKE BRAINLIEST
============================================
Explanation:
Since we have an isosceles right triangle, the the length of the hypotenuse (let's call it y) is equal to sqrt(2) times the leg length x.
In other words, [tex]y = x*\sqrt{2}[/tex]
If we replaced y with 3*sqrt(2), then we could say,
[tex]y = x*\sqrt{2}\\\\3\sqrt{2} = x*\sqrt{2}[/tex]
in which we can see that x = 3 must be the case. Or you could divide both sides of that last equation by sqrt(2) to find x = 3.
-------------------------
Another method:
We'll use the pythagorean theorem
[tex]a^2+b^2 = c^2\\\\x^2+x^2 = \left(3\sqrt{2}\right)^2\\\\2x^2 = 3^2*\left(\sqrt{2}\right)^2\\\\2x^2 = 9*2\\\\2x^2 = 18\\\\x^2 = 18/2\\\\x^2 = 9\\\\x = \sqrt{9}\\\\x = 3\\\\[/tex]
We get the same answer as before.
In a recent storm, an 18-foot utility pole broke and fell leaving a 5-foot tall portion upright. How far is the top of the pole from the base of the pole?
Answer: [tex]12\ ft[/tex]
Step-by-step explanation:
Given
Total height of utility pole is 18 ft
After breakage, only 5 foot tall portion is standing
The fallen part is [tex]18-5=13\ ft[/tex] in length
From the figure, apply the Pythagoras theorem
[tex]\Rightarrow 13^2=x^2+5^2\\\Rightarrow x^2=169-25\\\Rightarrow x=\sqrt{169-25}\\\Rightarrow x=\sqrt{144}\\\Rightarrow x=12\ ft[/tex]
Thus, the fallen part is [tex]12\ ft[/tex] away from the base of the pole.
Given the following equation where A = Area of a rectangle and w = width of the rectangle, what value of 'w' would maximize the area?
A = LW
P = 2L+2W
P = 100
w should be 625 units
w should be 25 units
w should be 0 units
w should be 50 units
Answer:
the second option : w should be 25 units
Step-by-step explanation:
the area of the rectangle is length×width = L×W
the perimeter of a rectangle = 2L + 2W
now, we know that the perimeter is 100 units.
and we have to find the best length of W, that will then define L (to keep the 100 units of perimeter) and maximizes the area of the rectangle.
in other words, what is the maximum area of a rectangle with perimeter of 100 (and what are the corresponding side lengths)?
now, w = 625 is impossible. that side alone would be bigger than the whole perimeter.
W = 0 would render the whole rectangle to a flat line with L = 50 because of
100 = 2L + 2W = 2L + 0 = 2L
L = 50
and A = L×W = 50×0 = 0
an area of 0 is for sure not the largest possible area.
w = 50 would cause L = 0
100 = 2L + 2W = 2L + 2×50 = 2L + 100
0 = 2L
L = 0
and with L = 0 the same thing happens as with W = 0 : a flat line with 0 area.
so, the only remaining useful answer is W = 25
100 = 2L + 2W = 2L + 2×25 = 2L + 50
50 = 2L
L = 25
A = L×W = 25×25 = 625 units²
and indeed, the maximum area for a given perimeter is achieved by arranging the sides to create a square.
Two factory plants are making TV panels. Yesterday, Plant A produced 8000 panels. Four percent of the panels from Plant A and 1% of the panels from Plant B were defective. How many panels did Plant B produce, if the overall percentage of defective panels from the two plants was 2%?
Answer:
The answer is "16,000"
Step-by-step explanation:
In this question the amounts of panels created by B the x.
[tex]\therefore[/tex]
Calculating the amounts of defective panels from B:
[tex]\to \frac{1}{100} \times x = 0.01x[/tex]
Calculating the amounts of defective panels from A:
[tex]\to \frac{4}{100} \times 8000 = 320[/tex]
Calculating the total defective panels are :
[tex]\to 320+ 0.01x[/tex]
Calculating the total panels manufactured:
[tex]\to 8000 + x[/tex]
when the overall percentage of the defective panels is [tex]2\%[/tex]
[tex]\to \frac{(320 + 0.01x)}{(8000 + x)} = 0.02\\\\\to (320 + 0.01x) = 0.02 (8000 + x)\\\\\to 320 + 0.01x = 160 + 0.02x\\\\\to 320 -160 = -0.01x + 0.02x\\\to 160 = 0.01x\\\\\to x=\frac{160}{0.01}\\\\\to x=16,000\\\\[/tex]
The probability that Sara wins a raffle is given by the expression n/n+3
Write down an expression, in the form of a combined single fraction, for the probability that Sara does not win.
Answer:
3/(n + 3)
Step-by-step explanation:
The given probability that Sara wins a raffle draw, P = n/(n + 3)
Given that the sum of all probabilities is 1, we get
The probability that Sara does not win, Q = 1 - P
Therefore;
Q = 1 - n/(n + 3) = (n + 3) - n/((n + 3) = 3/(n + 3)
The probability that Sara does not win, Q = 3/(n + 3)
what is the solution to this equation?
3x+x-13+4-6x=12
A. x= -21/2
B. x= 21/2
C. x= 3/2
D. x= -3/2
Answer:
A.
Step-by-step explanation:
3x + x - 13 + 4 - 6x = 12
we try to combine the elements with the same power of x (including the ones without any x) :
3x + x - 6x
-13 + 4
so, we get
-2x - 9 = 12
-2x = 21
x = -21/2
Answer:
A
Step-by-step explanation:
group the like terms
3x+x-6x-13+4=12
-2x=12+9
divide both sides by -2
-2x/-2=21/-2
x= -21/2
hope it helps
American airlines requires that total outside dimensions (length+width+height) of a checked bag not exceed 62 inches.Suppose you want to check a bag whose height is same as its width.What is the biggest volumn bag of this shape that you can check on an american flight
Answer:
The maximum volume is 35316.4 in^3.
Step-by-step explanation:
Length + width + height is less than equal to 62 inches
Height = width = W
Let the length is L .
[tex]L + W + W = 62 \\\\L= 62 - 2 W\\\\Volume, V = L W H\\\\V = (62 - 2 W)\times W \times W\\\\V = 62 W^2 - 2 W^3\\\\\frac{dV}{dW}=124 W - 6 W^2\\\\So, \frac{dV}{dW} =0\\\\124 = 6 W\\\\W = 20.67 inches[/tex]
So, the maximum volume is
[tex]V =124\times 20.67\times 20.67 - 2 \times 20.67^3\\\\V =52978.86 - 17662.46 = 35316.4 inch^3[/tex]
Simplify this expression.
Can anyone help pls
Answer:
Step-by-step explanation:
A boy on top of a building observe that the angle of depression of a goat in horizontal ground is 47.if the goat is 23m away from the foot of the building,how high is the building,correct to the nearest meter? (ignore the height of the boy)
Answer:
Step-by-step explanation:
tan 47° = opposite side /adjacent side
=>1.072 = AB/BC
=>1.072 × BC = AB(height of the building)
=>1.072 × 23 = h ( As assumed height of building is h )
h = 24.656
= 25 metres ( nearest metre )
There is a bag with 50 popsicles inside. 5 are red, 15 are orange, 12 are blue, 8 are
yellow and 10 are purple. If you were to
grab one popsicle from the bag, what is
the probability that it is red or not orange?
P(red or not orange)
differentiate with product rule
Answer:
[tex]{ \boxed{ \bf{ \frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx} }}}[/tex]
u = ( x + 1 )
v = ( 2x + 5 )²
[tex]{ \tt{ \frac{dy}{dx} = {(2x + 5) {}^{4} .(1) + (x + 1).(2)(2x + 5) {}^{3} } }} \\ = { \tt{ {(2x + 5)}^{3} ((2x + 5) +(2x + 2) }} \\ = { \tt{ \frac{dy}{dx} = {(2x + 5)}^{3}(4x + 7) }}[/tex]
Help Now!!!!
The Base Of A triangle prism
Answer:
Volume=Area × height
=35×7
volume = {245} m³
OAmalOHopeO
Answer:
Since the area of the triangle(base) is known we now multiply it to the height so we can get the volume.
7 x 35 = 245 m3 is your answer
You can picture it too:
(sorry my drawing is bad with the marker)
if we put a marble in 10 ml of water how can we find its volume
please answer
i will mark brainliest
Answer: See below
Step-by-step explanation:
This relates to the usage of water displacement.
Have the 10 ml of water ready in a measuring flask (or any container that has a scale)Put the marble into the waterObserve how much did the water riseSubtract the current water level by the original 10 mlThe final answer would be the volume.------------------------------------------------------------------------
EXTRA (Only for advanced purposes, if you do not understand, it is totally fine)
Refer to the attachment below to finish the question.
Assuming the water levels are integer,
The original water level is 13.33 mlAfter the rock is put in, the water level is raised to 30 mlThen, we do the fourth step which is subtraction
30 - 13.33 = 16.66 mlHope this helps!! :)
Please let me know if you have any quesitons
Show that 4^(x+2)+4^(x+1)+4^x is divisible by 7 for all positive integers of x.
Answer:
Below.
Step-by-step explanation:
4^(x+2)+4^(x+1)+4^x
= 4^x*4^2 + 4^x*4 + 4^4
= 4^x(16 + 4 + 1)
= 21*4^x.
As 21 is divisible by 7, 21*4^x is also divisible by 7 for all positive integers of x.
Thus the original expression must be also divisible by 7 for all positive integers of x.
Graph the function f(x) = - squared x + 2
One of the ways to graph this is to use plug in a few x-values and get an idea of the shape. Since the x values keep getting squared, there is an exponential increase on either side of the y-axis. You can see this by plugging in a few values:
When
x=0,f(x)=0
x=1,f(x)=1^2=1
x=2,f(x)=2^2=4
x=3,f(x)=3^2=9
x=4,f(x)=4^2=16
The same holds true for negative x-values to the left of the y-axis since a negative value squared is positive. For example,
x=−1,f(x)=(−1)2=1*−1=1
x=2,f(x)=(−2)2=−2*−2=4
The graph of f(x)=x^2 is called a "Parabola." It looks like this:
find the value of 2/5 - 3
[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]
[tex]\sf{\dfrac{2}{5}-3 }[/tex] [tex]\sf{\dfrac{2-10}{5} }[/tex] [tex]\sf{\dfrac{-8}{5} }[/tex][tex]\sf{ }[/tex]
Find the surface area of the solid given the net
A 12oz box of cereal costs $3.50. An 18oz box of cereal costs $5.40 Set up eqautions to determine which is the better buy?
Answer:
12 oz
Step-by-step explanation:
3.50/12 = $.29 5.40/18 =$ .30
Subtract the second equation from the first.
Answer:
2y = 8
Step-by-step explanation:
4x+3y = 17
- ( 4x+y = 9)
----------------------
Distribute the minus sign
4x+3y = 17
- 4x -y =- 9
----------------------
0x +2y = 8
Answer:
2y = 8
Step-by-step explanation:
4x+3y=17
-4x-y=9
_______
0+2y=8
2y=8
Ibrahim likes to run a loop around the park near his house that is ⅞ mile long. There is a water fountain ½ way around the loop. Ibrahim stopped to get a drink of water at the water fountain. How far did Ibrahim run?
Answer:
7/16 mile
Step-by-step explanation:
Distance of the loop = 7/8 mile
Distance of Water fountain = 1/2 of the Distance of the loop
= 1/2 of 7/8
Ibrahim stopped to get a drink of water at the water fountain. How far did Ibrahim run?
= 1/2 of 7/8
= 1/2 * 7/8
= (1 * 7) / (2 * 8)
= 7/16
Ibrahim ran 7/16 mile to drink water at the water fountain around the loop