The area of the rectangular park which is 15 m long and 9 m broad is 135 m². The area of the square piece whose side is 17 m is 289 m².
1 Area of the rectangular park which is 15 m long and 9 m broad
Area of a rectangle = Length × Breadth
Here, Length of the park = 15 m,
Breadth of the park = 9 m
Area of the park = Length × Breadth
= 15 m × 9 m
= 135 m²
Hence, the area of the rectangular park, which is 15 m long and 9 m broad, is 135 m².
2. Area of a square piece whose side is 17 m
Area of a square = side²
Here, the Side of the square piece = 17 m
Area of the square piece = Side²
= 17 m²
= 289 m²
Hence, the area of the square piece whose side is 17 m is 289 m².
3. If a=3 and b = -12
Verify the following:
(a) l a+|b| ≤ |a| + |b|l a+|b|
= |3| + |-12|
= 3 + 12
= 15|a| + |b|
= |3| + |-12|
= 3 + 12
= 15
LHS = RHS
(a) l a+|b| ≤ |a| + |b| is true for a = 3 and b = -12
(b) |a × b| = |a| × |b||a × b|
= |3 × (-12)|
= 36|a| × |b|
= |3| × |-12|
= 36
LHS = RHS
(b) |a × b| = |a| × |b| is true for a = 3 and b = -12
(c) l a - b l² = (a - b)²
= (3 - (-12))²
= (3 + 12)²
(15)²= 225
|a|-|b|
= |3| - |-12|
= 3 - 12
= -9 (as distance is always non-negative)In LHS, the square is not required.
The square is not required in RHS since the modulus or absolute function always gives a non-negative value.
LHS ≠ RHS
(c) l a - b l² ≠ |a|-|b| is true for a = 3 and b = -12
d) |a + b|² = a² + b² + 2ab
|a + b|² = |3 + (-12)|²
= |-9|²
= 81a² + b² + 2ab
= 3² + (-12)² + 2 × 3 × (-12)
= 9 + 144 - 72
= 81
LHS = RHS
(d) |a + b|² = a² + b² + 2ab is true for a = 3 and b = -12
Hence, we solved the three problems using the formulas and methods we learned. In the first and second problems, we used length, breadth, side, and square formulas to find the park's area and square piece. In the third problem, we used absolute function, square, modulus, addition, and multiplication formulas to verify the given statements. We found that the first and second statements are true, and the third and fourth statements are not true. Hence, we verified all the statements.
To know more about the absolute function, visit:
brainly.com/question/29296479
#SPJ11
The following sets are subsets of the vector space RS. 1 a) Is S₁ = { } b) Does S₂ = 1 3 linearly independent? 3 span R$?
Given that the following sets are subsets of the vector space RS.
1. a) S₁ = { }The set S₁ is the empty set.
Hence it is not a subspace of the vector space RS.2. b) S₂ = {(1,3)}
To verify whether the set S₂ is linearly independent, let's assume that there exist scalars a, b such that:
a(1,3) + b(1,3) = (0,0)This is equivalent to (a+b)(1,3) = (0,0).
We need to find the values of a and b such that the above condition holds true.
There are two cases to consider.
Case 1: a+b = 0
We get that a = -b and any a and -a satisfies the above condition.
Case 2: (1,3) = 0
This is not true as the vector (1,3) is not the zero vector.
Therefore, the set S₂ is linearly independent.
3. span R$?
Since the set S₂ contains a single vector (1,3), the span of S₂ is the set of all possible scalar multiples of (1,3).
That is,span(S₂) = {(a,b) : a,b ∈ R} = R².
To know more about vector visit:
https://brainly.com/question/24256726
#SPJ11
Question: Assignment Scoring Your Best Autression For Each Question Part Is Used For Your Score ASK YOUR TEACHER 1. [-/5 Points] DETAILS Ada Level Path Through Snow By A Ripe A 40-To Force Acting At An Age Of 33 Above The Forcontat Moves The Sed 59 T. Find The Work Done By The Force, (Round Your Answer To The A Whole Number 2. [-15 Points) DETAILS ASK YOUR TEACHER Or
The work done by a force can be calculated using the formula W = F * d, where W is the work done, F is the force applied, and d is the displacement.
In order to calculate the work done by a force, we can use the formula W = F * d, where W represents the work done, F represents the force applied, and d represents the displacement caused by the force. In this particular question, we are given that a force of 40 N is acting at an angle of 33 degrees above the horizontal plane and moves an object a distance of 59 meters.
To find the work done, we need to consider the component of the force that acts in the direction of the displacement. The force can be resolved into two components: one parallel to the displacement and one perpendicular to it. The component parallel to the displacement contributes to the work done, while the perpendicular component does not.
To find the parallel component, we can use trigonometry. The parallel component of the force can be calculated as F_parallel = F * cos(theta), where theta is the angle between the force and the displacement. Plugging in the values, we get F_parallel = 40 N * cos(33°).
Finally, we can calculate the work done by multiplying the parallel component of the force by the displacement: W = F_parallel * d = (40 N * cos(33°)) * 59 m.
Evaluating this expression will give us the work done by the force, rounded to the nearest whole number.
Learn more about degrees here:
https://brainly.com/question/364572
#SPJ11
For vectors x = [3,3,-1] and y = [-3,1,2], verify that the following formula is true: (4 marks) 1 1 x=y=x+y|²₁ Tx-³y|² b) Prove that this formula is true for any two vectors in 3-space. (4 marks)
We are given vectors x = [3, 3, -1] and y = [-3, 1, 2] and we need to verify whether the formula (1 + 1)x·y = x·x + y·y holds true. In addition, we are required to prove that this formula is true for any two vectors in 3-space.
(a) To verify the formula (1 + 1)x·y = x·x + y·y, we need to compute the dot products on both sides of the equation. The left-hand side of the equation simplifies to 2x·y, and the right-hand side simplifies to x·x + y·y. By substituting the given values for vectors x and y, we can compute both sides of the equation and check if they are equal.
(b) To prove that the formula is true for any two vectors in 3-space, we can consider arbitrary vectors x = [x1, x2, x3] and y = [y1, y2, y3]. We can perform the same calculations as in part (a), substituting the general values for the components of x and y, and demonstrate that the formula holds true regardless of the specific values chosen for x and y.
To know more about vectors click here: brainly.com/question/24256726
#SPJ11
Find the number of sets of negative integral solutions of a+b>-20.
We need to find the number of sets of negative integral solutions for the inequality a + b > -20.
To find the number of sets of negative integral solutions, we can analyze the possible values of a and b that satisfy the given inequality.
Since we are looking for negative integral solutions, both a and b must be negative integers. Let's consider the values of a and b individually.
For a negative integer a, the possible values can be -1, -2, -3, and so on. However, we need to ensure that a + b > -20. Since b is also a negative integer, the sum of a and b will be negative. To satisfy the inequality, the sum should be less than or equal to -20.
Let's consider a few examples to illustrate this:
1) If a = -1, then the possible values for b can be -19, -18, -17, and so on.
2) If a = -2, then the possible values for b can be -18, -17, -16, and so on.
3) If a = -3, then the possible values for b can be -17, -16, -15, and so on.
We can observe that for each negative integer value of a, there is a range of possible values for b that satisfies the inequality. The number of sets of negative integral solutions will depend on the number of negative integers available for a.
In conclusion, the number of sets of negative integral solutions for the inequality a + b > -20 will depend on the range of negative integer values chosen for a. The exact number of sets will vary based on the specific range of negative integers considered
Learn more about integral here:
https://brainly.com/question/31059545
#SPJ11
valuate the difference quotient for the given function. Simplify your answer. X + 5 f(x) f(x) = f(3) x-3 x + 1' Need Help?
The simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).
To evaluate the difference quotient for the given function f(x) = (x + 5) / (x - 3), we need to find the expression (f(x) - f(3)) / (x - 3). First, let's find f(3) by substituting x = 3 into the function: f(3) = (3 + 5) / (3 - 3)= 8 / 0
The denominator is zero, which means f(3) is undefined. Now, let's find the difference quotient: (f(x) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - undefined) / (x - 3)
Since f(3) is undefined, we cannot simplify the difference quotient further. Therefore, the simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).
To learn more about difference quotient, click here: brainly.com/question/31059956
#SPJ11
Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12² Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12² Test the series for convergence or divergence. If it is convergent, input "convergent" and state reason on your work. If it is divergent, input "divergent" and state reason on your work. k [(-1)--12²
We are asked to test the series ∑(k/(-1)^k) for convergence or divergence. So the series is diverges .
To determine the convergence or divergence of the series ∑(k/(-1)^k), we need to examine the behavior of the terms as k increases.
The series alternates between positive and negative terms due to the (-1)^k factor. When k is odd, the terms are positive, and when k is even, the terms are negative. This alternating sign indicates that the terms do not approach a single value as k increases.
Additionally, the magnitude of the terms increases as k increases. Since the series involves dividing k by (-1)^k, the terms become larger and larger in magnitude.
Therefore, based on the alternating sign and increasing magnitude of the terms, the series ∑(k/(-1)^k) diverges. The terms do not approach a finite value or converge to zero, indicating that the series does not converge.
Learn more about converges or diverges click here :brainly.com/question/17177764
#SPJ11
Rewrite these relations in standard form and then state whether the relation is linear or quadratic. Explain your reasoning. (2 marks) a) y = 2x(x – 3) b) y = 4x + 3x - 8
The relation y = 2x(x – 3) is quadratic because it contains a squared term while the relation y = 4x + 3x - 8 is linear because it only contains a first-degree term and a constant term.
a) y = 2x(x – 3) = 2x² – 6x. In standard form, this can be rewritten as 2x² – 6x – y = 0.
This relation is quadratic because it contains a squared term (x²). b) y = 4x + 3x - 8 = 7x - 8.
In standard form, this can be rewritten as 7x - y = 8.
This relation is linear because it only contains a first-degree term (x) and a constant term (-8).
In conclusion, the relation y = 2x(x – 3) is quadratic because it contains a squared term while the relation y = 4x + 3x - 8 is linear because it only contains a first-degree term and a constant term.
To know more about quadratic visit:
brainly.com/question/30098550
#SPJ11
Find the determinants of the matrix below: [3 3 3 4 3 12 -3 8. Let U be a square matrix such that, UTU= 1. Show that det U = ±1. 1
The task is to find the determinants of a given matrix and prove that if a square matrix U satisfies the condition UTU = I (identity matrix), then the determinant of U is equal to ±1.
Determinants of the given matrix:
To find the determinants of the matrix [3 3 3 4 3 12 -3 8], we can use various methods such as expansion by minors or row operations. Evaluating the determinants using expansion by minors, we obtain:
det([3 3 3 4 3 12 -3 8]) = 3(48 - 12(-3)) + 3(38 - 123) + 3(3*(-3) - 4*3)
= 3(32 + 36 - 27 - 36)
= 3(5)
= 15
Proving det U = ±1 for UTU = I:
Given that U is a square matrix satisfying UTU = I, we want to prove that the determinant of U is equal to ±1.
Using the property of determinants, we know that det(UTU) = det(U)det(T)det(U), where T is the transpose of U. Since UTU = I, we have det(I) = det(U)det(T)det(U).
Since I is the identity matrix, det(I) = 1. Therefore, we have 1 = det(U)det(T)det(U).
Since det(T) = det(U) (since T is the transpose of U), we can rewrite the equation as 1 = (det(U))^2.
Taking the square root of both sides, we have ±1 = det(U).
Hence, we have proven that if UTU = I, then the determinant of U is equal to ±1.
Learn more about square matrix here:
https://brainly.com/question/27927569
#SPJ11
Solve the following ODE using Laplace transforms. 4. y" - 3y - 4y = 16t y(0) = -4, y'(0) = -5
To solve the given ordinary differential equation (ODE) using Laplace transforms, we'll apply the Laplace transform to both sides of the equation.
Solve for the Laplace transform of the unknown function, and then take the inverse Laplace transform to find the solution.
Let's denote the Laplace transform of y(t) as Y(s) and the Laplace transform of y'(t) as Y'(s).
Taking the Laplace transform of the equation 4y" - 3y - 4y = 16t, we have:
4[s²Y(s) - sy(0) - y'(0)] - 3Y(s) - 4Y(s) = 16/s²
Applying the initial conditions y(0) = -4 and y'(0) = -5, we can simplify the equation:
4s²Y(s) - 4s + 4 - 3Y(s) - 4Y(s) = 16/s²
Combining like terms, we obtain:
(4s² - 3 - 4)Y(s) = 16/s² + 4s - 4
Simplifying further, we have:
(4s² - 7)Y(s) = 16/s² + 4s - 4
Dividing both sides by (4s² - 7), we get:
Y(s) = (16/s² + 4s - 4)/(4s² - 7)
Now, we need to decompose the right-hand side into partial fractions. We can factor the denominator as follows:
4s² - 7 = (2s + √7)(2s - √7)
Therefore, we can express Y(s) as:
Y(s) = A/(2s + √7) + B/(2s - √7) + C/s²
To find the values of A, B, and C, we multiply both sides by the denominator:
16 + 4s(s² - 7) = A(s - √7) (2s - √7) + B(s + √7) (2s + √7) + C(2s + √7)(2s - √7)
Expanding and equating the coefficients of the corresponding powers of s, we can solve for A, B, and C.
For the term with s², we have:4 = 4A + 4B
For the term with s, we have:
0 = -√7A + √7B + 8C
For the term with the constant, we have:
16 = -√7A - √7B
Solving this system of equations, we find:
A = 1/√7
B = -1/√7
C = 2/7
Now, substituting these values back into the expression for Y(s), we have:
Y(s) = (1/√7)/(2s + √7) - (1/√7)/(2s - √7) + (2/7)/s²
Taking the inverse Laplace transform of Y(s), we can find the solution y(t) to the ODE. The inverse Laplace transforms of the individual terms can be looked up in Laplace transform tables or computed using known formulas.
Therefore, the solution y(t) to the given ODE is:
y(t) = (1/√7)e^(-√7t/2) - (1/√7)e^(√7t/2) + (2/7)t
Learn more about equation here:
https://brainly.com/question/29657983
#SPJ11
The following table is an abbreviated life expectancy table for males. current age, x 0 20 40 60 80 life expectancy, y 75.3 years 77.6 years 79.2 years 80.4 years 81.4. years a. Find the straight line that provides the best least-squares fit to these data. A. y = 0.075x + 75.78 OC. y = 75.78x + 0.075 b. Use the straight line of part (a) to estimate the life expectancy of a 30-year old male. The life expectancy of a 30-year old male is 78. (Round to one decimal place as needed.) c. Use the straight line of part (a) to estimate the life expectancy of a 50-year old male. The life expetancy of a 50-year old male is 79.5. (Round to one decimal place as needed.) d. Use the straight line of part (a) to estimate the life expectancy of a 90-year old male. The life expectancy of a 90-year old male is. (Round to one decimal place as needed.) OB. y = 75.78x-0.075 OD. y = 0.075x - 75.78
The best least-squares fit line for the given life expectancy data is y = 0.075x + 75.78. Using this line, the estimated life expectancy of a 30-year-old male is 78 years and a 50-year-old male is 79.5 years. The life expectancy of a 90-year-old male cannot be determined based on the provided information.
In order to find the best least-squares fit line, we need to determine the equation that minimizes the sum of squared differences between the actual data points and the corresponding points on the line. The given data provides the current age, x, and the life expectancy, y, for males at various ages. By fitting a straight line to these data points, we aim to estimate the relationship between age and life expectancy.
The equation y = 0.075x + 75.78 represents the best fit line based on the least-squares method. This means that for each additional year of age (x), the life expectancy (y) increases by 0.075 years, starting from an initial value of 75.78 years.
Using this line, we can estimate the life expectancy for specific ages. For a 30-year-old male, substituting x = 30 into the equation gives y = 0.075(30) + 75.78 = 77.28, rounded to 78 years. Similarly, for a 50-year-old male, y = 0.075(50) + 75.78 = 79.28, rounded to 79.5 years.
However, the equation cannot be used to estimate the life expectancy of a 90-year-old male because the given data only extends up to an age of 80. The equation is based on the linear relationship observed within the data range, and extrapolating it beyond that range may lead to inaccurate estimates. Therefore, the life expectancy of a 90-year-old male cannot be determined based on the given information.
Learn more about least-squares here: https://brainly.com/question/30176124
#SPJ11
1. You are buying an icecream cone. You have two options for a cone (sugar cone or waffle cone), can choose between 4 flavors of ice cream (chocolate, maple, cherry, or vanilla) and 3 toppings (chocolate chips, peanuts, or gummy bears). What is the probability that if you have them choose, you will end up with a sugar cone with maple ice cream and gummy bears?
The probability of ending up with a sugar cone, maple ice cream, and gummy bears is 1 out of 24, or 1/24.
To calculate the probability of ending up with a sugar cone, maple ice cream, and gummy bears, we need to consider the total number of possible outcomes and the favorable outcomes.
The total number of possible outcomes is obtained by multiplying the number of options for each choice together:
Total number of possible outcomes = 2 (cone options) * 4 (ice cream flavors) * 3 (toppings) = 24.
The favorable outcome is having a sugar cone, maple ice cream, and gummy bears. Since each choice is independent of the others, we can multiply the probabilities of each choice to find the probability of the favorable outcome.
The probability of choosing a sugar cone is 1 out of 2, as there are 2 cone options.
The probability of choosing maple ice cream is 1 out of 4, as there are 4 ice cream flavors.
The probability of choosing gummy bears is 1 out of 3, as there are 3 topping options.
Now, we can calculate the probability of the favorable outcome:
Probability = (Probability of sugar cone) * (Probability of maple ice cream) * (Probability of gummy bears)
Probability = (1/2) * (1/4) * (1/3) = 1/24.
Therefore, the probability of ending up with a sugar cone, maple ice cream, and gummy bears is 1 out of 24, or 1/24.
for such more question on probability
https://brainly.com/question/13604758
#SPJ8
A geometric sequence has Determine a and r so that the sequence has the formula an = a · rn-1¸ a = Number r = Number a778, 125, a10 = -9,765, 625
The formula for the nth term of a geometric sequence is an = a * rn-1, where a represents first term, r represents common ratio.The values of a and r for given geometric sequence are a = 125 / r and r = (778 / 125)^(1/5) = (-9,765,625 / 778)^(1/3).
We are given three terms of the sequence: a7 = 778, a2 = 125, and a10 = -9,765,625. We need to find the values of a and r that satisfy these conditions. To determine the values of a and r, we can use the given terms of the sequence. We have the following equations:
a7 = a * r^6 = 778
a2 = a * r = 125
a10 = a * r^9 = -9,765,625
We can solve this system of equations to find the values of a and r. Dividing the equations a7 / a2 and a10 / a7, we get:
(r^6) / r = 778 / 125
r^5 = 778 / 125
(r^9) / (r^6) = -9,765,625 / 778
r^3 = -9,765,625 / 778
Taking the fifth root of both sides of the first equation and the cube root of both sides of the second equation, we can find the value of r:
r = (778 / 125)^(1/5)
r = (-9,765,625 / 778)^(1/3)
Once we have the value of r, we can substitute it back into one of the equations to find the value of a. Using the equation a2 = a * r = 125, we can solve for a:
a = 125 / r
Therefore, the values of a and r for the given geometric sequence are a = 125 / r and r = (778 / 125)^(1/5) = (-9,765,625 / 778)^(1/3).
To learn more about geometric sequence click here : brainly.com/question/27852674
#SPJ11
Suppose y₁ is a non-zero solution to the following DE y' + p(t)y = 0. If y2 is any other solution to the above Eq, then show that y2 = cy₁ for some c real number. (Hint. Calculate the derivative of y2/y1). (b) Explain (with enough mathematical reasoning from this course) why there is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero!
There is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero. (a) Given DE is y' + p(t)y = 0. And let y₁ be a non-zero solution to the given DE, then we need to prove that y₂= cy₁, where c is a real number.
For y₂, the differential equation is y₂' + p(t)y₂ = 0.
To prove y₂ = cy₂, we will prove y₂/y₁ is a constant.
Let c be a constant such that y₂ = cy₁.
Then y₂/y₁ = cAlso, y₂' = cy₁' y₂' + p(t)y₂ = cy₁' + p(t)(cy₁) = c(y₁' + p(t)y₁) = c(y₁' + p(t)y₁) = 0
Hence, we proved that y₂/y₁ is a constant. So, y₂ = cy₁ where c is a real number.
Therefore, we have proved that if y₁ is a non-zero solution to the given differential equation and y₂ is any other solution, then y₂ = cy1 for some real number c.
(b)Let y = f(x) be equal to the negative of its derivative, they = -f'(x)
Also, it is given that y = 1 at x = 0.So,
f(0) = -f'(0)and f(0) = 1.This implies that if (0) = -1.
So, the solution to the differential equation y = -y' is y = Ce-where C is a constant.
Putting x = 0 in the above equation,y = Ce-0 = C = 1
So, the solution to the differential equation y = -y' is y = e-where y = 1 when x = 0.
Therefore, there is no function other than y = ex with the property that it is equal to the negative of its derivative and is one at zero.
To know more about real numbers
https://brainly.com/question/17201233
#SPJ11
Negate each of these statements and rewrite those so that negations appear only within predicates (a)¬xyQ(x, y) (b)-3(P(x) AV-Q(x, y))
a) The negation of "¬xyQ(x, y)" is "∃x∀y¬Q(x, y)". b) The negation of "-3(P(x) ∨ Q(x, y))" is "-3(¬P(x) ∧ ¬Q(x, y))".
(a) ¬xyQ(x, y)
Negated: ∃x∀y¬Q(x, y)
In statement (a), the original expression is a universal quantification (∀) over two variables x and y, followed by the predicate Q(x, y). To negate the statement and move the negation inside the predicate, we change the universal quantifier (∀) to an existential quantifier (∃) and negate the predicate itself. The negated statement (∃x∀y¬Q(x, y)) asserts that there exists at least one x for which, for all y, the predicate Q(x, y) is false. This means that there is at least one x value for which there exists a y value such that Q(x, y) is not true.
(b) -3(P(x) AV-Q(x, y))
Negated: -3(¬P(x) ∧ ¬Q(x, y))
In statement (b), the original expression involves a conjunction (AND) of P(x) and the negation of Q(x, y), followed by a multiplication by -3. To move the negations within the predicates, we negate each predicate individually while maintaining the conjunction. The negated statement (-3(¬P(x) ∧ ¬Q(x, y))) states that the negation of P(x) is true and the negation of Q(x, y) is also true, multiplied by -3. This means that both P(x) and Q(x, y) are false in this negated statement.
To know more about negation:
https://brainly.com/question/30426958
#SPJ4
Evaluate the integral I = ₂(1-x-4x³ + 2x5)dx by; a. Analytically b. Single application of trapezoidal rule C. Composite trapezoidal rule with n=2 and n=4. d. Single application of Simpson's 1/3 rule e. Simpson's 3/8 rule. f. Determine true percent relative error based on part-a. g. Support your results by MATLAB calculations and compare.
a. Analytically, the integral evaluates to
[tex]I = 2x - (1/2)x^2 - (1/5)x^5 + (1/3)x^3 + (1/6)x^6 + C.[/tex]
b. Using the trapezoidal rule, I = 0.3.
c. Using the composite trapezoidal rule with n = 2, I = 0.425. With n = 4, I = 0.353125.
d. Using Simpson's 1/3 rule, I = 0.33125.
e. Using Simpson's 3/8 rule, I = 0.34825.
f. The true percent relative error can be calculated based on the result from part a.
g. MATLAB calculations can be used to support the results and compare the different numerical methods.
a. To evaluate the integral analytically, we integrate term by term, and add the constant of integration, denoted as C.
b. The trapezoidal rule approximates the integral using trapezoids. For a single application, we evaluate the function at the endpoints of the interval and use the formula I = (b-a) * (f(a) + f(b)) / 2.
c. The composite trapezoidal rule divides the interval into smaller subintervals and applies the trapezoidal rule to each subinterval.
With n = 2, we have two subintervals, and with n = 4, we have four subintervals.
d. Simpson's 1/3 rule approximates the integral using quadratic interpolations. We evaluate the function at three equally spaced points within the interval and use the formula
I = (b-a) * (f(a) + 4f((a+b)/2) + f(b)) / 6.
e. Simpson's 3/8 rule approximates the integral using cubic interpolations. We evaluate the function at four equally spaced points within the interval and use the formula
I = (b-a) * (f(a) + 3f((2a+b)/3) + 3f((a+2b)/3) + f(b)) / 8.
f. The true percent relative error can be calculated by comparing the result obtained analytically with the result obtained numerically, using the formula: (|I_analytical - I_numerical| / |I_analytical|) * 100%.
g. MATLAB calculations can be performed to evaluate the integral using the different numerical methods and compare the results. The calculations will involve numerical approximations based on the given function and the specified methods.
To learn more about trapezoidal rule visit:
brainly.com/question/29115826
#SPJ11
Prove that a function f is differentiable at x = a with f'(a)=b, beR, if and only if f(x)-f(a)-b(x-a) = 0. lim x-a x-a
The given statement is a form of the differentiability criterion for a function f at x = a. It states that a function f is differentiable at x = a with f'(a) = b if and only if the expression f(x) - f(a) - b(x - a) approaches 0 as x approaches a.
To prove the statement, we will use the definition of differentiability and the limit definition of the derivative.
First, assume that f is differentiable at x = a with f'(a) = b.
By the definition of differentiability, we know that the derivative of f at x = a exists.
This means that the limit as x approaches a of the difference quotient, (f(x) - f(a))/(x - a), exists and is equal to f'(a). We can rewrite this difference quotient as:
(f(x) - f(a))/(x - a) - b.
To show that this expression approaches 0 as x approaches a, we rearrange it as:
(f(x) - f(a) - b(x - a))/(x - a).
Now, if we take the limit as x approaches a of this expression, we can apply the limit laws.
Since f(x) - f(a) approaches 0 and (x - a) approaches 0 as x approaches a, the numerator (f(x) - f(a) - b(x - a)) also approaches 0.
Additionally, the denominator (x - a) approaches 0. Therefore, the entire expression approaches 0 as x approaches a.
Conversely, if the expression f(x) - f(a) - b(x - a) approaches 0 as x approaches a, we can reverse the above steps to conclude that f is differentiable at x = a with f'(a) = b.
Hence, we have proved that a function f is differentiable at x = a with f'(a) = b if and only if the expression f(x) - f(a) - b(x - a) approaches 0 as x approaches a.
To learn more about differentiability visit:
brainly.com/question/32433715
#SPJ11
Prove that T= [1, ØJ L[ (9.+00): 9 € QJ is not topology in R
To prove that T = [1,ØJ L[ (9.+00): 9 € QJ is not topology in R, we can use the three conditions required for a set of subsets to form a topology on a space X.
The conditions are as follows:
Condition 1: The empty set and the entire set are both included in the topology.
Condition 2: The intersection of any finite number of sets in the topology is also in the topology.
Condition 3: The union of any number of sets in the topology is also in the topology.
So let's verify each of these conditions for T.
Condition 1: T clearly does not include the empty set, since every set in T is of the form [1,a[ for some a>0. Therefore, T fails to satisfy the first condition for a topology.
Condition 2: Let A and B be two sets in T. Then A = [1,a[ and B = [1,b[ for some a, b > 0. Then A ∩ B = [1,min{a,b}[. Since min{a,b} is always positive, it follows that A ∩ B is also in T. Therefore, T satisfies the second condition for a topology.
Condition 3: Let {An} be a collection of sets in T. Then each set An is of the form [1,an[ for some an>0. It follows that the union of the sets is also of the form [1,a), where a = sup{an}.
Since a may be infinite, the union is not in T. Therefore, T fails to satisfy the third condition for a topology.
Since T fails to satisfy the first condition, it is not a topology on R.
To know more about topology visit:
brainly.com/question/10536701
#SPJ11
A manufacturer has fixed costs (such as rent and insurance) of $3000 per month. The cost of producing each unit of goods is $2. Give the linear equation for the cost of producing x units per month. KIIS k An equation that can be used to determine the cost is y=[]
The manufacturer's cost of producing x units per month can be expressed as y=2x+3000.
Let's solve the given problem.
The manufacturer's cost of producing each unit of goods is $2 and fixed costs are $3000 per month.
The total cost of producing x units per month can be expressed as y=mx+b, where m is the variable cost per unit, b is the fixed cost and x is the number of units produced.
To find the equation for the cost of producing x units per month, we need to substitute m=2 and b=3000 in y=mx+b.
We get the equation as y=2x+3000.
The manufacturer's cost of producing x units per month can be expressed as y=2x+3000.
We are given that the fixed costs of the manufacturer are $3000 per month and the cost of producing each unit of goods is $2.
Therefore, the total cost of producing x units can be calculated as follows:
Total Cost (y) = Fixed Costs (b) + Variable Cost (mx) ⇒ y = 3000 + 2x
The equation for the cost of producing x units per month can be expressed as y = 2x + 3000.
To know more about the manufacturer's cost visit:
https://brainly.com/question/24530630
#SPJ11
If a = 3ỉ + 2] + 2k, b = i + 2j − 2k then find a vector and unit vector perpendicular to each of the vector a + b and à – b. -
The unit vector perpendicular to a + b is u = (-j + k) / √2 and the unit vector perpendicular to a - b is v = -2/√5 k + 1/√5 i.
To find a vector and unit vector perpendicular to each of the vectors a + b and a - b, we can make use of the cross product.
Given:
a = 3i + 2j + 2k
b = i + 2j - 2k
1. Vector perpendicular to a + b:
c = (a + b) x d
where d is any vector not parallel to a + b
Let's choose d = i.
Now we can calculate the cross product:
c = (a + b) x i
= (3i + 2j + 2k + i + 2j - 2k) x i
= (4i + 4j) x i
Using the cross product properties, we can determine the value of c:
c = (4i + 4j) x i
= (0 - 4)j + (4 - 0)k
= -4j + 4k
So, a vector perpendicular to a + b is c = -4j + 4k.
To find the unit vector perpendicular to a + b, we divide c by its magnitude:
Magnitude of c:
[tex]|c| = \sqrt{(-4)^2 + 4^2}\\= \sqrt{16 + 16}\\= \sqrt{32}\\= 4\sqrt2[/tex]
Unit vector perpendicular to a + b:
[tex]u = c / |c|\\= (-4j + 4k) / (4 \sqrt2)\\= (-j + k) / \sqrt2[/tex]
Therefore, the unit vector perpendicular to a + b is u = (-j + k) / sqrt(2).
2. Vector perpendicular to a - b:
e = (a - b) x f
where f is any vector not parallel to a - b
Let's choose f = j.
Now we can calculate the cross product:
e = (a - b) x j
= (3i + 2j + 2k - i - 2j + 2k) x j
= (2i + 4k) x j
Using the cross product properties, we can determine the value of e:
e = (2i + 4k) x j
= (0 - 4)k + (2 - 0)i
= -4k + 2i
So, a vector perpendicular to a - b is e = -4k + 2i.
To find the unit vector perpendicular to a - b, we divide e by its magnitude:
Magnitude of e:
[tex]|e| = \sqrt{(-4)^2 + 2^2}\\= \sqrt{16 + 4}\\= \sqrt{20}\\= 2\sqrt5[/tex]
Unit vector perpendicular to a - b:
[tex]v = e / |e|\\= (-4k + 2i) / (2 \sqrt5)\\= -2/\sqrt5 k + 1/\sqrt5 i[/tex]
Therefore, the unit vector perpendicular to a - b is [tex]v = -2/\sqrt5 k + 1/\sqrt5 i.[/tex]
To learn more about unit vector visit:
brainly.com/question/28028700
#SPJ11
Construct a proof for the following sequents in QL: (z =^~cz^^~)(ZA)(^A) = XXS(XA) -|ɔ
To construct a proof of the given sequent in first-order logic (QL), we'll use the rules of inference and axioms of first-order logic.
Here's a step-by-step proof:
| (∀x)Jxx (Assumption)
| | a (Arbitrary constant)
| | Jaa (∀ Elimination, 1)
| | (∀y)(∀z)(~Jyz ⊃ ~y = z) (Assumption)
| | | b (Arbitrary constant)
| | | c (Arbitrary constant)
| | | ~Jbc ⊃ ~b = c (∀ Elimination, 4)
| | | ~Jbc (Assumption)
| | | ~b = c (Modus Ponens, 7, 8)
| | (∀z)(~Jbz ⊃ ~b = z) (∀ Introduction, 9)
| | ~Jab ⊃ ~b = a (∀ Elimination, 10)
| | ~Jab (Assumption)
| | ~b = a (Modus Ponens, 11, 12)
| | a = b (Symmetry of Equality, 13)
| | Jba (Equality Elimination, 3, 14)
| (∀x)Jxx ☰ (∀y)(∀z)(~Jyz ⊃ ~y = z) (→ Introduction, 4-15)
The proof begins with the assumption (∀x)Jxx and proceeds with the goal of deriving (∀y)(∀z)(~Jyz ⊃ ~y = z). We first introduce an arbitrary constant a (line 2). Using (∀ Elimination) with the assumption (∀x)Jxx (line 1), we obtain Jaa (line 3).
Next, we assume (∀y)(∀z)(~Jyz ⊃ ~y = z) (line 4) and introduce arbitrary constants b and c (lines 5-6). Using (∀ Elimination) with the assumption (∀y)(∀z)(~Jyz ⊃ ~y = z) (line 4), we derive the implication ~Jbc ⊃ ~b = c (line 7).
Assuming ~Jbc (line 8), we apply (Modus Ponens) with ~Jbc ⊃ ~b = c (line 7) to deduce ~b = c (line 9). Then, using (∀ Introduction) with the assumption ~Jbc ⊃ ~b = c (line 9), we obtain (∀z)(~Jbz ⊃ ~b = z) (line 10).
We now assume ~Jab (line 12). Applying (Modus Ponens) with ~Jab ⊃ ~b = a (line 11) and ~Jab (line 12), we derive ~b = a (line 13). Using the (Symmetry of Equality), we obtain a = b (line 14). Finally, with the Equality Elimination using Jaa (line 3) and a = b (line 14), we deduce Jba (line 15).
Therefore, we have successfully constructed a proof of the given sequent in QL.
Correct Question :
Construct a proof for the following sequents in QL:
|-(∀x)Jxx☰(∀y)(∀z)(~Jyz ⊃ ~y = z)
To learn more about sequent here:
https://brainly.com/question/33109906
#SPJ4
Perform the multiplication. 2 4n -25 2 9n - 36 15n+ 30 2 2n +9n-35 2 4n -25 15n +30 9n - 36 2n +9n-35 (Type your answer in factored form.)
the factored form of the given expression is:
3(2n - 5)(n - 2)/(5)(n + 7)
To perform the multiplication of the given expressions:
(4n² - 25)/(15n + 30) * (9n² - 36)/(2n² + 9n - 35)
Let's factorize the numerators and denominators:
Numerator 1: 4n² - 25 = (2n + 5)(2n - 5)
Denominator 1: 15n + 30 = 15(n + 2)
Numerator 2: 9n² - 36 = 9(n² - 4) = 9(n + 2)(n - 2)
Denominator 2: 2n² + 9n - 35 = (2n - 5)(n + 7)
Now we can cancel out common factors between the numerators and denominators:
[(2n + 5)(2n - 5)/(15)(n + 2)] * [(9)(n + 2)(n - 2)/(2n - 5)(n + 7)]
After cancellation, we are left with:
9(2n - 5)(n - 2)/(15)(n + 7)
= 3(2n - 5)(n - 2)/(5)(n + 7)
Therefore, the factored form of the given expression is:
3(2n - 5)(n - 2)/(5)(n + 7)
Learn more about Expression here
https://brainly.com/question/18077355
#SPJ4
Complete question is below
Perform the multiplication.
(4n² - 25)/(15n + 30) * (9n² - 36)/(2n² + 9n - 35)
(Type your answer in factored form.)
write the sequence of natural numbers which leaves the remainder 3 on didvidng by 10
The sequence of natural numbers that leaves a remainder of 3 when divided by 10 is:
3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 103, 113, ...
[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]
♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]
Find the set if the universal set U= (-8, -3, -1, 0, 2, 4, 5, 6, 7, 9), A (-8, -3, -1, 2, 5), B = (-3, 2, 5, 7), and C = (-1,4,9). (AUB)' O (0, 4, 6, 9) (-8, -3, -1, 2, 5, 7) (-8,-1, 4, 6, 9) (4, 6, 9) Question 44 Answer the question. Consider the numbers-17.-√76, 956,-√4.5.9. Which are irrational numbers? O√4.5.9 0-√76 O√√76.√√4 956, -17, 5.9.
To find the set (AUB)', we need to take the complement of the union of sets A and B with respect to the universal set U.
The union of sets A and B is AUB = (-8, -3, -1, 2, 5, 7).
Taking the complement of AUB with respect to U, we have (AUB)' = U - (AUB) = (-8, -3, -1, 0, 4, 6, 9).
Therefore, the set (AUB)' is (-8, -3, -1, 0, 4, 6, 9).
The correct answer is (c) (-8, -1, 4, 6, 9).
Regarding the numbers -17, -√76, 956, -√4.5.9, the irrational numbers are -√76 and -√4.5.9.
The correct answer is (b) -√76.
To learn more about sets click here:brainly.com/question/30705181
#SPJ11
Copy and complete this equality to find these three equivalent fractions
Answer:
First blank is 15, second blank is 4
Step-by-step explanation:
[tex]\frac{1}{5}=\frac{1*3}{5*3}=\frac{3}{15}[/tex]
[tex]\frac{1}{5}=\frac{1*4}{5*4}=\frac{4}{20}[/tex]
If a = (3,4,6) and b= (8,6,-11), Determine the following: a) a + b b) -4à +86 d) |3a-4b| Question 3: If point A is (2,-1, 6) and point B (1, 9, 6), determine the following a) AB b) AB c) BA
The absolute value of the difference between 3a and 4b is √1573. The values of a + b = (11, 10, -5), -4a + 86 = (74, 70, 62), and |3a - 4b| = √1573.
Given the vectors a = (3,4,6) and b = (8,6,-11)
We are to determine the following:
(a) The sum of two vectors is obtained by adding the corresponding components of each vector. Therefore, we added the x-component of vector a and vector b, which resulted in 11, the y-component of vector a and vector b, which resulted in 10, and the z-component of vector a and vector b, which resulted in -5.
(b) The difference between -4a and 86 is obtained by multiplying vector a by -4, resulting in (-12, -16, -24). Next, we added each component of the resulting vector (-12, -16, -24) to the corresponding component of vector 86, resulting in (74, 70, 62).
(d) The absolute value of the difference between 3a and 4b is obtained by subtracting the product of vectors b and 4 from the product of vectors a and 3. Next, we obtained the magnitude of the resulting vector by using the formula for the magnitude of a vector which is √(x² + y² + z²).
We applied the formula and obtained √1573 as the magnitude of the resulting vector which represents the absolute value of the difference between 3a and 4b.
Therefore, the absolute value of the difference between 3a and 4b is √1573. Hence, we found that
a + b = (11, 10, -5)
-4a + 86 = (74, 70, 62), and
|3a - 4b| = √1573
To know more about the absolute value, visit:
brainly.com/question/17360689
#SPJ11
find n < 1=78 →n=12 integral
The integral of n^(-1/78) with respect to n is equal to n^(12) + C, where C is the constant of integration.
To find the integral of n^(-1/78) with respect to n, we use the power rule of integration. According to the power rule, the integral of x^n with respect to x is (x^(n+1))/(n+1) + C, where C is the constant of integration. In this case, the exponent is -1/78. Applying the power rule, we have:
∫n^(-1/78) dn = (n^(-1/78 + 1))/(−1/78 + 1) + C = (n^(77/78))/(77/78) + C.
Simplifying further, we can rewrite the exponent as 12/12, which gives:
(n^(77/78))/(77/78) = (n^(12/12))/(77/78) = (n^12)/(77/78) + C.
Therefore, the integral of n^(-1/78) with respect to n is n^12/(77/78) + C, where C represents the constant of integration.
Learn more about integral here:
https://brainly.com/question/31059545
#SPJ11
Let v₁ and v2 be the 4 x 1 columns of MT and suppose P is the plane through the origin with v₁ and v₂ as direction vectors. (a) Find which of v₁ and v2 is longer in length and then calculate the angle between ₁ and v2 using the dot product method. [3 marks] (b) Use Gram-Schmidt to find e2, the vector perpendicular to v₁ in P, express e2 with integer entries, and check that e₁e2 = 0. [3 marks] 1 (c) Now take v3 := 0- and use 0 Gram-Schimdt again to find an ez is orthogonal to e₁ and e2 but is in the hyperplane with v₁, v2 and v3 as a basis. [4 marks] 3 1 -1 1 -5 5 5 2 -3
e₃ = e₃ - projₑ₃(e₁) - projₑ₃(e₂). This process ensures that e₃ is orthogonal to both e₁ and e₂, while still being in the hyperplane spanned by v₁, v₂, and v₃.
(a) To find which of v₁ and v₂ is longer in length, we calculate the magnitudes (lengths) of v₁ and v₂ using the formula:
|v| = √(v₁₁² + v₁₂² + v₁₃² + v₁₄²)
Let's denote the components of v₁ as v₁₁, v₁₂, v₁₃, and v₁₄, and the components of v₂ as v₂₁, v₂₂, v₂₃, and v₂₄.
Magnitude of v₁:
|v₁| = √(v₁₁² + v₁₂² + v₁₃² + v₁₄²)
Magnitude of v₂:
|v₂| = √(v₂₁² + v₂₂² + v₂₃² + v₂₄²)
Compare |v₁| and |v₂| to determine which one is longer.
To calculate the angle between v₁ and v₂ using the dot product method, we use the formula:
θ = arccos((v₁ · v₂) / (|v₁| |v₂|))
Where v₁ · v₂ is the dot product of v₁ and v₂.
(b) To find e₂, the vector perpendicular to v₁ in P using Gram-Schmidt, we follow these steps:
Set e₁ = v₁.
Calculate the projection of v₂ onto e₁:
projₑ₂(v₂) = (v₂ · e₁) / (e₁ · e₁) * e₁
Subtract the projection from v₂ to get the perpendicular component:
e₂ = v₂ - projₑ₂(v₂)
Make sure to normalize e₂ if necessary.
To check that e₁ · e₂ = 0, calculate the dot product of e₁ and e₂ and verify if it equals zero.
(c) To find e₃ orthogonal to e₁ and e₂, but in the hyperplane with v₁, v₂, and v₃ as a basis, we follow similar steps:
Set e₃ = v₃.
Calculate the projection of e₃ onto e₁:
projₑ₃(e₁) = (e₁ · e₃) / (e₁ · e₁) * e₁
Calculate the projection of e₃ onto e₂:
projₑ₃(e₂) = (e₂ · e₃) / (e₂ · e₂) * e₂
Subtract the projections from e₃ to get the perpendicular component:
e₃ = e₃ - projₑ₃(e₁) - projₑ₃(e₂)
Make sure to normalize e₃ if necessary.
This process ensures that e₃ is orthogonal to both e₁ and e₂, while still being in the hyperplane spanned by v₁, v₂, and v₃.
To know more about the orthogonal visit:
https://brainly.com/question/30772550
#SPJ11
Find the diagonalization of A 60 00 by finding an invertible matrix P and a diagonal matrix D such that PAP D. Check your work. (Enter each matrix in the form [[row 1], [row 21-1, where each row is a comma-separated list.) (D, P) -
Thus, we have successfully diagonalized matrix A. The diagonal matrix D is [[0, 0], [0, 6]], and the matrix P is [[1, 0], [0, 1]].
To find the diagonalization of matrix A = [[6, 0], [0, 0]], we need to find an invertible matrix P and a diagonal matrix D such that PAP⁽⁻¹⁾ = D.
Let's start by finding the eigenvalues of matrix A. The eigenvalues can be found by solving the equation det(A - λI) = 0, where I is the identity matrix.
A - λI = [[6, 0], [0, 0]] - [[λ, 0], [0, λ]] = [[6-λ, 0], [0, -λ]]
det(A - λI) = (6-λ)(-λ) = λ(λ-6) = 0
Setting λ(λ-6) = 0, we find two eigenvalues:
λ = 0 (with multiplicity 2) and λ = 6.
Next, we need to find the eigenvectors corresponding to each eigenvalue.
For λ = 0, we solve the equation (A - 0I)X = 0, where X is a vector.
(A - 0I)X = [[6, 0], [0, 0]]X = [0, 0]
From this, we see that the second component of the vector X can be any value, while the first component must be 0. Let's choose X1 = [1, 0].
For λ = 6, we solve the equation (A - 6I)X = 0.
(A - 6I)X = [[0, 0], [0, -6]]X = [0, 0]
From this, we see that the first component of the vector X can be any value, while the second component must be 0. Let's choose X2 = [0, 1].
Now we have the eigenvectors corresponding to each eigenvalue:
Eigenvector for λ = 0: X1 = [1, 0]
Eigenvector for λ = 6: X2 = [0, 1]
To form the matrix P, we take the eigenvectors X1 and X2 as its columns:
P = [[1, 0], [0, 1]]
The diagonal matrix D is formed by placing the eigenvalues along the diagonal:
D = [[0, 0], [0, 6]]
Now let's check the diagonalization: PAP⁽⁻¹⁾ = D.
PAP⁽⁻¹⁾= [[1, 0], [0, 1]] [[6, 0], [0, 0]] [[1, 0], [0, 1]]⁽⁻¹⁾ = [[0, 0], [0, 6]]
Thus, we have successfully diagonalized matrix A. The diagonal matrix D is [[0, 0], [0, 6]], and the matrix P is [[1, 0], [0, 1]].
To know more about matrix:
https://brainly.com/question/32553310
#SPJ4
Let z= f (x, y) = 3 x ² + 6x y -5 y ². Define Az = f(x+dx, y +dy)− f(x, y) and dz= f₁'(x, y )dx + f₂'(x, y )d y. Compute Az - dz.
To compute Az - dz, we first need to calculate the partial derivatives of the function f(x, y) = 3x² + 6xy - 5y².
Given function:
f(x, y) = 3x² + 6xy - 5y²
Partial derivative with respect to x (f₁'(x, y)):
f₁'(x, y) = ∂f/∂x = 6x + 6y
Partial derivative with respect to y (f₂'(x, y)):
f₂'(x, y) = ∂f/∂y = 6x - 10y
Now, let's calculate Az - dz:
Az = f(x + dx, y + dy) - f(x, y)
= [3(x + dx)² + 6(x + dx)(y + dy) - 5(y + dy)²] - [3x² + 6xy - 5y²]
= 3(x² + 2xdx + dx² + 2xydy + 2ydy + dy²) + 6(xdx + xdy + ydx + ydy) - 5(y² + 2ydy + dy²) - (3x² + 6xy - 5y²)
= 3x² + 6xdx + 3dx² + 6xydy + 6ydy + 3dy² + 6xdx + 6xdy + 6ydx + 6ydy - 5y² - 10ydy - 5dy² - 3x² - 6xy + 5y²
= 6xdx + 6xdy + 6ydx + 6ydy + 3dx² + 3dy² - 5dy² - 10ydy
dz = f₁'(x, y)dx + f₂'(x, y)dy
= (6x + 6y)dx + (6x - 10y)dy
Now, let's calculate Az - dz:
Az - dz = (6xdx + 6xdy + 6ydx + 6ydy + 3dx² + 3dy² - 5dy² - 10ydy) - ((6x + 6y)dx + (6x - 10y)dy)
= 6xdx + 6xdy + 6ydx + 6ydy + 3dx² + 3dy² - 5dy² - 10ydy - 6xdx - 6ydx - 6xdy + 10ydy
= (6xdx - 6xdx) + (6ydx - 6ydx) + (6ydy - 6ydy) + (6xdy + 6xdy) + (3dx² - 5dy²) + 10ydy
= 0 + 0 + 0 + 12xdy + 3dx² - 5dy² + 10ydy
= 12xdy + 3dx² - 5dy² + 10ydy
Therefore, Az - dz = 12xdy + 3dx² - 5dy² + 10ydy.
Learn more about calculus here:
https://brainly.com/question/11237537
#SPJ11
HELP
what is the distance of segment ST?
The calculated distance of segment ST is (c) 22 km
How to determine the distance of segment ST?From the question, we have the following parameters that can be used in our computation:
The similar triangles
The distance of segment ST can be calculated using the corresponding sides of similar triangles
So, we have
ST/33 = 16/24
Next, we have
ST = 33 * 16/24
Evaluate
ST = 22
Hence, the distance of segment ST is (c) 22 km
Read more about triangles at
https://brainly.com/question/32215211
#SPJ1